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Abstract. Solution concepts are a fundamental tool for the analysis ofgame-like
systems, and as a consequence, much effort has been devoted to the problem of
characterising solution concepts using logic. However, one problem is that, to
characterise solution concepts such as Nash equilibrium, it seems necessary to
refer to strategies in the object language, which tends to complicate the object
language. We propose a logic in which we can formulate important properties
of games (and in particular pure-strategy solution concepts) without recourse to
naming strategies in the object language. The idea is that instead of using pred-
icates which state that a particular collection of strategies forms a solution, we
define formulae of the logic that are true at a state if and onlyif this state con-
stitutes a particular equilibrium outcome. We demonstratethe usefulness of the
logic by model checking equilibria of strategic games.

1 Introduction

Game theory [18] has come to be seen as a topic of major importance for computer sci-
ence, since it focuses on the study of interaction and protocols from an incentive-based
perspective.Social software[20] aims to give social procedures a theory analogous to
the formal theories for computer algorithms to facilitate,e.g., program correctness or
analysis of programs. One aspect ofgame logics[23] is to study those theories with
logical tools. We can distinguish two complementary families of formalisms: logics of
change addressing action and time, and logics of mental states modelling informational
and motivational attitudes.

Games of interaction and their solutions.A game is a description of the protocol of
interaction between players and their preferences. A solution concept describes what
may be the solutions (or outcomes) that emerge given some assumptions of rationality
of the players.

To describe the different models of interaction, the solutions and their properties,
game theory makes use of the language of mathematics which ismerely set theory and
plain English. One objective of game logics is to build purely logical formal languages
that are able to talk about social procedures and games in particular. Some obvious mer-
its would be to obtain unambiguous formalisations for the domain of social procedures,
and the opportunity to apply formal methods of computer science to game-like systems.

Game theory is concerned with identifying sensible solutions for a particular class
of game. Our present task is to propose a framework in which wecan reason about
them.



Model checking game solutions.The interest of the computer science community in the
agent paradigmfor software architectures is dramatically increasing, and game theory
is one of the most successfully applied theories of agent interaction in computer science.
As a consequence, it is not hard to argue in favour of formal methods for verifying social
procedures as they are fundamental for the validation of such complex systems.

Model checking is one of these methods for hardware or software verification. A
problem of model checking can be formally stated as follows:given a property (or
logical formula)ϕ, a modelM, return the set of statesSsuch thats∈ S iff ϕ is true at
the states in M.

One important aspect that one should have in mind when designing methods for
model checking is then to provide a language of specificationthat will facilitate the
work of the user. In this paper, we attach a particular importance to the simplicity of the
syntax of our logic for the very purpose of characterising properties of games.

Action abstraction.Typically in game logics, the characterisation of solutionconcepts
is achieved by defining predicates of the formSC((si)N), stating that the particular strat-
egy profile(si)N is an instance of the solution conceptSC1 (for example takeSCas Nash
equilibrium). In such predicate definitions, strategies oractions are parameters, and so
we must have a way of referring to these in the logic’s object language. Propositional
Dynamic Logic [14] is a natural candidate. However when thisprinciple is integrated
with logics of ability and agency like Alternating-time Temporal Logic [1], Coalition
Logic [22] or STIT theories [5], there is a paradigmatic issue. Indeed, the agenda of
reasoning about solution concepts seems to make it necessary to reify strategies in the
object language — yet one of the putative advantages of temporal-based logics such as
ATL is to abstract away from strategies and actions.

But let us take a step back, and ask the question: are explicitnames of actions
necessary for the logical characterisation of solution concepts? In this paper, we shall
provide evidence for a negative answer. For the time being a motivational question is:
what would we gain by abstracting actions away?

For model checking solution concepts we would like to give asinput (1) a game, and
(2) ageneralformulation of a solution concept, and obtain as output the set of outcomes
that verify it. For the existing logics able to express game equilibria, the straightforward
way of applying model checking to verifying solution concepts is somewhat limited be-
cause the modeller first has to choose an action profile(si)N and then check whether
the game satisfiesSC((si)N). Either the hard work is done by the designer, in selecting
the action profile, or we need to provide to the model checker alarge formula con-
taining as many disjunctions as the model to be tested has strategy profiles. This leads
to a formula exponentially large in the number of strategies. As we will see, our defi-
nitions of solution concept are not subject to this drawback. We thus can characterise
important properties of game in a more succinct manner. Thisis also desirable since the
complexity of model checking typically depends on the size of the input formula.

Of course, abstraction of action names is not a solution to every problem in social
software. For a completely different perspective, see [24]in which the author considers

1 We call N the grand coalition, the coalition containing all players. Astrategy profileis a
combination strategies: one for each player inN.



strategies to be “the unsung heroes of game theory”. However, we show in what follows
that without relying on explicit actions, we are able to givea general logical formulation
SCfor most solution concepts in strategic games. As a consequence, we can check in a
very natural manner where the equilibria are in a game.

Outline. This article aims at providing a language for characterising properties of
games, which is expressive, easy to manipulate, unambiguous, and in this sense particu-
larly suitable for a designer of interaction protocols in need of a tool for model checking
their game theoretic properties. We first introduce some concepts from game theory and
some solution concepts. Next, we present our logic and characterise the solution con-
cepts in it. We continue with examples. We conclude with an informal discussion and
perspectives.

2 Some notions from Game Theory

In this section, we review the basics of game theory in strategic games.

2.1 Strategic games

Definition 1 (strategic game form).A strategic game formis a tuple〈N, (Ai)〉 where:

– N is a finite set ofplayers(or agents);
– Ai is a nonempty set ofactionsfor each player i∈ N.

A strategic game form is sometimes called amechanism. It specifies the agents taking
part in the game and the actions available to them. Next, we need preferences, which
will give the players the incentive for taking an action.

Definition 2 (preference relation).A preference relation� over S is a total, transitive
and reflexive binary relation over S.

We can now see a strategic game as basically the composition of a strategic game
form with a collection of preference relations (one for every agent).

Definition 3 (strategic game).A strategic gameis a tuple〈N, (Ai), (�i)〉 where〈N, (Ai)〉
is a strategic game form, and for each player i∈ N, �i is a preference relationover
A = ×j∈NAj .

We refer to a collection(aj)j∈N, consisting of one action for every agent inN, as an
action profile. Given an action profilea, we denote byai the action of the playeri, and
by a−i the action of the coalitionN \ {i}. We writeaC for thecoalitional actionsthat
are members ofAC = ×j∈CAj for anyC ⊆ N.

Strategic gamesare models of interaction in which all players choose an action
simultaneously and independently. It is convenient to see the elements ofA as the out-
comes of the game, resulting from an action profile. There arethree ingredients that are
characteristic ofgame theoreticinteractions in strategic games: (i) agents are indepen-
dent, in the sense that every playeri can freely decide which move inAi to take whatever



the other agents choose – all combinations of agents’ choices are compatible; (ii) not
only those combinations are compatible, but they also lead to a unique outcome (here
formally represented by the action profile itself); and (iii) the preferences�i are over
the possible outcomesA, which gives the game theoretic flavour: players must take into
account the preferences of others in order to determine how to achieve the best outcome
for themselves.

a2 b2

a1 1, 1 2, 0

b1 0, 2 0, 0

Fig. 1.An example of2-player strategic game.

In 2-player games, it is convenient to represent a strategic game as a matrix of util-
ities (or payoffs). In the game shown in Figure 1, player1 is the row player, choosing
between actiona1 andb1, and player2 is the column player, choosing between ac-
tion a2 andb2. The entries(x, y) of the matrix represent the payoffs of agents for a
particular outcome —x is the payoff for the row player, whiley is the payoff for the
column player. The preferences are easily derived. For example (a1, a2) �1 (b1, a2),
(a1, a2) �2 (a1, b2) but (a1, a2) 6�1 (a1, b2), and(b1, b2) �2 (a1, b2) and(a1, b2) �2

(b1, b2).

2.2 Game equilibria

Next, we define some important solution concepts inpure strategies. Those are defi-
nitions of very standard notions of game theory. We refer thereader to [18]. We will
later demonstrate the ability of our logic to represent properties of strategic games, and
game equilibria in particular. In order to show how fine-grained the logic is, we will
study several variants of equilibria, namely two sorts of Pareto optimality, three sorts of
dominance, two sorts of Nash equilibria and the concept of the core.

Definition 4 (Pareto optimality). An action profile a∗ is a weak Pareto optimumif
there is no action profile strictly preferred over a∗ by every agent. a∗ is a strong Pareto
optimumif there is no action profile considered at least as good as a∗ by every agent
and strictly preferred by at least one agent.

Definition 5 (dominance equilibria). a∗ is a very weakly dominantaction profile if
for every player i and coalitional action a−i , i considers(a∗i , a−i) at least as good as
(a′i , a−i) for every a′i . a∗ is a weakly dominantaction profile if for every agent i, one
preference is strict for at least one action a′

i . a∗ is a strictly dominantaction profile if
all preferences are strict.

Definition 6 (Nash equilibrium). An action profile a∗ ∈ A is a Nash equilibriumiff
for every player i∈ N and for all ai ∈ Ai , i considers(a∗−i , a

∗
i ) at least as good as

(a∗−i , ai).



To conclude this collection of solution concepts, we will also show interest in coop-
erative games via the study of strong Nash equilibrium and the core of strategic games.

Definition 7 (strong Nash equilibrium). An action profile a∗ is a strong Nash equi-
librium of a strategic game iff there is no coalition C⊂ N and no strategy aC such that
(aC, a∗−C) is considered strictly better than a∗ by every player of C.

Definition 8 (weak core membership).An action profile a∗ is dominatedin a strategic
game iff there is a coalition C⊂ N and a strategy aC such that for all a−C, every
i ∈ C strictly prefers(aC, a−C) over a∗. a∗ is in theweak coreof the game if it is not
dominated.

These last two definitions hold for acoalitional game without transferable utilities. That
is, players can form coalitions, but cannot redistribute the sum of the payoffs among the
individuals of the coalition.

3 A Hybrid Logic of Choice and Preference

We now introduce a logic that will allow us to capture game theoretic solution con-
cepts such as those above, without recourse to naming strategies/actions in the object
language.

At the heart of the models we useKripke frames: we assume a set of states and
binary relations over them. We will think of a state as an action profile. For any coalition
J, an equivalence relationRJ will cluster together the states thatJ cannot separate by
one of its choices: the exact outcome will depend on the choice of the other agents
which is out of control ofJ. The main task is to constrain the frames〈S, (RJ)〉 such
that they are a correct conceptualisation of strategic gameforms. We will also have a
preference relationPi for every agenti. This logic is a hybrid logic [3], and in what
follows, we pre-suppose some familiarity with this class offormalisms.

3.1 Language and semantics

Let us assumeAgt = {0, 1 . . .n} a nonempty finite set ofagents, Prop = {p1, p2 . . .}
a countable set ofpropositions, Nom = {i1, i2 . . .} a countable set ofnominalsand
WVar = {x1, x2 . . .} a countable set ofstate variables.Prop,Nom,WVar are pairwise
disjoint. We callSymb = Nom∪ WVar the set ofstate symbols. The set of atoms is
then denotedAtm = Prop∪ Symb.

The syntax ofHLCP is defined by the BNF

ϕ ::= ⊤ | a | ¬ϕ | ϕ ∨ ϕ | [J]ϕ | [�i ]ϕ | @sϕ |↓ x.ϕ

wherea ∈ Atm, x ∈ WVar, s ∈ Symb, i ∈ Agt andJ ⊆ Agt are terminal symbols.
This is a multi-modal language of hybrid logic with@ and↓ (from now onH(@, ↓)).

As usual, the remaining Boolean connectives are defined by abbreviations, and
〈J〉ϕ =def ¬[J]¬ϕ. Analogously,〈�i〉ϕ =def ¬[�i ]¬ϕ. In the object language, we
denote byJ the complement ofJ w.r.t.Agt.



The intended reading of[J]ϕ is “groupJ chooses such thatϕ whatever other agents
do” or “the current choices of agents inJ ensure thatϕ”. 〈J〉ϕ is “J by its current
choice does not rule outϕ as a possible outcome” or “J allowsϕ”. In particular, because
the empty coalition cannot make any choice (or more precisely has a unique vacuous
choice),[∅]ϕ can be read as “ϕ cannot be avoided” and〈∅〉ϕ reads “ϕ is a possible
outcome”.〈�i〉ϕ means that at the current state,i prefersϕ or is indifferent about it.
@sϕ means thatϕ is true at the state labelleds. Finally, the operator↓ x. labels the
current state with the state variablex. Then it allows further explicit reference to the
state by usingx as an atom in the formula in its scope.

Definition 9 (HLCP model).A model forHLCP is a tuple〈Agt,Prop,Nom,WVar,S,
(RJ), (Pi), π〉 where:

– Agt,Prop,Nom andWVar are as before;
– S is a set of states;
– every RJ is anequivalence relationover S such that:

(1.) RJ1∪J2 ⊆ RJ1 ;
(2.) RJ1 ∩ RJ2 ⊆ RJ1∪J2 ;
(3.) R∅ ⊆ RJ ◦ RAgt\J;
(4.) RAgt = Id;

– every Pi is a total, transitive relation over S;
– π : S−→ 2Prop∪Nom is a valuation function whereπ−1(i) is a singleton for every

i ∈ Nom.

An assignment, g, is a mapping fromSymb into S. We define gx
s as gx

s(x) = s and
gx

s(x) = g(y) for x 6= y.

The definition of valuation function of our models is conceptually important here.
The fact that the valuation of a nominal is a singleton reflects the main aspect of

hybrid logic. A nominal uniquely characterises a state in the Kripke model and can thus
be understood as the name of a state.

An equivalence relation in a Kripke model generates a partition of the set of states.
Hence, the relationRJ represents the choices ofJ, and each element of the underlying
partition (viz. a set of states) corresponds to one choice. We will state this formally in
Section 4.1.R∅ represents the choice of the empty coalition. Since the empty coalition
is assumed to have only one ubiquitous choice,R∅ is the universal relation over the pos-
sible outcomes. (1.) means that adding agents to a coalitionmakes it at least as effective.
(2.) means that a coalition is not more effective than the combination of its parts. (3.)
says that an outcome is possible only if one can reach it by twosuccessive moves along
two relations of choice of two complementary coalitions. This is intended to reflect the
independence of agents. (4.) means that the grand coalitionis maximally effective: if an
outcome is possible then the grand coalition can choose it deterministically.

An example of amalformedHLCP (pre-)model with two players is given in Figure
2. Here, the relationR{0} partitions the set of outcomes into two partitions, each con-
sisting of four states. The relationR{1} partitions the set of outcomes in three partitions.
The relationRAgt = R{0,1} is represented by dashed lines. The relationR∅ = R{0}◦R{1}

groups the outcomes of a strategic game together. Ats, the constraint (2.) onR is not
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R{0}

Fig. 2. Dashed lines representRAgt relations.
This isnot anHLCP model.

ϕ

ψ

R{1}

R{0} s

R{1} R{1}

R{0}

Fig. 3. An example ofHLCP pre-model. Pref-
erences are not represented.

satisfied. Att, the constraint (4.) onR is not satisfied. An example ofHLCP (pre-)model
with two players is represented in Figure 3.

Truth values are given by:

– M, g, s |= p iff p ∈ π(s), for p ∈ Prop
– M, g, s |= t iff g(t) = s, for t ∈ Symb
– M, g, s |= @tϕ iff M, g, g(t) |= ϕ, wheret ∈ Symb
– M, g, s |=↓ x.ϕ iff M, gx

s, s |= ϕ

– M, g, s |= [J]ϕ iff for all s′ ∈ RJ(s), M, g, s′ |= ϕ

– M, g, s |= [�i ]ϕ iff for all s′ ∈ Pi(s), M, g, s′ |= ϕ

and as usual for classical connectives. We also adopt the conventional definitions of
satisfiability and validity: anHLCP formulaϕ is satisfiableiff there exists a pointed
modelM, g, ssuch thatM, g, s |= ϕ andϕ is valid iff for every pointed modelM, g, s
we haveM, g, s |= ϕ.

We shall writeM, s |= ϕ when it is the case thatM, g, s |= ϕ for any mappingg.

3.2 Some intuitions about the logic

The frames ofHLCP models are the frames we expect for studying strategic games.
Definition 9 item (3.) defines the powers of the empty coalition and reflects the inde-
pendence of agents. A state is considered possible if it can be reached via the relation
R∅. A state is possible only if it is compatible with the choicesof complementary coali-
tions. From items (2.) and (4.), the pointwise intersections of agents’ classes of choice
are singletons:

⋂
i∈Agt R{i}(s) = {s} for everys. Hence, possible states map directly to

action profiles. We explain this in more detail now.

Actions and choices explainedGiven a coalitionJ, and two statess ands′ in S, s ∈
RJ(s′) means thatsands′ are two possible outcomes of a same choice ofJ. By definition
(Definition 9 item (2.)), a choice of a coalition is the intersection of the choices of its
individual members. Hences∈ RJ(s′) means thatsands′ are in a same choice of every
agent inJ. To put it another way, no agent inJ can choose (resp. dismiss)s without
choosing (resp. dismissing)s′.



The operator〈J〉 allows to quantify over possible states, given that the actions of
the agents out ofJ are fixed. Equivalently, keeping in mind the analogy of states as
action profiles, it makes it possible to quantify over actions of J. For example,〈{i}〉
quantifies overi’s actions.〈J〉ϕ can be read “the action of the agents that are not inJ
being maintained, there is an action ofJ such thatϕ”.

In the model of Figure 3 withAgt = {0, 1}, at states, player1 can unilater-
ally change its current choice such thatψ holds:M, s |= 〈{1}〉ψ, or equivalently
M, s |= 〈{0}〉ψ, meaning that player0 allows ψ. Analogously player1 allows ϕ:
M, s |= 〈{1}〉ϕ. Hence player0 can change its choice such thatϕ holds:M, s |=
〈{0}〉ϕ.

The action component of the logic is largely inspired by the Chellas’s STIT logic
[15]. The logic limited to individuals has been axiomatisedby Xu [5, Chap. 17] and
studied further in [4]. [9] proposes a group version of the logic. However, the models
are more general than those of the original logic of [15]. They allowed for example
what is exemplified in Figure 2 ats, that is to say an imperfect intersection of the
relations of choice. As a consequence a coalition is more effective than the set of its
parts. However, this is not compatible with strategic games. Hence, inHLCP we forced
this by the constraint (2.) that is not present in the models of [9].

Then, like STIT,HLCP has obvious links with multi-agent epistemic logic [11] and
multi-dimensional logics over equivalence relations [17]. It may indeed be helpful to
think about a choice relation as an epistemic relation. In epistemic logics,[i]ϕ would
read “i knows thatϕ”. For a coalitionJ, [J] is similar to thedistributed knowledgeoper-
ator of epistemic logic, usually writtenDJ. Alternatively, we could have used cylindric
modal logic [27] or logics of propositional control [26, 13]. In these logics, a formula of
the form♦Jϕ reads the agents inJ can change their choice such thatϕ holds. It trivially
corresponds inHLCP to the formula〈J〉ϕ meaning that the agents out ofJ allow forϕ.

About the hybridisation Intuitively, ↓ x.ϕ assigns the name of the current state to
the variablex, and it can be reused in the scope of the binder as a propositional letter.
The authors of [2] compare the role of the binder↓ to the Reichenbachiangeneralised
present tense. They write:

It enables us to “store” an evaluation point, thereby makingit possible to in-
sist later that certain events happened atthat time, or that certain other events
must be viewed from that particular perspective. This is precisely the kind of
expressive power we need to encode Reichenbach’s ideas.

We argue that this ability to fix an ‘evaluation point’, viz. an action profile in our setting,
and looking at alternatives from that perspective, is also precisely what we need to
encode most game equilibria.

We can already take advantage of the power of hybrid logic fordefining strict pref-
erences which will be useful later.

Definition 10 (strict preferences).Thestrict preferenceof i for an alternative where
ϕ holds is defined by:

〈≺i〉ϕ =def↓ x.〈�i〉(ϕ ∧ ¬〈�i〉x)



Note that the expressive power of hybrid logic makes it possible to characterise in
the object language some features of models in a way that is not possible in conven-
tional modal logic. For instance, the ability to grasp the intersection of relations was
a key trigger for the modern era of hybrid logic [21]. This leads us to the axiomatic
characterisation ofHLCP.

3.3 Axiomatisation

x will be used as a meta-variable over the set of state variablesWVar; s, t andu will
be meta-variables over the set of state symbolsSymb; and ⊡ is any modality from
{[J] | J ⊆ Agt} ∪ {[�i ] | i ∈ Agt}.

There exist several presentations of the axiomatics of the basic hybrid logic with
@ and↓ (hereafterKH(@,↓)) [7, 6, 3]. We use one given in [6] which unlike the others
we can find in the literature, does not have recourse to unorthodox rules, viz. rules of
inference that apply under syntactic constraints. We show it in Figure 4. Note that a
substitution replaces uniformly (1) proposition variableby arbitrary formulae and (2)
nominals by other nominals.

axioms:
(CT) enough classical tautologies
(K⊡) ⊡(p → q) → (⊡p → ⊡q)
(K@) @s(p → q) → (@sp → @sq)
(selfdual@) @sp ↔ ¬@s¬p
(ref@) @ss
(agree) @t@sp ↔ @sp
(intro) s→ (p ↔ @sp)
(back) ¬ ⊡ ¬@sϕ→ @sϕ
(DA) @s(↓ x.ϕ ↔ ϕ[x/s])
(name↓) ↓ x.(x → ϕ) → ϕ, provided thatx does not occur inϕ
(BG↓) @s⊡ ↓ x.@s¬ ⊡ ¬x
rules:
(MP) From⊢ ϕ and⊢ ϕ→ ψ infer⊢ ψ
(subst) From⊢ ϕ infer⊢ ϕσ, for σ a substitution
(nec@) From⊢ ϕ infer⊢ @sϕ
(nec↓) From⊢ ϕ infer⊢↓ x.ϕ
(nec⊡) From⊢ ϕ infer⊢ ⊡ϕ

Fig. 4. An axiomatisation ofKH(@,↓).

The principles are sound and axiomatise completelyKH(@,↓) when the operators
symbolised by⊡ are normal modalities over arbitrary frames (i.e.,K-modalities). We
now need to give the principles that will ensure that the modalities of the form[�i ] rep-
resent a relation of preference and the collection of modalities of the form[J] represent
a strategic game form.



We say a formula ispure if it contains no propositional variables (but may con-
tain nominals). We obtain the full axiomatisation ofHLCP by adding the pure axiom
schemata listed in Figure 5. It is easy to check that these principles are sound. An im-
portant theorem of hybrid logic states that ifΣ is a set of pureH(@, ↓) formulae, then
KH(@,↓) + Σ is complete for the class of frames on which each formula ofΣ is valid
[7, Th. 4.11]. Proving the completeness of the inference system is thus straightforward.

(T[J]) s→ 〈J〉s
(5[J]) 〈J〉s→ [J]〈J〉s
(mon) 〈J1 ∪ J2〉s→ 〈J1〉s
(inter) 〈J1〉s∧ 〈J2〉s→ 〈J1 ∪ J2〉s
(elim[∅]) 〈∅〉s→ 〈J〉〈J〉s
(det[Agt]) 〈Agt〉s→ s
(4[�i ]) 〈�i〉〈�i〉s→ 〈�i〉s
(total) s∧ 〈∅〉t → 〈�i〉t ∨ @t〈�i〉s

Fig. 5. Principles added to the axiomatisation ofKH(@,↓), completing the axiomatisation of
HLCP.

We try to give intuitive readings of the axioms of Figure 5. (T[J]) means that ifs
is the state at hand, it is in the current choice of everyone. (5[J]) means that for every
coalitionJ, if J allowss thenJ refuse not to allow it. (mon) expresses the fact that if a
group allowss then its parts allows also. (inter) means that if some parts allows then
the coalition composed of these parts allowss too. (elim) means that if an outcome is
possible then a coalition always allows that its complementary coalition could allows
too. (det) captures the fact that if the grand coalition allows s thens is the outcome.
(4[�i ]) and (total) are intuitively the transitivity and connectedness of preferences.

Proposition 1 (completeness).HLCP is complete with respect to the class ofHLCP
models.

PROOF. By applying the Standard Translation (ST) for hybrid logic, we can check that
the pure axioms in the last tabular correspond to the constraints we imposed on the
frames. The correspondence is pretty clear for whom is familiar with the ST for hybrid
logic. (Or modal logic: just recall that a state symbol is true exactly at one state.) As an
example, we nevertheless give the translation for (inter) and (total). (The subscriptt is
a state symbol that does not occur in the formula being translated.)

– (inter) corresponds to the constraintRJ1 ∩ RJ2 ⊆ RJ1∪J2 :
• STt(〈J1〉s∧ 〈J2〉s→ 〈J1 ∪ J2〉s);
• STt(〈J1〉s) ∧ STt(〈J2〉s) → STt(〈J1 ∪ J2〉s);
• ∃y1.(RJ1(t, y1) ∧ STy1(s)) ∧ ∃y1.(RJ2(t, y2) ∧ STy2(s)) →

∃y1.(RJ1∪J2(t, y3) ∧ STy3(s));
• ∃y1.(RJ1(t, y1) ∧ (y1 = s)) ∧ ∃y1.(RJ2(t, y2) ∧ (y2 = s)) →

∃y1.(RJ1∪J2(t, y3) ∧ (y3 = s));



• RJ1(t, s) ∧ RJ2(t, s) → RJ1∪J2(t, s).
– (total) corresponds to the constraint “Pi is total”:

• STu(s∧ 〈∅〉t → 〈�i〉t ∨ @t〈�i〉s);
• STu(s) ∧ STu(〈∅〉t) → STu(〈�i〉t) ∨ STu(@t〈�i〉s);
• (u = s) ∧ ∃y1.(R∅(u, y1) ∧ STy1(t)) →

∃y2.(Pi(u, y2) ∧ STy2(t)) ∨ ∃y3.(Pi(t, y3) ∧ STy3(s));
• (u = s) ∧ ∃y1.(R∅(u, y1) ∧ (y1 = t)) →

∃y2.(Pi(u, y2) ∧ (y2 = t)) ∨ ∃y3.(Pi(t, y3) ∧ (y3 = s));
• R∅(s, t) → Pi(s, t) ∨ Pi(t, s).

HLCP only consists of a set of pure axiom schemata added to the axiomatisation of
KH(@,↓). Hence, the result follows as a corollary of [7, Th. 4.11]. �

4 Application to game analysis

In the introduction to the paper, we promised that we would formalise solution concepts
without using names for actions. In this section, we make good on that promise. We
show how to characterise a number of solution concepts usingthe logic.

4.1 Relating strategic games andHLCP models

We here guarantee thatHLCP models are an adequate conceptualisation of strategic
games. With this aim, we relate strategic gamesG = 〈N, (Ai), (�i)〉 with the models of
HLCP. Let us first introduce a hybrid version of strategic games.

Definition 11 (hybrid game model).A hybrid game modelis a tuple〈N, (Ai), (�i),
Prop,Nom,WVar, v〉where〈N, (Ai), (�i)〉 is a strategic game,Prop,Nom andWVar
are as in Definition 9, and v maps elements from×i∈NAi to 2Prop∪Nom.

Hybrid game models are strategic games with propositions and a function of inter-
pretation, to which we add the standard ‘hybrid machinery’.They are sufficiently rich
to give a semantics to the language ofHLCP. Truth values ofHLCP formulae over
hybrid game models are defined recursively as follows.

Definition 12 (truth values in hybrid game models).Let a hybrid game modelMG =
〈N, (Ai), (�i),Prop,Nom,WVar, v〉. Let g, be a mapping fromSymb into A as in Def-
inition 9.

– MG, g, a |=sg p iff p ∈ v(a), for p ∈ Prop
– MG, g, a |=sg t iff g(t) = a, for t ∈ Symb
– MG, g, a |=sg @tϕ iff MG, g, g(t) |=sg ϕ, where t∈ Symb
– MG, g, a |=sg↓ x.ϕ iff MG, gx

a, a |=sg ϕ

– MG, g, a |=sg [J]ϕ iff for every a′−J ∈ ×j∈N\JAj we haveMG, g, (aJ, a′−J) |=sg ϕ

– MG, g, a |=sg [�i]ϕ iff for every a′ �i a we haveMG, g, a′ |=sg ϕ

and as usual for classical connectives.



We say aHLCP formulaϕ is sg-satisfiableiff there exists a pointed hybrid game model
MG, g, a such thatMG, g, a |=sg ϕ andϕ is sg-validiff for every pointed hybrid game
modelMG, g, a we haveMG, g, a |=sg ϕ.

From a hybrid game model we obtain a correspondingHLCP model as follows.

Definition 13 (from hybrid game models toHLCP models).We say anHLCP model
〈Agt,Prop,Nom,WVar,S, (RJ), (Pi), π〉 correspondsto a hybrid game model〈N, (Ai),
(�i),Prop,Nom,WVar, v〉 if:

– Agt = N;
– S= ×i∈NAi ;
– (aJ, a−J)RJ(aJ, a′−J);
– a′ ∈ Pi(a) iff a′ �i a;
– π = v.

It was already clear that we conceive a state inHLCP as an action profile. Two action
profiles are in the same class of choice ofJ if agents inJ do the same action in both
profiles; preferences are immediate.

The other way round, we could construct a hybrid game model corresponding to an
HLCP model. We just give it for clarification but will not make use of it.

Definition 14 (from HLCP models to hybrid games models).We say that a hy-
brid game model〈N, (Ai), (�i),Prop,Nom,WVar, v〉 correspondsto anHLCP model
〈Agt,Prop,Nom,WVar,S, (RJ), (Pi), π〉 if:

– N = Agt;
– Ai = S|≡R{i}

= {|s|≡R{i}
: s∈ S};

– (|s0|≡R{0}
, . . . |sk|≡R{k}

) �i (|s′0|≡R{0}
, . . . |s′k|≡R{k}

) iff y ∈ Pi(x), where k =
Card(Agt) − 1, x ∈

⋂
i∈Agt |s

′
i |≡R{i}

and y∈
⋂

i∈Agt |si |≡R{i}
;

– v = π.

The notation makes it perhaps less self explanatory than theprevious definition. It iden-
tifies the set of actions of an agenti with the set of classes in the equivalence relation
of choiceR{i}. An action profile is then captured by a tuple of such classes of choice,
one for every agent. As a consequence of the items2 and4 of Definition 9, the classes
of choice in a tuple intersect in exactly one state: thus,x andy in the definition above
are uniquely determined. The preferences in the strategic game model are then derived
from the relationPi applied to this state.

4.2 Equilibria in HLCP models

Our next task is to adapt the previous definitions of equilibria in the context ofHLCP
models. We also state their correspondence with the game theoretic definitions.

Definition 15. Given anHLCP modelM and a state s∗ in M, s∗ is weakly Pareto
optimaliff there is no s∈ R∅(s∗) such that s∈ Pi(s∗) and s∗ 6∈ Pi(s) for every i inAgt.
s∗ is strongly Pareto optimaliff there is no s∈ R∅(s∗) such that s∈ Pi(s∗) for every i
in Agt, and there is a j such that s∗ 6∈ Pj(s).



Definition 16. Given anHLCP modelM and a state s∗ in M, s∗ is

1. very weakly dominantiff for all i in Agt and for all s∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s∈ Pi(s′);

2. weakly dominantiff for all i in Agt and for all s∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s∈ Pi(s′) and there is a s′′ ∈ RAgt\{i}(s) such that s′′ 6∈ Pi(s);

3. strictly dominantiff for all i in Agt and for all s∈ Ri(s∗), we have that for all
s′ ∈ RAgt\{i}(s), s∈ Pi(s′) and s′ 6∈ Pi(s).

Definition 17. Given anHLCP modelM and a state s∗ in M, s∗ is

1. Nash equilibriumiff for all i in Agt, for all s in RAgt\{i}(s∗) we have s∈ Pi(s∗);
2. strong Nash equilibriumiff for all J ⊂ Agt and s∈ RAgt\J(s∗) there is an i in J

such that s∗ ∈ Pi(s).

Definition 18. Given anHLCP modelM and a state s∗ in M, s∗ is in the weakcore
iff for all J ⊂ Agt and s∈ RAgt\J(s

∗) there is an i in J and an s′ ∈ RJ such that
s∗ ∈ Pi(s′).

These definitions are adequate with the definition of game theory. This is stated by
the next proposition.

Proposition 2. Let SC be a solution concept among weakly Pareto optimal, strongly
Pareto optimal, very weakly dominant, weakly dominant, strictly dominant, Nash equi-
librium, strong Nash equilibrium and core. Given a hybrid strategic gameMG and a
correspondingHLCP modelM, an action profile ofMG is SC iff it is an SC inM.

We will rely next on the definitions in terms of relational models introduced in this
section for implementing the solution concepts in the language ofHLCP.

4.3 Implementation of equilibria in HLCP

This section provides ‘constant predicates’ characterising that a state is a particular so-
lution concept. To put it another way, we give context-free definitions of solution con-
cepts in the language ofHLCP. We start by defining predicates forbest response(weak
and strict). Informally, the best response of the agenti is the strategy in the repertoire of
i that is most favorable toi when the strategies of the other players are given. It will be
instrumental in the definition of Nash equilibrium and dominance equilibria next. As a
simple illustration, we also characterise the concept ofnever best response.

WBRi is intended to read “i plays a weak best response to the other agents’ choice in
the current state” by what could be reworded as “the other agents choose thati considers
the current state at least as good”. Formally,

WBRi =def↓ x.[{i}]〈�i〉x

We see how “binding” the current state to the variablex permits us to use it such
that [{i}]x exactly quantifies over the alternatives allowed by the current choice of the
other agents (agents inAgt \ {i}) at the state recorded inx. Since the grand coalition is



deterministic,i itself is the ‘final chooser’.i plays its best response if in every alternative
allowed by the other agents’ current choice,i would consider its current choice at least
as good.

The notion of strict best response is obtained by replacing the weak preference
modality by the strict one, and since[{i}] is reflexive, we need to use a conditional such
that the current state (obviously not strictly preferred) is not compared.2

SBRi =def↓ x.[{i}](¬x → 〈≺i〉x)

We can useWBRi andSBRi as the building blocks for defining more complex no-
tions. Before focusing on several equilibria, we can see forexample that the notion
of a choice that is never a best response is intuitively captured in our language, using
an agentive formula stating thati chooses that it does not play a weak best response
(whatever other agents do):

NBRi =def [i]¬WBRi

The current choice of an agenti is never a best response ifi chooses that it does not play
a best response (whatever other agents do). A choice that is never a best response (or
equivalently which is always dominated) are often worth considering in game theory
because a rational player will never use such a choice: it would always be better off
choosing the strategy that dominates it.

In the remaining of this section, we give the characterisation of every solution con-
cept defined previously.

Pareto optimality A state is aweak Pareto optimumif there is no other state that makes
every agent better off.

WPO=def↓ x.[∅]
∨

i∈Agt

〈�i〉x

A state labelledx is a strong Pareto optimum if there is no statey that is considered
by every agent at least as good asx and which is strictly preferred by at least one agent.
We can formulate this as:

SPO=def↓ x.[∅](↓ y.(@x

∧

i∈Agt

〈�i〉y) → (
∧

i∈Agt

〈�i〉x))

Contrarily to WPO, SPO is a fairly complicated formula obtained directly from
the definition and without much simplification. The next proposition states that these
formalisations are correct.

Proposition 3. Given anHLCP modelM and a state s inM, s∗ is weakly Pareto
optimal iff M, s∗ |= WPO. It isstrongly Pareto optimaliff M, s∗ |= SPO

PROOF. From Definition 15, forWPOwe obtain↓ x.¬〈∅〉[↓ y.
∧

i∈Agt((@x〈�i〉y) ∧
¬〈�i〉x)]. We simplify this by the observation that, from (total),s∧ 〈∅〉t ∧ ¬〈�i〉t →
@t〈�i〉s is a theorem ofHLCP. SPOis straightforward from the definition with minor
rewriting. �

2 Note that this is perfectly uniform with the weak case, sincedue to the reflexivity of[�i ] we
haveWBRi ↔↓ x.[{i}](¬x → 〈�i〉x).



We omit the proofs for the other equilibria. They all consistin translating the defi-
nitions of Section 4.2 and rewriting the formulation.

Dominance equilibria We definevery weak dominance, weak dominanceandstrict
dominance. Our definitions of dominance largely make use of the conceptof best re-
sponse.

A agent is currently playing avery weakly dominantstrategy if this is its (weak) best
response whatever what the other agents play. It should be clear now that we just have to
formalise it via an agentive formula stating that “i chooses that it plays its best response
whatever other agents do”. Thus we characterise a state where i plays a very weakly
dominant strategy by the formula[i]WBRi . We then capture a very weak dominance
equilibrium by:

VWSD=def

∧

i∈Agt

[i]WBRi

Weak dominanceimposes the strategy to be the strict best response to at least one
of the possible combination of choice of the other agents, and this is the only difference
with weak dominance. This is formalised by〈i〉SBRi . Thus, we characterise a state
wherei plays a weakly dominant strategy by the formula[i]WBRi ∧ 〈i〉SBRi , and we
capture a weak dominance equilibrium by

WSD=def

∧

i∈Agt

[i]WBRi ∧ 〈i〉SBRi

Strict dominanceis intuitively along the same line as very weak dominance, substi-
tuting the weak best response by the strict one (or the weak preference modality by a
strict one). We characterise a strict dominance equilibrium by

SSD=def

∧

i∈Agt

[i]SBRi

Proposition 4. Given anHLCP modelM and a state s∗ in M, s∗ is

1. very weakly dominantiff M, s∗ |= VWSD;
2. weakly dominantiff M, s∗ |= WSD;
3. strictly dominantiff M, s∗ |= SSD.

It is routine to check that strict strategy dominance implies weak strategy dominance
which in turn implies very weak strategy dominance.

Proposition 5. ⊢ SSD→ WSD and⊢ WSD→ VWSD

Nash equilibria A state being a Nash equilibrium is simply defined by:

NE =def

∧

i∈Agt

WBRi

A state is a Nash equilibrium if every agent uses its best response to the choice of the
other agents. Remarkably, [25] proposed a similar definition along the pattern



∧
i DAgt\{i}〈�i〉x within an epistemic language. (Recall our quick comparisonin Sec-

tion 3.2 between epistemic logic and our logic of choice.)
A state is a strong Nash equilibrium of the game if there is no coalition J that can

change its choice and lead to a state considered strictly better by every members ofJ.

SNE=def↓ x.
∧

J⊂Agt

[J](
∨

i∈J

〈�i〉x)

Proposition 6. Given anHLCP modelM and a state s∗ in M, s∗ is a

1. Nash equilibriumiff M, s∗ |= NE.
2. strong Nash equilibriumiff M, s∗ |= SNE.

The next proposition is straightforward.

Proposition 7. ⊢ SNE→ NE

Core The use ofHLCP is not restricted to non-cooperative games. We have already
characterised strong Nash equilibrium. It is also easy to capture the concept ofcoreof
a cooperative strategic game without transferable payoff.We did not do so in our defi-
nition in Section 4.2, but as we did for Definition 8 we can start by giving the charac-
terisation of an undominated state. A straightforward translation would beDOM =def↓
x.〈J〉

∨
J⊂Agt [J]

∧
i∈J ↓ y.@x〈≺i〉y.

INCR is simply the negation ofDOM. Up to equivalence (in particular because of
(total), (agree), and modal distributivity/contraction)we obtain:

INCR=def↓ x.
∧

J⊂Agt

[J]〈J〉
∨

i∈J

〈�i〉x

Proposition 8. Given anHLCP modelM and a state s∗ in M, s∗ is in the (weak)core
iff M, s∗ |= INCR.

Note the difference with (or the resemblance to) strong Nashequilibrium. We clearly
have the following.

Proposition 9. ⊢ SNE→ INCR

On the succinctness of solution concept characterisationsAs noted in the intro-
duction, the number of strategies has no impact on the size ofthe characterisation of
solution concepts in our logic. In the case of cooperative equilibria, the size of the char-
acterisation depends on the number of coalitions, and is then exponential in the number
of players. However, for all solution concepts but strong Nash equilibrium and core
membership, the size of the formula is polynomial in the number of agents.

In summary, the syntax ofHLCP allows to a designer to formalise important prop-
erties of games succinctly. This is a very desirable featureof a language when we are
interested in model checking. There are at least two reasonsfor that: (i) less efforts are
needed for the designer to write down a property to be tested,and (ii) the complexity of
model checking is usually function of the size of the input formula.



5 Model checking

In order to verify properties of games, we can use the Hybrid Logic Model Checker
(HLMC) [10]. This is an implementation of the algorithms of [12], where model check-
ing of hybrid fragment including binders is proved PSPACE-complete when the size of
the input formula is taken as parameter. (Model checking canbe solved in polynomial
time if the size of the model is the parameter.) HLMC is given amodel and a formula.
The output is the set of states in the model where the formula is satisfied, plus some
statistics.

We present the model checking by means of two examples. This will allow us to
demonstrate the ability of our logic with a wide assortment of properties. We first focus
on solution concepts for which players are assumed to be individually rational. We
define Nash equilibrium, very weak dominance and strict dominance in the language
of HLMC (to be introduced). We also make explicit how anHLCP model is encoded.
In a second part, we make a move to solution concepts for team reasoners: players are
assume to be able to form coalitions. In the specification language of HLMC, we then
define strong Nash equilibrium, core membership and the ‘composite equilibrium’ of
Pareto optimal Nash equilibrium.

5.1 Equilibria of individual rationality

The language of HLMC for implementing the formulae to be tested matches with the
logical representation. For example, we use[ag1] for [{1}], <pref2> stands for
〈�2〉, B x is the down-arrow binder↓ x., & is the conjunction∧, | is the disjunction
∨, ! is the negation¬. We propose three progressive examples.

A Nash equilibrium in a 2-agent game is characterised by:

B x (
( [ag2]( <pref1>(x) ) )
&
( [ag1]( <pref2>(x) ) )

)

A very weak dominant equilibrium in a 2-agent game is a slightmodification of
Nash equilibrium:

[ag1] ( B x ( [ag2]( <pref1>(x) ) ) )
&
[ag2] ( B x ( [ag1]( <pref2>(x) ) ) )

A strict dominant equilibrium in a 2-agent game is obtained from the very weak
dominant equilibrium, expanding the definition of strict preferences:

[ag1] ( B x ( [ag2](!x ->
( B y (<pref1>( (x) & !<pref1>(y))) ) ) ))

&
[ag2] ( B x ( [ag1](!x ->

( B y (<pref2>( (x) & !<pref2>(y))) ) ) ))

The game of Figure 1 can be represented in the language of HLMC. It is the trans-
lation of the following definition ofM = 〈Agt,Prop,Nom,WVar,S, (RJ), (Pi), π〉
where:

– Agt = {1, 2};



– Prop = ∅;
– Nom= {i0, i1, i2, i3};
– WVar = {x, y};
– S= {s0, s1, s2, s3};
– R∅ = {(s, s′) | s∈ S, s′ ∈ S};
– R{1} = {(s0, s1), (s2, s3)}∗, where∗ is the equivalence closure;
– R{2} = {(s0, s2), (s1, s3)}∗, where∗ is the equivalence closure;
– RAgt = {(s, s) | s∈ S};
– P1 = {(s0, s1), (s2, s0), (s2, s1), (s2, s3), (s3, s0), (s3, s1), (s3, s2)}∗, where∗ is the

reflexive closure;
– P2 = {(s0, s3), (s1, s0), (s1, s2), (s1, s3), (s3, s0), (s3, s1), (s3, s2)}∗, where∗ is the

reflexive closure;
– π(s0) = {i0}, π(s1) = {i1}, π(s2) = {i2}, π(s3) = {i3}.

We give in Appendix the XML script which is the representation of this model. The
following is a resume of the model generated by HLMC. Note that we did not give the
relations of choice for the grand coalition and the empty coalition. The former is simply
obtained as the identity relation, the latter is the composition of the relations of the two
individual agents.

Kripke structure: XML
Worlds: s0 (0), s1 (1), s2 (2), s3 (3)
Modalities:
ag1 (0) = <s0, s0> <s0, s1> <s1, s0> <s1, s1> <s2, s2> <s2, s3>

<s3, s2> <s3, s3>
ag2 (1) = <s0, s0> <s0, s2> <s1, s1> <s1, s3> <s2, s0> <s2, s2>

<s3, s1> <s3, s3>
pref1 (2) = <s0, s0> <s0, s1> <s1, s1> <s2, s0> <s2, s1> <s2, s2>

<s2, s3> <s3, s0> <s3, s1> <s3, s2> <s3, s3>
pref2 (3) = <s0, s0> <s0, s3> <s1, s0> <s1, s1> <s1, s2> <s1, s3>

<s2, s2> <s3, s0> <s3, s1> <s3, s2> <s3, s3>
Propositional symbols:
Nominals:
i0 (0) = s0
i1 (1) = s1
i2 (2) = s2
i3 (3) = s3

We can now test some properties of this game. The result of themodel checking in
HLMC consists in giving the states satisfying the input formula and some statistics that
we give such that the reader can have a grasp on the differenceof resources needed for
model checking the various properties.

Once the game encoded, we can verify that in all cases we obtain the expected
output, that is, that the states0 corresponding to the action profile(a1, a2) is the only
equilibrium of the three sorts tested. Figure 6 presents theresults of model checking
Nash equilibrium, weak strategy dominance and strict strategy dominance against the
the previous model.

5.2 Equilibria for teams

It must be clear that the expressive power ofHLCP is not limited the basic properties
of games. The language is precise enough for specifying numbers of properties that one



formula resultRT (in sec)# recursive calls# modal calls# binder callsmax. nesting

NE {s0} 0.0000 45 16 1 7

WSD {s0} 0.0000 49 18 2 10

SSD {s0} 0.0000 273 74 10 17

Fig. 6.Experimental results on non-cooperative solution concepts.

a3.

a2 b2

a1 1, 0,−5 (s0) −5,−5, 0 (s1)

b1 −5,−5, 0 (s2) 0, 0, 10 (s3)

b3.

a2 b2

a1 −1,−1, 5 (s4) 5,−5, 0 (s5)

b1 −5,−5, 0 (s6) −2,−2, 0 (s7)

Fig. 7. A 3-player strategic game. Player1 chooses rows, player2 chooses columns and player3
chooses matrices.

would like to verify. For instance, we can elaborate on equilibria that are desirable from
the point of view of team reasoning.

On Figure 7, we have represented a strategic game involving three player. There are
two Nash equilibria,(b1, b2, a3) and(a1, a2, b3), that are also strong Nash equilibria.
Then, they are also in the core, which also contains(a1, b2, b3). Perhaps a better solu-
tion of this game when players reason as a team is the concept of Pareto optimal Nash
equilibrium. In this case(b1, b2, a3) is the only solution.

We are now going to verify these statements with HLMC.

The internal representation of the corresponding model in HLMC is the following:

Kripke structure: XML
Worlds: s0 (0), s1 (1), s2 (2), s3 (3), s4 (4), s5 (5), s6 (6), s7 (7)
Modalities:

ag1 (0) = <s0, s0> <s0, s1> <s0, s4> <s0, s5> <s1, s0> <s1, s1>
<s1, s4> <s1, s5> <s2, s2> <s2, s3> <s2, s6> <s2, s7> <s3, s2> <s3, s3> <s3, s6>
<s3, s7> <s4, s0> <s4, s1> <s4, s4> <s4, s5> <s5, s0> <s5, s1> <s5, s4> <s5, s5>
<s6, s2> <s6, s3> <s6, s6> <s6, s7> <s7, s2> <s7, s3> <s7, s6> <s7, s7>

ag2 (1) = <s0, s0> <s0, s2> <s0, s4> <s0, s6> <s1, s1> <s1, s3>
<s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s2> <s2, s4> <s3, s1> <s3, s3> <s3, s5>
<s3, s7> <s4, s0> <s4, s2> <s4, s4> <s4, s6> <s5, s1> <s5, s3> <s5, s5> <s5, s7>
<s6, s0> <s6, s2> <s6, s4> <s6, s6> <s7, s1> <s7, s3> <s7, s5> <s7, s7>

ag3 (2) = <s0, s0> <s0, s1> <s0, s2> <s0, s3> <s1, s0> <s1, s1>
<s1, s2> <s1, s3> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s3, s0> <s3, s1> <s3, s2>
<s3, s3> <s4, s4> <s4, s5> <s4, s6> <s4, s7> <s5, s4> <s5, s5> <s5, s6> <s5, s7>
<s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s4> <s7, s5> <s7, s6> <s7, s7>

ag12 (3) = <s0, s0> <s0, s4> <s1, s1> <s1, s5> <s2, s2> <s2, s6>
<s3, s3> <s3, s7> <s4, s0> <s4, s4> <s5, s1> <s5, s5> <s6, s2> <s6, s6> <s7, s3>
<s7, s7>

ag13 (4) = <s0, s0> <s0, s1> <s1, s0> <s1, s1> <s2, s2> <s2, s3>
<s3, s2> <s3, s3> <s4, s4> <s4, s5> <s5, s4> <s5, s5> <s6, s6> <s6, s7> <s7, s6>
<s7, s7>

ag23 (5) = <s0, s0> <s0, s2> <s1, s1> <s1, s3> <s2, s0> <s2, s2>
<s3, s1> <s3, s3> <s4, s4> <s4, s6> <s5, s5> <s5, s7> <s6, s4> <s6, s6> <s7, s5>
<s7, s7>

pref1 (6) = <s0, s0> <s0, s5> <s1, s0> <s1, s1> <s1, s2> <s1, s3>
<s1, s4> <s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s2, s4>
<s2, s5> <s2, s6> <s2, s7> <s3, s0> <s3, s3> <s3, s5> <s4, s0> <s4, s3> <s4, s4>
<s4, s5> <s5, s5> <s6, s0> <s6, s1> <s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6>
<s6, s7> <s7, s1> <s7, s3> <s7, s4> <s7, s5> <s7, s7>

pref2 (7) = <s0, s0> <s0, s3> <s1, s0> <s1, s1> <s1, s2> <s1, s3>



<s1, s4> <s1, s5> <s1, s6> <s1, s7> <s2, s0> <s2, s1> <s2, s2> <s2, s3> <s2, s4>
<s2, s5> <s2, s6> <s2, s7> <s3, s0> <s3, s3> <s4, s0> <s4, s3> <s4, s4> <s5, s0>
<s5, s1> <s5, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, s0> <s6, s1>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s0> <s7, s3> <s7, s4>
<s7, s7>

pref3 (8) = <s0, s0> <s0, s1> <s0, s2> <s0, s3> <s0, s4> <s0, s5>
<s0, s6> <s0, s7> <s1, s1> <s1, s2> <s1, s3> <s1, s4> <s1, s5> <s1, s6> <s1, s7>
<s2, s1> <s2, s2> <s2, s3> <s2, s4> <s2, s5> <s2, s6> <s2, s7> <s3, s3> <s4, s3>
<s4, s4> <s5, s1> <s5, s2> <s5, s3> <s5, s4> <s5, s5> <s5, s6> <s5, s7> <s6, s1>
<s6, s2> <s6, s3> <s6, s4> <s6, s5> <s6, s6> <s6, s7> <s7, s1> <s7, s2> <s7, s3>
<s7, s4> <s7, s5> <s7, s6> <s7, s7>

Propositional symbols:
Nominals:

i0 (0) = s0
i1 (1) = s1
i2 (2) = s2
i3 (3) = s3
i4 (4) = s4
i5 (5) = s5
i6 (6) = s6
i7 (7) = s7

We need to define the solution concepts that are relevant for this game. For three
agents, Pareto optimal Nash equilibrium can be implementedin HLMC as follows:

B x (
( [ag23]( <pref1>(x) ) )
&
( [ag13]( <pref2>(x) ) )
&
( [ag12]( <pref3>(x) ) )
&
[ag12] ([ag3] ( <pref1>(x) | <pref2>(x) | <pref3>(x) ))

)

Observe that we did not use the global modality[∅] in the last clause (corresponding
to Pareto optimality). As a consequence of(elim[∅]), it is indeed definable from two
modalities[J1] and[J2] whenJ1∩J2 = ∅. Hence, we do not have to specify the relation
of choice for the empty coalition in the input model.

Strong Nash equilibrium can be implemented as follows in HLMC:

B x (
( [ag1]( <pref2>(x) | <pref3>(x)) )
&
( [ag2]( <pref1>(x) | <pref3>(x)) )
&
( [ag3]( <pref1>(x) | <pref2>(x)) )
&
( [ag23]( <pref1>(x)) )
&
( [ag13]( <pref2>(x)) )
&
( [ag12]( <pref3>(x)) )

)

Finally core membership can be implemented as follows:

B x (
( [ag1] (<ag23> ( <pref2>(x) | <pref3>(x)) ))
&
( [ag2] (<ag13> ( <pref1>(x) | <pref3>(x)) ))
&
( [ag3] (<ag12> ( <pref1>(x) | <pref2>(x)) ))
&



( [ag23] (<ag1> ( <pref1>(x)) ))
&
( [ag13] (<ag2> ( <pref2>(x)) ))
&
( [ag12] (<ag3> ( <pref3>(x)) ))

)

Note that a solution concept defined fork agents can be used for model checking
games of less thank players. All we shall need to do is to model the choices of the
extra players as the vacuous and dummy choice. That is, everyextra player will have
not more power that the empty coalition.

We can now verify that our quick analysis of the solutions in the example is correct.
Figure 8 presents the results of model checking Nash equilibrium, Pareto Optimal Nash
equilibrium, strong Nash equilibrium and core membership against the the previous
model.

formula result RT (in sec)# recursive calls# modal calls# binder callsmax. nesting

NE {s3, s4} 0.0000 137 48 1 8

NE∧ PO {s3} 0.0000 289 88 1 14

SNE {s3, s4} 0.0100 425 120 1 14

INCR {s3, s4, s5} 0.0200 473 168 1 15

Fig. 8.Experimental results on Nash equilibrium, weak Pareto Nashequilibrium and cooperative
solution concepts.

6 Discussion and perspectives

We hope we have made clear that a logical language without action labels can be use-
ful for model checking equilibrium in games. The main aspectis that when combined
with the down arrow binder bringing the expressivity of “here and now” in the object
language, it allows general characterisations of equilibria. With the small exception of
[25], and as far as we know, such an approach has not been followed elsewhere.

Adding epistemic reasoning.A theory of interaction cannot be complete without epis-
temic attitudes. Since the action component ofHLCP is inspired by STIT logics, a
natural extension is to integrate knowledge, as in [9]. Thissimply consists of adding
straightforward epistemic relations over states to the models and the underlying knowl-
edge operators to the language. As a result we have an expressive logic capable of
strategic reasoning under uncertainty.

As an illustration, the infamous notion ofknowing a strategyis not ambiguous.
(See [16] for an account of the problem in logics of ability.)We can distinguish: “for all
epistemically indistinguishable states,there existsa strategy ofJ that leads toφ”, from
“ there existsa strategyσ of the coalitionJ such thatfor all states epistemically indis-
tinguishable forJ, σ leads toφ”. The former is a∀-∃ schema of “knowing a strategy”.
It is in contrast to the latter sentence, which is a∃-∀ schema.



The need for succinct models. It is not difficult to see that modelling even small
strategic games is almost unfeasible. The HLMC basic constructor is:

<modality label="M">
...

<acc-pair to-world-label="s1" from-world-label="s0"/>
...

</modality>

stating that the relation underlying the modality[M] has an edge from the states0 to
the states1. Hence, given the language of HLMC the designer needs to specify every
edge of every relation of the model.

Relations of choice.In the case of choice relations, every edge for reflexivity, transitiv-
ity and euclideanity must be specified. It is quite easy to seethat we can encode choices
efficiently. We could for instance usead hocconstructors.

<choice-mod label="ag1">
<equiv-class "s0 s1 s2">

</choice-mod>

would build all the edges to make{s0, s1, s2} an equivalence class representing a choice.
Choice relations for coalitions can next be extrapolated from individual relations by
intersection.

Relations of preferences.As the relations of preference are much less structured as
the relations of choice, their case is also more problematicin practice. Given a game
〈N, (Ai), (�i)〉, a correspondingHLCP model〈Agt,Prop,Nom,WVar,S, (RJ), (Pi), π〉
will have |S| =

∏
i∈N |Ai | states. Hence, only due to the totality of the preferences, for

every agenti, Card(Pi) ≥ |S|+ |S|(|S|−1)
2 . Then, for example, for any game of3 players

with 3 choices each, we need to specify at least1134 edges of preference relation, and
we still have to fix the transitivity!

From a practical point of view it means that HLMC is not optimal. It has to be
associated with a piece of software taking a compact representation of the model in
input and giving in output the XML script readable by HLMC. Such a ‘black-box’ can
take inspiration from the research in compact representation of games. See for example
[19, Sect. 2.5] for a short survey.
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Appendix: representation of the example in HLMC

We give the XML script which is the representation of the model pictured in Figure 1.
We first define four states representing the set of strategy profiles of the game. Then

we enumerate explicitly every edge of the relations underlying the choices of agent1,



the choices of agent2, the preferences of agent1 and the preferences of agent2. Finally
we assign one nominal to each state. Remark that we did not give the relations of choice
for the grand coalition and the empty coalition.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hl-kripke-struct SYSTEM "hl-ks.dtd">
<hl-kripke-struct name="XML">

<world label="s0"/>
<world label="s1"/>
<world label="s2"/>
<world label="s3"/>

<!-- s0 is NE, VWSD and SSD
(s0)1,1 (s1)2,0
(s2)0,2 (s3)0,0 -->

<modality label="ag1">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s0" from-world-label="s1"/>
<acc-pair to-world-label="s1" from-world-label="s0"/>

<acc-pair to-world-label="s2" from-world-label="s3"/>
<acc-pair to-world-label="s3" from-world-label="s2"/>

</modality>

<modality label="ag2">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s0" from-world-label="s2"/>
<acc-pair to-world-label="s2" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s3" from-world-label="s1"/>

</modality>

<modality label="pref1">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s1" from-world-label="s0"/>
<acc-pair to-world-label="s0" from-world-label="s2"/>
<acc-pair to-world-label="s1" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s2"/>
<acc-pair to-world-label="s0" from-world-label="s3"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s2" from-world-label="s3"/>

</modality>

<modality label="pref2">
<acc-pair to-world-label="s0" from-world-label="s0"/>
<acc-pair to-world-label="s1" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s2"/>
<acc-pair to-world-label="s3" from-world-label="s3"/>

<acc-pair to-world-label="s3" from-world-label="s0"/>
<acc-pair to-world-label="s0" from-world-label="s1"/>
<acc-pair to-world-label="s2" from-world-label="s1"/>
<acc-pair to-world-label="s3" from-world-label="s1"/>
<acc-pair to-world-label="s0" from-world-label="s3"/>
<acc-pair to-world-label="s1" from-world-label="s3"/>
<acc-pair to-world-label="s2" from-world-label="s3"/>

</modality>

<nominal label="i0" truth-assignment="s0"/>
<nominal label="i1" truth-assignment="s1"/>
<nominal label="i2" truth-assignment="s2"/>
<nominal label="i3" truth-assignment="s3"/>

</hl-kripke-struct>
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