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Abstract. Solution concepts are a fundamental tool for the analysimofe-like
systems, and as a consequence, much effort has been devéiedproblem of
characterising solution concepts using logic. Howevee problem is that, to
characterise solution concepts such as Nash equilibriusgems necessary to
refer to strategies in the object language, which tends topticate the object
language. We propose a logic in which we can formulate ingmbrproperties
of games (and in particular pure-strategy solution corgeptthout recourse to
naming strategies in the object language. The idea is tetgad of using pred-
icates which state that a particular collection of stratedgbrms a solution, we
define formulae of the logic that are true at a state if and drlyis state con-
stitutes a particular equilibrium outcome. We demonstthgeusefulness of the
logic by model checking equilibria of strategic games.

1 Introduction

Game theory [18] has come to be seen as a topic of major impratfar computer sci-
ence, since it focuses on the study of interaction and podédom an incentive-based
perspectiveSocial softwarg20] aims to give social procedures a theory analogous to
the formal theories for computer algorithms to facilitageg., program correctness or
analysis of programs. One aspectgaime logicq23] is to study those theories with
logical tools. We can distinguish two complementary faesilof formalisms: logics of
change addressing action and time, and logics of mentakstaddelling informational
and motivational attitudes.

Games of interaction and their solution& game is a description of the protocol of
interaction between players and their preferences. A isoludoncept describes what
may be the solutions (or outcomes) that emerge given somengs®ns of rationality
of the players.

To describe the different models of interaction, the soludiand their properties,
game theory makes use of the language of mathematics whictrisly set theory and
plain English. One objective of game logics is to build pulegical formal languages
that are able to talk about social procedures and gamestioydar. Some obvious mer-
its would be to obtain unambiguous formalisations for thedm of social procedures,
and the opportunity to apply formal methods of computensmdao game-like systems.

Game theory is concerned with identifying sensible sohgifor a particular class

of game. Our present task is to propose a framework in whiclcarereason about
them.



Model checking game solution$he interest of the computer science community in the
agent paradignfor software architectures is dramatically increasing] game theory
is one of the most successfully applied theories of ageataation in computer science.
As a consequence, itis not hard to argue in favour of formahids for verifying social
procedures as they are fundamental for the validation df somplex systems.

Model checking is one of these methods for hardware or softwarification. A
problem of model checking can be formally stated as follogigen a property (or
logical formula)y, a modelM, return the set of staté3such thas € Siff ¢ is true at
the statesin M.

One important aspect that one should have in mind when designethods for
model checking is then to provide a language of specificatiam will facilitate the
work of the user. In this paper, we attach a particular imgoaee to the simplicity of the
syntax of our logic for the very purpose of characterisinggarties of games.

Action abstraction.Typically in game logics, the characterisation of soluttmmcepts
is achieved by defining predicates of the fdB@((s ) ), Stating that the particular strat-
egy profile(s )y is an instance of the solution conc&g! (for example tak&Cas Nash
equilibrium). In such predicate definitions, strategiesictions are parameters, and so
we must have a way of referring to these in the logic’s objanguage. Propositional
Dynamic Logic [14] is a natural candidate. However when firiaciple is integrated
with logics of ability and agency like Alternating-time Teawral Logic [1], Coalition
Logic [22] or STIT theories [5], there is a paradigmatic issindeed, the agenda of
reasoning about solution concepts seems to make it negdssaify strategies in the
object language — yet one of the putative advantages of teaipased logics such as
ATL is to abstract away from strategies and actions.

But let us take a step back, and ask the question: are exphoites of actions
necessary for the logical characterisation of solutioncegts? In this paper, we shall
provide evidence for a negative answer. For the time being#@vational question is:
what would we gain by abstracting actions away?

For model checking solution concepts we would like to givnasit (1) a game, and
(2) ageneralformulation of a solution concept, and obtain as output gi@soutcomes
that verify it. For the existing logics able to express gapailébria, the straightforward
way of applying model checking to verifying solution contseis somewhat limited be-
cause the modeller first has to choose an action pr(fil@ and then check whether
the game satisfieSQ(s)n). Either the hard work is done by the designer, in selecting
the action profile, or we need to provide to the model checkiarge formula con-
taining as many disjunctions as the model to be tested hategir profiles. This leads
to a formula exponentially large in the number of strategleswe will see, our defi-
nitions of solution concept are not subject to this drawb&e& thus can characterise
important properties of game in a more succinct manner. iSldso desirable since the
complexity of model checking typically depends on the sizéhe input formula.

Of course, abstraction of action names is not a solution éwyeproblem in social
software. For a completely different perspective, see [24jhich the author considers

1 We call N the grand coalition the coalition containing all players. strategy profileis a
combination strategies: one for each playeNin



strategies to be “the unsung heroes of game theory”. Howeeeshow in what follows

that without relying on explicit actions, we are able to giMgeneral logical formulation
SCfor most solution concepts in strategic games. As a consegeve can check in a
very natural manner where the equilibria are in a game.

Outline. This article aims at providing a language for characteggmmoperties of
games, which is expressive, easy to manipulate, unambggaad in this sense particu-
larly suitable for a designer of interaction protocols irrd@®f a tool for model checking
their game theoretic properties. We first introduce someepts from game theory and
some solution concepts. Next, we present our logic and ctetise the solution con-
cepts in it. We continue with examples. We conclude with darimal discussion and
perspectives.

2 Some notions from Game Theory

In this section, we review the basics of game theory in sfiatgames.

2.1 Strategic games
Definition 1 (strategic game form).A strategic game forris a tuple(N, (A;)) where:

— N is afinite set oplayers(or agents);
— A is a nonempty set adctionsfor each player i€ N.

A strategic game form is sometimes callethachanismit specifies the agents taking
part in the game and the actions available to them. Next, vee peeferences, which
will give the players the incentive for taking an action.

Definition 2 (preference relation).A preference relatior over S is a total, transitive
and reflexive binary relation over S.

We can now see a strategic game as basically the composftisteategic game
form with a collection of preference relations (one for gvagent).

Definition 3 (strategic game)A strategic games a tuple(N, (A), (>i)) where(N, (A))
is a strategic game form, and for each playegiN, »-; is a preference relatioover
A - XjGNAj-

We refer to a collectior{)jen, consisting of one action for every agenth) as an
action profile Given an action profil@, we denote by, the action of the playar and
by a_; the action of the coalitioN \ {i}. We writeac for the coalitional actionsthat
are members ofic = xjccA foranyC C N.

Strategic gamesire models of interaction in which all players choose anoacti
simultaneously and independently. It is convenient to keeetements of\ as the out-
comes of the game, resulting from an action profile. Therdétaee ingredients that are
characteristic ofjame theoretiinteractions in strategic games: (i) agents are indepen-
dent, in the sense that every playean freely decide which move i to take whatever



the other agents choose — all combinations of agents’ ch@ime compatible; (i) not
only those combinations are compatible, but they also leadunique outcome (here
formally represented by the action profile itself); and) (iie preferences; are over
the possible outcomes which gives the game theoretic flavour: players must tate@ in
account the preferences of others in order to determine b@estiieve the best outcome
for themselves.

ap b2
al[L, 1]2,0
b1 [0, 2[0, 0

Fig. 1. An example of2-player strategic game.

In 2-player games, it is convenient to represent a strategicegssya matrix of util-
ities (or payoffs). In the game shown in Figure 1, playes the row player, choosing
between actiora; andb;, and player2 is the column player, choosing between ac-
tion a; andh,. The entriesx, y) of the matrix represent the payoffs of agents for a
particular outcome —x is the payoff for the row player, whilg is the payoff for the
column player. The preferences are easily derived. For pl@(a;, az) =1 (b1, a2),
(al, ag) b (al, b2) but (al, a2) %1 (al, bg), and(bl, bg) =9 (al, b2) and(al, b2) =9
(by, be).

2.2 Game equilibria

Next, we define some important solution conceptglme strategiesThose are defi-
nitions of very standard notions of game theory. We referrdeader to [18]. We will
later demonstrate the ability of our logic to represent prtips of strategic games, and
game equilibria in particular. In order to show how fine-gead the logic is, we will
study several variants of equilibria, namely two sorts aERaoptimality, three sorts of
dominance, two sorts of Nash equilibria and the conceptettre.

Definition 4 (Pareto optimality). An action profile & is a weak Pareto optimurif
there is no action profile strictly preferred ovet Ay every agent. ais a strong Pareto
optimumif there is no action profile considered at least as good adwevery agent
and strictly preferred by at least one agent.

Definition 5 (dominance equilibria). a* is a very weakly dominanaction profile if
for every player i and coalitional action_a, i considers(a*,a_;) at least as good as
(a/,a_;) for every & a* is aweakly dominantction profile if for every agent i, one
preference is strict for at least one actiof a* is a strictly dominantaction profile if
all preferences are strict.

Definition 6 (Nash equilibrium). An action profile & € A is aNash equilibriumiff
for every player ie N and for all 3 € A, i considers(a*;, a) at least as good as
(aiiv ai)



To conclude this collection of solution concepts, we wilashow interest in coop-
erative games via the study of strong Nash equilibrium aerd:tive of strategic games.

Definition 7 (strong Nash equilibrium). An action profile & is a strong Nash equi-
librium of a strategic game iff there is no coalition© N and no strategy @asuch that
(ac,a* ) is considered strictly better thart dy every player of C.

Definition 8 (weak core membership)An action profile & is dominatedn a strategic
game iff there is a coalition GZ N and a strategy @ such that for all ac, every
i € C strictly prefers(ac,a_c) over &. a* is in theweak coreof the game if it is not
dominated.

These last two definitions hold forcaalitional game without transferable utilitieshat
is, players can form coalitions, but cannot redistributegshm of the payoffs among the
individuals of the coalition.

3 A Hybrid Logic of Choice and Preference

We now introduce a logic that will allow us to capture gameotie¢ic solution con-
cepts such as those above, without recourse to naminggtrsiactions in the object
language.

At the heart of the models we us&ipke frameswe assume a set of states and
binary relations over them. We will think of a state as anacfirofile. For any coalition
J, an equivalence relatioR; will cluster together the states thatcannot separate by
one of its choices: the exact outcome will depend on the ehofcthe other agents
which is out of control ofJ. The main task is to constrain the fram¢& (R;)) such
that they are a correct conceptualisation of strategic ginmes. We will also have a
preference relatiof®; for every agent. This logic is a hybrid logic [3], and in what
follows, we pre-suppose some familiarity with this clas$arfalisms.

3.1 Language and semantics

Let us assumelgt = {0,1...n} a nonempty finite set cigentsProp = {p1,pP2 ...}
a countable set gbropositions Nom = {iy,is ...} a countable set afiominalsand
WVar = {x, Xz . ..} a countable set aftate variablesProp, N'om WVar are pairwise
disjoint. We callSymb = AMomu WVar the set ofstate symbolsThe set of atoms is
then denoteddtm = Prop U Symh

The syntax oHLCP is defined by the BNF

pu=Tlal-pleVe|de|[Zile|Qsp |l xe

wherea € Atm, x € WVar, s € Symhi € AgtandJ C Agt are terminal symbols.
This is a multi-modal language of hybrid logic withand| (from now onH(Q, |)).

As usual, the remaining Boolean connectives are defined byealations, and
(o =def —[J]7. Analogously,(<i)e =def —[=i]—. In the object language, we
denote byd the complement o w.r.t. Agt.



The intended reading ¢d]¢ is “groupJ chooses such thatwhatever other agents
do” or “the current choices of agents thensure thaty”. (J)p is “J by its current
choice does not rule oyt as a possible outcome” od ‘allows”. In particular, because
the empty coalition cannot make any choice (or more precisat a unique vacuous
choice),[#]¢ can be read asg cannot be avoided” an¢)y reads % is a possible
outcome”.{=j)¢ means that at the current statqrefersy or is indifferent about it.
@gp means that is true at the state labellexd Finally, the operatof x. labels the
current state with the state variableThen it allows further explicit reference to the
state by using as an atom in the formula in its scope.

Definition 9 (HLCP model).A model foHLCP is a tuple(.Agt, Prop, N'om WVar, S,
(Ry), (Pi), w) where:

— Agt, Prop, Nom andWVar are as before;
— Sis a set of states;
— every R is anequivalence relationver S such that:
(1) Ryun C Ry
(2.) Ry, NRy, € Ry ua,;
(3.) Ry S RyoRygnu;
(4.) Ragt = Id;
— every Ris a total, transitive relation over S;
— 7 : S — 2PoPUNOmg 3 valuation function where (i) is a singleton for every
i € Nom.

An assignmentg, is a mapping fronSymb into S. We defin€ @s d¢(x) = s and
gs(X) = g(y) for x #y.

The definition of valuation function of our models is conaegly important here.

The fact that the valuation of a nominal is a singleton refléhe main aspect of
hybrid logic. A nominal uniquely characterises a state skhipke model and can thus
be understood as the name of a state.

An equivalence relation in a Kripke model generates a pamtivf the set of states.
Hence, the relatioR; represents the choices &#fand each element of the underlying
partition (viz. a set of states) corresponds to one choice. We wilkgtas formally in
Section 4.1R; represents the choice of the empty coalition. Since the yogailition
is assumed to have only one ubiquitous chdiRjgs the universal relation over the pos-
sible outcomes. (1.) means that adding agents to a coatitakes it at least as effective.
(2.) means that a coalition is not more effective than thelmaation of its parts. (3.)
says that an outcome is possible only if one can reach it bystweoessive moves along
two relations of choice of two complementary coalitionsisTik intended to reflect the
independence of agents. (4.) means that the grand coasitoaximally effective: if an
outcome is possible then the grand coalition can choosédtméistically.

An example of analformedHLCP (pre-)model with two players is given in Figure
2. Here, the relatioi,, partitions the set of outcomes into two partitions, each-con
sisting of four states. The relatidy, partitions the set of outcomes in three partitions.
The relatiorR 4t = Ry, 1} is represented by dashed lines. The relaRgr= Ry oR1y
groups the outcomes of a strategic game togethes, fie constraint (2.) oR is not
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Fig. 2. Dashed lines represe®agq relations.  Fig. 3. An example oHLCP pre-model. Pref-
This isnotanHLCP model. erences are not represented.

satisfied. At, the constraint (4.) oRis not satisfied. An example 6fLCP (pre-)model
with two players is represented in Figure 3.
Truth values are given by:

- M,9,sE=piff pe n(s), forp € Prop

- M,g,sEtiff g(t) = s, fort € Symb

- M, 9,5 Qupiff M,0,9(t) = ¢, wheret € Symb
_Magas|:l X90|ff /\/l,gé,s):go

- M, 9,5 J)ypiffforall s € Ry(s), M,q,5 E ¢
- M, 9,5 [Ri|piffforall s € Pi(s), M,9,5 = ¢

and as usual for classical connectives. We also adopt theentional definitions of
satisfiability and validity: arHLCP formula o is satisfiableiff there exists a pointed
model M, g, ssuch thatM, g, s = ¢ andy is valid iff for every pointed model\, g, s
we haveM, g,s = .

We shall writeM, s = ¢ when itis the case that, g, s = ¢ for any mapping.

3.2 Some intuitions about the logic

The frames oHLCP models are the frames we expect for studying strategic games
Definition 9 item (3.) defines the powers of the empty coalittmd reflects the inde-
pendence of agents. A state is considered possible if it earedched via the relation
Ry. A state is possible only if it is compatible with the choicégsomplementary coali-
tions. From items (2.) and (4.), the pointwise intersectiohagents’ classes of choice
are singletons);c 44 Ryi} (S) = {s} for everys. Hence, possible states map directly to
action profiles. We explain this in more detail now.

Actions and choices explainedGiven a coalition], and two statesands' in S s €
R;(s') means thatands’ are two possible outcomes of a same choick 8y definition
(Definition 9 item (2.)), a choice of a coalition is the intection of the choices of its
individual members. Hencee R;(s') means thas ands’ are in a same choice of every
agent inJ. To put it another way, no agent ihcan choose (resp. dismissithout
choosing (resp. dismissing).



The operatorJ) allows to quantify over possible states, given that theoastiof
the agents out of are fixed. Equivalently, keeping in mind the analogy of Staie
action profiles, it makes it possible to quantify over acsiari J. For example/{i})
quantifies over's actions.(J), can be read “the action of the agents that are ndt in
being maintained, there is an actiondofuch thaty”.

In the model of Figure 3 withdgt = {0, 1}, at states, player1 can unilater-
ally change its current choice such thatholds: M,s = ({1}), or equivalently
M,s E ({0})¥, meaning that played allows ). Analogously player allows :
M,s = ({1})e. Hence played can change its choice such thatholds: M,s =

{0he

The action component of the logic is largely inspired by theslias’'s STIT logic
[15]. The logic limited to individuals has been axiomatisggdXu [5, Chap. 17] and
studied further in [4]. [9] proposes a group version of thgi¢to However, the models
are more general than those of the original logic of [15]. yih#owed for example
what is exemplified in Figure 2 & that is to say an imperfect intersection of the
relations of choice. As a consequence a coalition is moectfe than the set of its
parts. However, this is not compatible with strategic garkkence, irHLCP we forced
this by the constraint (2.) that is not present in the modg|S]o

Then, like STITHLCP has obvious links with multi-agent epistemic logic [11] and
multi-dimensional logics over equivalence relations [17Jmay indeed be helpful to
think about a choice relation as an epistemic relation. istemic logics,[i]¢ would
read 1 knows thatp”. For a coalition], [J] is similar to thedistributed knowledgeper-
ator of epistemic logic, usually writteD;. Alternatively, we could have used cylindric
modal logic [27] or logics of propositional control [26, 13) these logics, a formula of
the form¢{;p reads the agents ihcan change their choice such thaholds. It trivially
corresponds itHLCP to the formula(J)¢ meaning that the agents outbéllow for .

About the hybridisation Intuitively, | X.o assigns the name of the current state to
the variablex, and it can be reused in the scope of the binder as a propusitietter.
The authors of [2] compare the role of the bindeto the Reichenbachiageneralised
present tenseThey write:

It enables us to “store” an evaluation point, thereby makirngpssible to in-
sist later that certain events happenethat time, or that certain other events
must be viewed from that particular perspective. This icizly the kind of
expressive power we need to encode Reichenbach’s ideas.

We argue that this ability to fix an ‘evaluation point’, viz action profile in our setting,
and looking at alternatives from that perspective, is algerigely what we need to
encode most game equilibria.

We can already take advantage of the power of hybrid logidé&ining strict pref-
erences which will be useful later.

Definition 10 (strict preferences).Thestrict preferencef i for an alternative where
v holds is defined by:

(<) =detl X.(Zi)( A =(Z0)X)



Note that the expressive power of hybrid logic makes it gasdio characterise in
the object language some features of models in a way thattipassible in conven-
tional modal logic. For instance, the ability to grasp theeisection of relations was
a key trigger for the modern era of hybrid logic [21]. Thisdisaus to the axiomatic
characterisation dfiLCP.

3.3 Axiomatisation

x will be used as a meta-variable over the set of state vagati¥gar; s, t andu will
be meta-variables over the set of state symishimly and [ is any modality from
{13113 C Agty u{[=i] | i € Agt}.

There exist several presentations of the axiomatics of &sécthybrid logic with
@ and| (hereaftefkya,|)) [7,6,3]. We use one given in [6] which unlike the others
we can find in the literature, does not have recourse to uaddk rules, viz. rules of
inference that apply under syntactic constraints. We shaw Figure 4. Note that a
substitution replaces uniformly (1) proposition variablg arbitrary formulae and (2)
nominals by other nominals.

axioms:
(CT) enough classical tautologies

(Km) B(p—q) — (Hp— [a)

(Ke) Qs(p — q) — (Qsp — @QsQ)

(selfduak)|@sp < —Qs—p

(refa) Qss

(agree) |QQgp > Qgp

(intro) s— (p < Qgp)

(back) - ﬁ@s(p — @s<p

(DA) Qs(] X < @[x/9])

(nameg) || x.(x — ¢) — ¢, provided thak does not occur i
(BGI) (@RE| J, X. Qg [ =X

rules:
(MP) Fromt ¢ andk- ¢ — v infert- ¢
(subst) Fromt ¢ infer - ¢, for o a substitution
(neca) Fromt- ¢ infer @Qgp

(nec) Fromt ¢ inferk| x.¢

(negy) FromkE ¢ infer- e

Fig. 4. An axiomatisation 0Ky (a, ).

The principles are sound and axiomatise compleielya, ) when the operators
symbolised byl are normal modalities over arbitrary frames (ilé-modalities). We
now need to give the principles that will ensure that the nlibds of the form[=<;] rep-
resent a relation of preference and the collection of maidalof the form[J] represent
a strategic game form.



We say a formula ipure if it contains no propositional variables (but may con-
tain nominals). We obtain the full axiomatisationtdE CP by adding the pure axiom
schemata listed in Figure 5. It is easy to check that theseiples are sound. An im-
portant theorem of hybrid logic states thatifis a set of puré<(Q, | ) formulae, then
Ky (a,)) + ¥ is complete for the class of frames on which each formuld’e$ valid
[7, Th. 4.11]. Proving the completeness of the inferencéesyss thus straightforward.

(M) |s— (JI)s

Gp)  |(Is— [[I)s

(mon) |(J1 Ud2)s— (J)s

(inter) [(J1)SA (J2)s— (J1 Ude)s
(elimyy) [(B)s — (I)(I)s

(detagy) [(Agt)s — s

(<)) (S (Si)s— (Si)s

(total) [sA (D)t — (i)t V @({=Zi)s

Fig. 5. Principles added to the axiomatisation I§f;(a,)), completing the axiomatisation of
HLCP.

We try to give intuitive readings of the axioms of Figure 5;;()fmeans that if
is the state at hand, it is in the current choice of everyofig) (neans that for every
coalitionJ, if J allowssthenJ refuse not to allow it. (mon) expresses the fact that if a
group allowss then its parts allove also. (inter) means that if some parts allewhen
the coalition composed of these parts allatso. (elim) means that if an outcome is
possible then a coalition always allows that its complemgntoalition could allows
too. (det) captures the fact that if the grand coalitionwadi@ thens is the outcome.
(4/<,)) and (total) are intuitively the transitivity and connedness of preferences.

Proposition 1 (completeness)HLCP is complete with respect to the classHifCP
models.

PROOF By applying the Standard Translation (ST) for hybrid Iqgi@ can check that
the pure axioms in the last tabular correspond to the cdnsirave imposed on the
frames. The correspondence is pretty clear for whom is famiith the ST for hybrid
logic. (Or modal logic: just recall that a state symbol istexactly at one state.) As an
example, we nevertheless give the translation for (inted) @otal). (The subscriftis

a state symbol that does not occur in the formula being taded!)

— (inter) corresponds to the constralRt N Ry, C Ry,u3,:

S-E(<J1>S/\ <J2>S—> <Jl U J2>S),

ST((J1)s) A ST((J2)sS) — ST({J1 U Jo)s);

EJyl'(RJl (t’ yl) A S-Ig’l (S)) A 3yl(RJz (ta y2) A S-lglz (S)) -
EIyl'(RJl [GND (tv y3) A S-I;/'a (S));

1-(Ry, (t,y1) A (1 =9)) ATy (Ry,(ty2) A (Y2 =9)) —
3y1-(Ry,us, (ty3) A (Y3 = 9));



(] RJl (t, S) A RJ2 (t, S) — leuj2 (t, S).
— (total) corresponds to the constraif; ‘is total”:
o STy(sA (Dt — (Z)tV @(=)s);
o STu(9) AST((D)t) — STL({=i)) V STu(@(=i)s);
e (U=19) Ady1.(Ry(U,y1) ASTy, (1)) —
3y2.(Pi(u,y2) A STy, (1) V 3ys.(Pi(t,y3) A STy (s));
e (U=9Ady1.(Ry(uy1) A(y1 =1)) —
Y. (Pi(u,y2) A (Y2 = 1)) V 3ys.(Pit,ys) A (ys = 9));
e Ry(st) — Pi(s, )\/ Pi(t,s).

HLCP only consists of a set of pure axiom schemata added to thenatisation of
K% (a,})- Hence, the result follows as a corollary of [7, Th. 4.11]. |

4 Application to game analysis

In the introduction to the paper, we promised that we wouldhfalise solution concepts
without using names for actions. In this section, we makedgmo that promise. We
show how to characterise a number of solution concepts uk&tpgic.

4.1 Relating strategic games an¢iLCP models

We here guarantee thetLCP models are an adequate conceptualisation of strategic
games. With this aim, we relate strategic gai@es (N, (A;), (=i)) with the models of
HLCP. Let us first introduce a hybrid version of strategic games.

Definition 11 (hybrid game model).A hybrid game modeis a tuple(N, (A), (>i),
Prop, Nom WVar, v) where(N, (A), (>i)) is a strategic gameProp, N'om and/VVar
are as in Definition 9, and v maps elements frefanA; to 9PropuNom

Hybrid game models are strategic games with propositiodsaafunction of inter-
pretation, to which we add the standard ‘hybrid machinefey are sufficiently rich
to give a semantics to the languageHifCP. Truth values ofHLCP formulae over
hybrid game models are defined recursively as follows.

Definition 12 (truth values in hybrid game models).Let a hybrid game mode\g =
(N, (AY), (=), Prop, Nom WVar, v). Let g, be a mapping frolSymb into A as in Def-
inition 9.

— Mg, 0,a =g piff p € v(a), for p € Prop

— Mg, 0,a=gtiffg(t) = a, fort € Symb

— Mg, 0,a =sg Qi iff Mg, 0,9(t) =sg ¢, where te Symb

- Mg,0,a ':sgl X iff Mg, 05, a |:sg ®

— Mg,0,ak=sg [J]piffforevery d ; € Xjen\sA we haveMg, g, (ay,@_3) FEsg
— Mg, 9,8 =g [<i]g iff for every d = a we haveMg, g, @ =g ¢

and as usual for classical connectives.



We say eHLCP formulay is sg-satisfiabléff there exists a pointed hybrid game model
Mg, g,asuch thatMg, g, a |=sg ¢ andyp is sg-validiff for every pointed hybrid game
modelMg, g, awe haveMg, g, a =g ¢.

From a hybrid game model we obtain a correspondih@P model as follows.

Definition 13 (from hybrid game models toHL CP models).We say atHLCP model
(Agt, Prop, Nom WVar, S, (Ry), (Pi), 7) correspondio a hybrid game modéN, (A),
(=i), Prop, Nom WVar, v) if:

— Agt=N;

— S= XjenNA;;

- (aJva_J)RJ(aJ’aLJ);
—a ePi(a)iffa’ = a;
- T =V.

It was already clear that we conceive a statélirCP as an action profile. Two action
profiles are in the same class of choiceldf agents inJ do the same action in both
profiles; preferences are immediate.

The other way round, we could construct a hybrid game modeésponding to an
HLCP model. We just give it for clarification but will not make uskio

Definition 14 (from HLCP models to hybrid games models)We say that a hy-
brid game mode(N, (A), (=i), Prop, Nom WVar, v) correspondso anHLCP model
(Agt, Prop, Nom WVar, S, (Ry), (Pi), ) if:

— N = Agt;

- A| - SiER{i} = {|S|ER{i} : SE S}' .

- (|50|5R{o}7 S |5k|zR{k}) Zi (|5IO|ER{0}’ o |q<|ER{k}) iffy € Pi(x), where k =
Card(Agt) — 1,x € mieAgt |SI/|ER{1} andye mieAgt |S|ER{i};

- V=m.

The notation makes it perhaps less self explanatory thapréheous definition. It iden-
tifies the set of actions of an aganwith the set of classes in the equivalence relation
of choiceRy;,. An action profile is then captured by a tuple of such clas$ehoice,
one for every agent. As a consequence of the it2rmisd4 of Definition 9, the classes
of choice in a tuple intersect in exactly one state: txesndy in the definition above
are uniquely determined. The preferences in the strategisegnodel are then derived
from the relationP; applied to this state.

4.2 Equilibria in HLCP models

Our next task is to adapt the previous definitions of equdilom the context oHLCP
models. We also state their correspondence with the gamedtiedefinitions.

Definition 15. Given anHLCP model M and a state 5in M, s* is weakly Pareto
optimaliff there is no sc Ry(s*) such that s= Pi(s*) and s ¢ P;(s) for every i inAgt.

s* is strongly Pareto optimaff there is no s€ Ry(s*) such that sc P;(s*) for every i

in Agt, and there is a j such that &Z P;(s).



Definition 16. Given anHLCP modelM and a state sin M, s* is

1. very weakly dominaniff for all i in .Agt and for all s€ R (s*), we have that for all
s e R.Agt\{i}(s)v Se P,(Sl),

2. weakly dominaniff for all i in .Agt and for all s€ Ri(s*), we have that for all
S € Rugn 1i} (8), s€ Pi(s) and there is a’6 € R gy i3 (S) such that’s ¢ Pi(s);

3. strictly dominantiff for all i in Agt and for all s € R(s*), we have that for all
S € Rugn fi} (8), s€ Pi(s) and $ £ Pi(s).

Definition 17. Given anHLCP modelM and a state sin M, s* is

1. Nash equilibriuniff for all i in Agt, for all s in Rygp (i} (S*) we have s Pi(s*);
2. strong Nash equilibriuniff for all J C Agt and s€ R g 3(S*) there is aniin J
such that § € Pi(s).

Definition 18. Given anHLCP modelM and a state sin M, s* is in the wealcore
iff for all J C Agt and s€ Rygns(s") there is aniin J and an’se Ry such that
s € Pi(9).

These definitions are adequate with the definition of gameryh&his is stated by
the next proposition.

Proposition 2. Let SC be a solution concept among weakly Pareto optimalngly
Pareto optimal, very weakly dominant, weakly dominanictyrdominant, Nash equi-
librium, strong Nash equilibrium and core. Given a hybridaségic gameM and a
correspondingdLCP modelM, an action profile ofMg is SC iff it is an SC inM.

We will rely next on the definitions in terms of relational nedslintroduced in this
section for implementing the solution concepts in the lagguofHLCP.

4.3 Implementation of equilibria in HLCP

This section provides ‘constant predicates’ charactagitiiat a state is a particular so-
lution concept. To put it another way, we give context-freéimitions of solution con-
cepts in the language 6fLCP. We start by defining predicates foest respons@veak
and strict). Informally, the best response of the agénthe strategy in the repertoire of
i that is most favorable towhen the strategies of the other players are given. It will be
instrumental in the definition of Nash equilibrium and doarice equilibria next. As a
simple illustration, we also characterise the conceptesfer best response

WBR is intended to read ‘plays a weak best response to the other agents’ choice in
the current state” by what could be reworded as “the othemiag#hoose thatconsiders
the current state at least as good”. Formally,

WBR =qer| x.[{i}](=i)x

We see how “binding” the current state to the variablgermits us to use it such

that [{i }]x exactly quantifies over the alternatives allowed by theenirchoice of the
other agents (agents idgt \ {i}) at the state recorded ia Since the grand coalition is



deterministicj itself is the ‘final chooseri. plays its best response if in every alternative
allowed by the other agents’ current choiceould consider its current choice at least
as good.

The notion of strict best response is obtained by repladimgweak preference
modality by the strict one, and singg}] is reflexive, we need to use a conditional such
that the current state (obviously not strictly preferrexijot compared.

SBR =defl X[{i}](=X — (<i)X)

We can us&VBR andSBR as the building blocks for defining more complex no-
tions. Before focusing on several equilibria, we can seeef@mple that the notion
of a choice that is never a best response is intuitively aegtin our language, using
an agentive formula stating thathooses that it does not play a weak best response
(whatever other agents do):
NBR =g [i]"WBR

The current choice of an ageris never a best response ithooses that it does not play
a best response (whatever other agents do). A choice that/és a best response (or
equivalently which is always dominated) are often worthsidering in game theory
because a rational player will never use such a choice: itdvalways be better off
choosing the strategy that dominates it.

In the remaining of this section, we give the charactersatif every solution con-
cept defined previously.

Pareto optimality A state is aveak Pareto optimuiifithere is no other state that makes
every agent better off.
WPO=ger] x.[0] \/ (=i)x
icAgt
A state labellec is a strong Pareto optimum if there is no statbat is considered
by every agent at least as goodxaand which is strictly preferred by at least one agent.
We can formulate this as:

SPO=gerl x[0](1 y.(@x A\ (Z0)y) = ( /\ (Z)%)

ic Agt ic Agt

Contrarily to WPQ SPOis a fairly complicated formula obtained directly from
the definition and without much simplification. The next posjion states that these
formalisations are correct.

Proposition 3. Given anHLCP model M and a state s inM, s* is weakly Pareto
optimaliff M, s* = WPO. It isstrongly Pareto optimaff M, s* = SPO

PrROOF. From Definition 15, folWPOwe obtain| x.—(B)[l Y. Aicaqi((@x(=Zi)y) A
—(=i)x)]. We simplify this by the observation that, from (tota), (@%t A =(=ZHt —
@(=)sis a theorem oHLCP. SPOis straightforward from the definition with minor
rewriting. |

2 Note that this is perfectly uniform with the weak case, sidoe to the reflexivity of<i] we
haveWBR « | x.[{i}](=x — (=i)X).



We omit the proofs for the other equilibria. They all consistranslating the defi-
nitions of Section 4.2 and rewriting the formulation.

Dominance equilibria We definevery weak dominanceveak dominancandstrict
dominanceOur definitions of dominance largely make use of the conoépest re-
sponse.

A agentis currently playing @ery weakly dominardtrategy if this is its (weak) best
response whatever what the other agents play. It shouldbebw that we just have to
formalise it via an agentive formula stating thathooses that it plays its best response
whatever other agents do”. Thus we characterise a stateewlpdays a very weakly
dominant strategy by the formul[fWBR. We then capture a very weak dominance
equilibrium by:

VWSD=4¢r /\ [[WBR
ic Agt

Weak dominancemposes the strategy to be the strict best response to atdeas
of the possible combination of choice of the other agents this is the only difference
with weak dominance. This is formalised Wi SBR. Thus, we characterise a state
wherei plays a weakly dominant strategy by the form{il&VBR A (i)SBR, and we
capture a weak dominance equilibrium by

WSD=¢er /\ [IIWBR A (i)SBR
icAgt

Strict dominancés intuitively along the same line as very weak dominancbstu
tuting the weak best response by the strict one (or the wesflefgnce modality by a
strict one). We characterise a strict dominance equilibriy

SSD=ger /\ [iISBR
ic Agt
Proposition 4. Given anHLCP modelM and a state sin M, s is

1. very weakly dominaniff M, s* = VWSD,;
2. weakly dominaniff M, s* = WSD;
3. strictly dominaniff M, s* = SSD.

Itis routine to check that strict strategy dominance imgplieak strategy dominance
which in turn implies very weak strategy dominance.

Proposition 5. - SSD— WSD and- WSD— VWSD

Nash equilibria A state being a Nash equilibrium is simply defined by:
NE=qr /\ WBR
ic Agt

A state is a Nash equilibrium if every agent uses its bestaesp to the choice of the
other agents. Remarkably, [25] proposed a similar defmitadong the pattern



i Dagn ¢i3 (Zi)x within an epistemic language. (Recall our quick comparigo8ec-
tion 3.2 between epistemic logic and our logic of choice.)

A state is a strong Nash equilibrium of the game if there is oalion J that can
change its choice and lead to a state considered strictlgridmt every members ok

SNE=gerl x. /\ [I(\/ (=)0

JCAgt ied
Proposition 6. Given anHLCP modelM and a state 5in M, s* is a

1. Nash equilibriumiff M, s* = NE.
2. strong Nash equilibriunff M, s* = SNE.

The next proposition is straightforward.
Proposition 7. - SNE— NE

Core The use oHLCP is not restricted to non-cooperative games. We have already
characterised strong Nash equilibrium. It is also easy piwa the concept afore of
a cooperative strategic game without transferable pay@fdid not do so in our defi-
nition in Section 4.2, but as we did for Definition 8 we can skr giving the charac-
terisation of an undominated state. A straightforwardgtation would beDOM =gt |
XA3) Ve agt 9] Aie L Y-@x(=<i)y.

INCRis simply the negation dDOM. Up to equivalence (in particular because of
(total), (agree), and modal distributivity/contractiong obtain:

INCR=gerl x. [\ [3(3)\/ (=i)x

JC Agt i€l

Proposition 8. Given anHLCP modelM and a state 5in M, s* is in the (weakfore
iff M,s* E INCR.

Note the difference with (or the resemblance to) strong Naghlibrium. We clearly
have the following.

Proposition 9. - SNE— INCR

On the succinctness of solution concept characterisation#s noted in the intro-

duction, the number of strategies has no impact on the sitleeo€haracterisation of
solution concepts in our logic. In the case of cooperativéldnia, the size of the char-
acterisation depends on the number of coalitions, and isékponential in the number
of players. However, for all solution concepts but strongsiNa&quilibrium and core
membership, the size of the formula is polynomial in the nermdf agents.

In summary, the syntax ¢iLCP allows to a designer to formalise important prop-
erties of games succinctly. This is a very desirable featfii®language when we are
interested in model checking. There are at least two redsotisat: (i) less efforts are
needed for the designer to write down a property to be testadl(ii) the complexity of
model checking is usually function of the size of the inpubiala.



5 Model checking

In order to verify properties of games, we can use the Hybodit Model Checker
(HLMC) [10]. This is an implementation of the algorithms a&], where model check-
ing of hybrid fragment including binders is proved PSPAGEnplete when the size of
the input formula is taken as parameter. (Model checkingbsagolved in polynomial
time if the size of the model is the parameter.) HLMC is givan@del and a formula.
The output is the set of states in the model where the fornsugaiisfied, plus some
statistics.

We present the model checking by means of two examples. TiHiallew us to
demonstrate the ability of our logic with a wide assortmdrgroperties. We first focus
on solution concepts for which players are assumed to beithdilly rational. We
define Nash equilibrium, very weak dominance and strict d@mée in the language
of HLMC (to be introduced). We also make explicit how ldhCP model is encoded.
In a second part, we make a move to solution concepts for teasoners: players are
assume to be able to form coalitions. In the specificatioguage of HLMC, we then
define strong Nash equilibrium, core membership and the fmsite equilibrium’ of
Pareto optimal Nash equilibrium.

5.1 Equilibria of individual rationality

The language of HLMC for implementing the formulae to beddsnatches with the
logical representation. For example, we dsegl] for [{1}], <pr ef 2> stands for
(=<2), B x is the down-arrow bindef x., & is the conjunctiom, | is the disjunction
V, ! is the negation-. We propose three progressive examples.

A Nash equilibrium in a 2-agent game is characterised by:

B x (
((&[ag2]( <pref1>(x) ) )
( [agl]( <pref2>(x) ) )
A very weak dominant equilibrium in a 2-agent game is a sligiodification of
Nash equilibrium:
[&agl] ( Bx ([ag2]( <prefi>(x) ) ) )
[ag2] ( B x ( [agl]( <pref2>(x) ) ) )

A strict dominant equilibrium in a 2-agent game is obtainezhf the very weak
dominant equilibrium, expanding the definition of stricefarences:

[agl] ( B x ( [ag2](!x ->
((By (<prefl>( (x) & !<prefi>(y))) ) ) ))

[ag2] ( B x ( [agl](!x ->
( By (<pref2>("(x) &!<pref2>(y))) ) ) ))

The game of Figure 1 can be represented in the language of HILNKXhe trans-
lation of the following definition ofM = (Agt, Prop, Nom WVar, S, (R;), (P;), )
where:

- Agt=1{1,2};



— Prop = (;

—-J\forn:: {io,il,ig,i3};

— WVar = {x,y};

- S= {0,581, %, S3};

-Ry={(s9)|seSs eSS}

- Ry = {(s0, 1), (82, 83)}*, wherex is the equivalence closure;

- Rp2} = {(0, %), (81, %) }*, wherex is the equivalence closure;

~ Rag = {(s9) | s€ S;

- P = {(30731)5 (52730)7 (32’ 51)7 (32’ S3)v (53730)5 (53731)7 (335 52)}*' wherex is the
reflexive closure;

- P2 = {(20, %), (S1, %), (S1,%2), (S1, %), (83, %0), (S8, S1), (S3,S2) } ¥, Wherex is the
reflexive closure;

— 7(s0) = {io}, m(s1) = {is}, m(s2) = {ia}, m(s3) = {iz}-

We give in Appendix the XML script which is the representataf this model. The
following is a resume of the model generated by HLMC. Noté e did not give the
relations of choice for the grand coalition and the emptylitoa. The former is simply
obtained as the identity relation, the latter is the comjpmsbf the relations of the two
individual agents.

Kri pke structure: XM

Worlds: sO (0), s1 (1), s2 (2), s3 (3)

Mbdal i ti es:

agl (0) = <s0, s0> <s0, sl1> <sl, sO0O> <sl, s1> <s2, s2> <s2, s3>
<s3, s2> <s3, s3>

ag2 (1) = <s0, s0> <s0, s2> <sl, sl> <sl, s3> <s2, s0> <s2, s2>
<s3, sl1> <s3, s3>

prefl (2) = <s0, s0> <s0, sl1> <sl, s1> <s2, s0> <s2, sl1> <s2, s2>
<s2, s3> <s3, s0> <s3, sl1> <s3, s2> <s3, s3>

pref2 (3) = <sO, s0> <s0, s3> <sl1, s0> <sl, sl1> <sl, s2> <sl, s3>
<s2, s2> <s3, s0> <s3, sl> <s3, s2> <s3, s3>

Proposi ti onal synbol s:

Nomi nal s:

i0 (0) =s0
il (1) =s1
i2 (2) =s2
i3 (3) =s3

We can now test some properties of this game. The result ahtidel checking in
HLMC consists in giving the states satisfying the input fatanand some statistics that
we give such that the reader can have a grasp on the diffecémesources needed for
model checking the various properties.

Once the game encoded, we can verify that in all cases wenotitai expected
output, that is, that the stasg corresponding to the action profiley, a;) is the only
equilibrium of the three sorts tested. Figure 6 presentgdékealts of model checking
Nash equilibrium, weak strategy dominance and strict efsatiominance against the
the previous model.

5.2 Equilibria for teams

It must be clear that the expressive poweHMCP is not limited the basic properties
of games. The language is precise enough for specifying ewdf properties that one



formula[resuliRT (in sec}# recursive callg# modal call§# binder call§max. nesting
NE [[{s}] 0.0000 45 16 1 7
WSD |[{s}| 0.0000 49 18 2 10
SSD || {s}| 0.0000 273 74 10 17
Fig. 6. Experimental results on non-cooperative solution coreept

L & [ b | L a2 | b ]

as.lai|| 1,0, =5 (so) |—5, —5,0 (s) bs.[a; —1,—1,5 )| 5,—5,0 (s5)
bl _57_570 (s2) 0707 10 (s3) bl _57 _570 (sg) _27 _270 (s7)

Fig. 7. A 3-player strategic game. Playechooses rows, play@rchooses columns and play&r
chooses matrices.

would like to verify. For instance, we can elaborate on eqtid that are desirable from
the point of view of team reasoning.

On Figure 7, we have represented a strategic game involkineg player. There are
two Nash equilibria(b;, bs, a3) and(a;, as, bs), that are also strong Nash equilibria.
Then, they are also in the core, which also contéimsb., bs). Perhaps a better solu-
tion of this game when players reason as a team is the contPareto optimal Nash
equilibrium. In this caséb;, b, a3) is the only solution.

We are now going to verify these statements with HLMC.

The internal representation of the corresponding modellimMB is the following:

Kri pke structure: XM
Worlds: sO (0),
Modalities:

agl (0)
s5> <s2,
s0> <s4,
s3> <s6,

ag2 (1)
s6> <sli,
s0> <s4,
s2> <s6,

ag3 (2)
s3> <s2,
s4> <s4,
s5> <s6,

agl2 (3)
s7> <s4,

sl (1), s2 (2), s3 (3), s4 (4), s5 (5), s6 (6), s7 (7)
= <s0, s0> <s0, sl1> <s0, s4> <s0, s5> <sl, sO0> <sl, si1>
s2> <s2, s3> <s2, s6> <s2, s7> <s3, s2> <s3, s3> <s3, s6>
s1> <s4, s4> <s4, sb5> <s5, s0> <s5, sl1> <s5, s4> <s5, s5>
s6> <s6, s7> <s7, s2> <s7, s3> <s7, s6> <s7, s7>
<s0, s0> <s0, s2> <s0, s4> <s0, s6> <sl, sl1> <sl, s3>
s7> <s2, s0> <s2, s2> <s2, s4> <s3, sl1> <s3, s3> <s3, s5>
s2> <s4, s4> <s4, s6> <s5, sl> <s5, s3> <s5, s5> <s5, s7>
s4> <s6, s6> <s7, sl> <s7, s3> <s7, s5> <s7, s7>
<s0, s0> <s0, sl1> <s0, s2> <s0, s3> <sl, sO0> <sl, si1>
s0> <s2, sl1> <s2, s2> <s2, s3> <s3, s0> <s3, sl1> <s3, s2>
s5> <s4, s6> <s4, s7> <s5, s4> <s5, s5> <s5, s6> <s5, s7>
s6> <s6, s7> <s7, s4> <s7, sb5> <s7, s6> <s7, s7>

= <s0, s0> <s0, s4> <sl, sl1> <sl, s5> <s2, s2> <s2

s0> <s4, s4> <s5, sl1> <s5, s5> <s6, s2> <s6, s6> <s7,

s4>
s7>
s2>

<sl,
<s3,
<s6,

<sl,
<s4,
<s6,

s5>
s7>
s0>

<sl1,
<s3,
<s6,

<s1,
<s4,
<s6,

s2>
s3>
s4>

<sl1,
<s3,
<s6,

<sl1,
<s4,
<s6,
S6>
s3> s3>
s7>

<s3,
<s7,

<s3,

agl3 (4)
s3> <s4,

s3>
s6>

<s0,
s4> <s4,

s0> <s0,
s5> <s5,

s1> <s1,
s4> <s5,

s0> <sl1,
s5> <s6,

sl> <s2,
s6> <s6,

s2> <s2,
s7> <s7,

s2>
s7>

<s3,
<s7,

<s3,

s4>

s2>
s5>

<s0,
<s4,

s0> <sO0,
s6> <s5,

s2> <sl,
s5> <s5,

s1> <sl,
S7> <s6,

s3> <s2,
s4> <s6,

s0> <s2,
s6> <s7,

ag23 (5)
s1> s3> <s4,

s7>

<s3,
<s7,

<s3,

prefl (6) = <s0, s0> <s0, s5> <sl, sO0> <sl, s1> <sl, s2> <sl, s3>

<sl1,
<s2,
<s4,
<s6,

s4>
s5>
s5>
s7>

<sl1,
<s2,
<s5,
<s7,

s5> <s1,
s6> <s2,
s5> <s6,
s1> <s7,

pref2 (7)

s4>
s4>
s6>

s3>
s3>
s5>

s2>
s0>
s4>

sl1>
s5>
s3>
s7>
s0>

s0>
s3>
s2>
s5>
s3>

s7>
s0>
s1>
s4>
s0>

S6>
s7>
s0>
s3>

<sl1,
<s3,
<s6,
<s7,
<s0,

<s2,
<s3,
<s6,
<s7,
<s0,

<s2,
<s3,
<s6,
<s7,
<sl,

<s2,
<s4,
<s6,

<s2,
<s4,
<s6,

<s2,
<s4,
<s6,

<sl, sl1> <sl, s2> <s1, s3>



<sl, s4> <sl1, s5> <sl, s6> <sl, s7> <s2, s0> <s2, sl> <s2, s2> <s2, s3> <s2, s4>
<s2, s5> <s2, s6> <s2, s7> <s3, s0> <s3, s3> <s4, s0> <s4, s3> <s4, s4> <s5, s0>
<s5, sl1> <s5, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, s0> <s6, sl>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s0> <s7, s3> <s7, s4>
<s7, s7>

pref3 (8) = <s0, s0> <s0, sl1> <sO, s2> <s0, s3> <s0, s4> <s0, s5>
<s0, s6> <s0, s7> <sl, sl> <sl, s2> <sl, s3> <sl, s4> <sl, s5> <sl, s6> <sl, s7>
<s2, sl1> <s2, s2> <s2, s3> <s2, s4> <s2, sb> <s2, s6> <s2, s7> <s3, s3> <s4, s3>
<s4, s4> <s5, sl1> <sb, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, sl>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, sl> <s7, s2> <s7, s3>
<s7, s4> <s7, s5> <s7, s6> <s7, s7>

Proposi tional synbols

Nomi nal s:
i0 (0) =s0
il (1) =s1
i2 (2) =s2
i3 (3) =s3
i4 (4) =s4
i5 (5) = s5
i6 (6) = s6
i7(7) =s7

We need to define the solution concepts that are relevanhi@igame. For three

agents, Pareto optimal Nash equilibrium can be implementeLMC as follows:
B x (
[ag23] ( <prefi>(x) ) )

[ag13] ( <pref2>(x) ) )

R R R X

[agl2] ( <pref3>(x) ) )
[agl2] ([ag3] ( <prefl>(x) | <pref2>(x) | <pref3>(x) ))
)

Observe that we did not use the global moddlifyin the last clause (corresponding
to Pareto optimality). As a consequence(efimy ), it is indeed definable from two
modalities|J; | and[J:] whenJ; NJ; = (). Hence, we do not have to specify the relation

of choice for the empty coalition in the input model.
Strong Nash equilibrium can be implemented as follows in HI:M

° Eagl]( <pref2>(x) | <pref3>(x)) )
[ag2] ( <prefl>(x) | <pref3>(x)) )
[ag3] ( <prefl>(x) | <pref2>(x)) )
[ag23] ( <pref1>(x)) )

[ag13] ( <pref2>(x)) )

~ @ R R o X

[ag12] ( <pref3>(x)) )
)

Finally core membership can be implemented as follows:

B x (
[

agl] (<ag23> ( <pref2>(x) | <pref3>(x)) ))
[ag2] (<agl3> ( <prefl>(x) | <pref3>(x)) ))

[ag3] (<agl2> ( <prefl>(x) | <pref2>(x)) ))

R R o X



( [ag23] (<agl> ( <prefl>(x)) ))
&
( [ag13] (<ag2> ( <pref2>(x)) ))
&
(

[agl2] (<ag3> ( <pref3>(x)) ))
)

Note that a solution concept defined foagents can be used for model checking
games of less thak players. All we shall need to do is to model the choices of the
extra players as the vacuous and dummy choice. That is, exéry player will have
not more power that the empty coalition.

We can now verify that our quick analysis of the solutionshia €xample is correct.
Figure 8 presents the results of model checking Nash equili) Pareto Optimal Nash
equilibrium, strong Nash equilibrium and core membersigpiast the the previous
model.

formula]| result [RT (in sec}# recursive callgt modal call$# binder call§max. nesting
NE {ss, 1} 0.0000 137 48 1 8
NEAPO| {ss} | 0.0000 289 88 1 14
SNE || {ss,s1} | 0.0100 425 120 1 14
INCR |[{Ss,S1,S:}| 0.0200 473 168 1 15

Fig. 8. Experimental results on Nash equilibrium, weak Pareto Naglilibrium and cooperative
solution concepts.

6 Discussion and perspectives

We hope we have made clear that a logical language withowatreletbels can be use-
ful for model checking equilibrium in games. The main aspgthat when combined
with the down arrow binder bringing the expressivity of “Beand now” in the object
language, it allows general characterisations of equélibwith the small exception of
[25], and as far as we know, such an approach has not beewéallelsewhere.

Adding epistemic reasoning.A theory of interaction cannot be complete without epis-
temic attitudes. Since the action componenHbfCP is inspired by STIT logics, a
natural extension is to integrate knowledge, as in [9]. Hmsply consists of adding
straightforward epistemic relations over states to the etodnd the underlying knowl-
edge operators to the language. As a result we have an experdsgic capable of
strategic reasoning under uncertainty.

As an illustration, the infamous notion &howing a strategys not ambiguous.
(See [16] for an account of the problem in logics of abilit¥@ can distinguish:for all
epistemically indistinguishable statélsere exista strategy ofl that leads t@”, from
“there existsa strategy of the coalitiond such thafor all states epistemically indis-
tinguishable ford, o leads tog”. The former is av-3 schema of “knowing a strategy”.
Itis in contrast to the latter sentence, which i3-& schema.



The need for succinct models. It is not difficult to see that modelling even small
strategic games is almost unfeasible. The HLMC basic cocistris:

<nodal ity | abel ="M >
<acc-pair to-world-1abel ="s1" fromworld-Iabel ="s0"/>

</nodal i ty>

stating that the relation underlying the modaliti] has an edge from the staé to
the states1. Hence, given the language of HLMC the designer needs tafgpacery
edge of every relation of the model.

Relations of choiceln the case of choice relations, every edge for reflexivignsitiv-
ity and euclideanity must be specified. It is quite easy talsaewe can encode choices
efficiently. We could for instance usel hocconstructors.

<choi ce-nod | abel ="agl">
<equiv-class "s0O sl s2">
</ choi ce- nod>

would build all the edges to maKey, s, s; } an equivalence class representing a choice.
Choice relations for coalitions can next be extrapolatednfindividual relations by
intersection.

Relations of preferencesAs the relations of preference are much less structured as
the relations of choice, their case is also more problematpractice. Given a game
(N, (AY), (=1)), acorrespondingiLCP model(.Agt, Prop, Nom WVar, S, (R;), (Pi), )

will have [S = ]\ |Ail states. Hence, only due to the totality of the preferenaes, f
every agent, Card(P;) > |§ + w Then, for example, for any game ®dplayers

with 3 choices each, we need to specify at ldasid edges of preference relation, and
we still have to fix the transitivity!

From a practical point of view it means that HLMC is not optlm& has to be
associated with a piece of software taking a compact reptatien of the model in
input and giving in output the XML script readable by HLMC.ua ‘black-box’ can
take inspiration from the research in compact represemtati games. See for example
[19, Sect. 2.5] for a short survey.
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Appendix: representation of the example in HLMC

We give the XML script which is the representation of the mqaletured in Figure 1.
We first define four states representing the set of strategfji¢s of the game. Then
we enumerate explicitly every edge of the relations undieglyhe choices of agerit,



the choices of ageri the preferences of agehaind the preferences of agentinally
we assign one nominal to each state. Remark that we did netlyarelations of choice
for the grand coalition and the empty coalition.

<?xm version="1.0" encodi ng="UTF-8"?> <nodal ity | abel ="pref1">

<! DOCTYPE hl - kri pke-struct SYSTEM "hl -ks. dtd"> <acc-pair to-world-1abel ="s0" fromworld-I|abel ="s0"/>

<hl - kri pke-struct name="XM."> <acc-pair to-world-1abel ="s1" fromworld-I|abel ="s1"/>
<wor | d | abel ="s0"/> <acc-pair to-world-1abel ="s2" fromworld-I|abel ="s2"/>
<wor |l d | abel ="s1"/> <acc-pair to-world-1abel ="s3" fromworld-I|abel ="s3"/>
<world |abel ="s2"/>
<world | abel ="s3"/> <acc-pair to-world-label="s1" fromworld-I|abel ="s0"/>

<acc-pair to-world-label ="s0" fromworld-|abel ="s2"/>
<acc-pair to-world-label ="s1" fromworld-I|abel ="s2"/>

<l-- s0 is NE, WD and SSD <acc-pair to-world-label ="s3" fromworld-|abel ="s2"/>
(s0)1,1 (s1)2,0 <acc-pair to-world-1abel ="s0" fromworld-I|abel ="s3"/>
(s2)0,2 (s3)0,0 --> <acc-pair to-world-1abel ="s1" fromworld-I|abel ="s3"/>
<acc-pair to-world-1abel ="s2" fromworld-I|abel ="s3"/>

<npdal ity | abel ="agl"> </ modal i ty>

" fromworld-1abel ="s0"/>
fromworld-
fromworl d-
fromworl d-

<acc-pair to-world-Iabel ="
<acc-pair to-world-
<acc-pair to-world-

<acc-pair to-world-

<nodal ity |abel ="pref2">
<acc-pair to-world-|abel ="s0" fromworld-|abel ="s0"/>
<acc-pair to-world-label ="s1" fromworld-|abel ="s1"/>
<acc-pair to-world-label ="s2" fromworld-|abel ="s2"/>

<acc-pair to-world-1abel ="s0" fromworld-Iabel =

<acc-pair to-world-label ="s1" fromworld-|abel ="s0"/> <acc-pair to-world-label ="s3" fromworld-|abel ="s3"/>
<acc-pair to-world-1abel ="s2" fromworld-I|abel ="s3"/> <acc-pair to-world-1abel ="s3" fromworld-I|abel ="s0"/>
<acc-pair to-world-1abel ="s3" fromworld-I|abel ="s2"/> <acc-pair to-world-1abel ="s0" fromworld-I|abel ="s1"/>
</ modal i ty> <acc-pair to-world-1abel ="s2" fromworld-I|abel ="s1"/>
<acc-pair to-world-1abel ="s3" fromworld-I|abel ="s1"/>

<nodal ity | abel ="ag2"> <acc-pair to-world-|abel ="s0" fromworld-|abel ="s3"/>

" fromworld-
fromworl d-
fromworl d-
fromworl d-

<acc-pair to-world-
<acc-pair to-world-
<acc-pair to-world-
<acc-pair to-world-

<acc-pair to-world-label ="s1" fromworld-|abel ="s3"/>
<acc-pair to-world-label ="s2" fromworld-|abel ="s3"/>
</ nodal i ty>

<noni nal | abel ="i 0"
<noni nal | abe

" fromworld-
" fromworld-

<acc-pair to-world-
<acc-pair to-world-

trut h-assi gnment ="s0"/ >

<acc-pair to-world- " fromworld- <nomi nal | abe 2"
<acc-pair to-world-1abel ="s3" fromworld-I|abel ="s1"/> <nomi nal |abel ="i3" truth-assignnent="s3"/>
</ modal i ty> </ hl -kri pke-struct>
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