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Abstract. This paper is a study of Brihaye et al.’s ATL with strat-
egy contexts. We focus on memory-less strategies and establish that the
resulting logic is undecidable. An immediate corollary follows that the
problem of satisfiability checking of every variant of ATL with strategy
context introduced by Brihaye et al. is undecidable. We also relate ATLsc

with memory-less strategies with ATL with explicit strategies, providing
a decidable fragment.

1 Introduction

With Alternating-time Temporal Logic ATL(∗) ([2, 14]) one can reason about
the ability of a coalition to ensure something whatever the other agents do. It is
the logic of sentences like “The monitoring units u1, . . . , ul can ensure that the
system stays in a failsafe state.” In this paper, we consider the recent variant
of ATL with strategy contexts [4, 6]. A strategy context is the actual current
strategy of some committed set of agents. The truth value of an ATLsc-formula
is evaluated in a concurrent game structure, at a state, and wrt. a strategy
context. Informally, the formula 〈·A·〉ψ states that A has a strategy to ensure
the property ψ in the context of the current strategy commitment. Like in ATL,
the formula ψ typically represents a temporal property, but unlike the ATL
path quantifier, the modality 〈·A·〉 commits the members of A to their chosen
strategy FA. Henceforth, the commitment is used for the evaluation of ψ. That
is, ψ is evaluated wrt. to a strategy context consisting in the initial strategy
context updated with FA. The operator ·〉A〈· releases this commitment. Under
the common assumptions of ATL, the ATL path quantifier is trivially captured
by

〈〈A〉〉ψ def
= ·〉Σ〈·〈·A·〉ψ,

where Σ is the set of all agents.
The notion of ability of a coalition in ATLsc is their ability given the context

of the strategies that the coalition is actually committed to. Actual agency, the
property of some agentive entity in the act of doing something, is ubiquitous in
our everyday life: “Unit u1 is inspecting the register 0x12345678.” It is all the
more important in a multi-agent framework where agents strategise given some
input (observation, expectation, belief, etc.) about the strategies followed by the
other players, and their abilities depend on it: “If units u1, . . . , ui−1, ui+1, . . . , ul
do not know which register ui is inspecting, they cannot ensure that no system



failure will occur.” Actual agency is also central to game theory, where for in-
stance, a Nash equilibrium occurs when every agent is playing his best response
to the current strategy of the other agents. With the advent of the Internet and
service-oriented computing, system designers in industry and in academia rely
increasingly on the multi-agent paradigm. As we seek after the ‘next generation’
of logics for the specification of properties of societies of agents, and for the
verification of their designs, it appears important to be able to talk and reason
about actual agency of coalitions of agents, and their contextualised ability.

ATLsc and ATL∗sc can capture a variety of notions of strategic actual agency
that lie beyond the mere ability of coalitions as captured by ATL. For instance,
a type of STIT modality ([11, 5]) can be defined as

[A sstit]ψ
def
= ·〉Σ \A〈·〈·∅·〉ψ,

reading “A is seeing to it that ψ.” (See the earlier report [18] for a detailed
discussion about ATL and STIT modalities.)

In the pure tradition of knowledge representation it is also useful to be able
to talk about strategies in a more explicit manner. Practically, they can serve,
e.g., as explicit delegation instruction between agents. We will contrast the use
of strategy contexts with explicit strategies. ATLsc and ATLES ([19]) capture the
notions of commitment to, release and recall of strategies, as well as irrevocable
strategies ([1]). We introduce ATLES on concurrent game structures in Section 3
and relate ATLsc with ATLES, determining a decidable fragment of ATLsc.

Originating from theoretical computer science and verification, the focus of
ATLsc has been on model checking so far, and not satisfiability. In Section 4, we
establish that the satisfiability problem for both ATLsc and ATL∗sc is undecidable
in general, emphasising the significance of the fragment previously identified.

In the next section we define rigorously the syntax and semantics of ATLsc
and ATL∗sc that we have informally presented in this introduction.

2 ATL with strategy contexts

We fix a countable set of atomic propositions Π and a finite set of agents (or
players) Σ. The following grammar was given for ATL∗sc in [6].

Definition 1 (ATL∗sc syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π and A over finite subsets of Σ.
The language of ATL∗sc consists of the state formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ·〉A〈·ϕ | 〈·A·〉ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ©ϕ | ϕU ϕ

The remaining Boolean operators ∧,→ and↔ as well as the logical constants
> and ⊥ can be defined as usual in terms of the operators given. The linear
temporal logic operators ‘sometime’ and ‘forever’ can be defined as path formulas
3ϕ = (>U ϕ) and 2ϕ = ¬(>U ¬ϕ).



The language of ATLsc consists only of some formulas from ATL∗sc. The syntax
of the path formulas ψ is restricted as follows (where ϕ refers to the state formulas
in Def. 1):

ψ ::= ¬ψ | ©ϕ | ϕU ϕ

We evaluate the formulas on Concurrent Game Structures (CGSs), which are
defined as follows.

Definition 2 (Concurrent Game Structure). Let Σ = {1, . . . , n} ⊂ Σ,
with n ≥ 1, be a finite set of agents, and Π ⊂ Π be a finite set of atomic
propositions. A Concurrent Game Structure (CGS) C for 〈Σ,Π〉 is a tuple C =
〈W,V,Σ,M,Mov,E〉, where:

– W is a non-empty set of worlds (or game positions);
– V : W → 2Π is a valuation function;
– M is a finite, non-empty set of moves;
– Mov : W ×Σ → 2M \ ∅ maps every world w and agent a to the non-empty

set Mov(w, a) of moves available to a at w; and
– E : W ×MΣ → W is a transition function mapping a world w and a move

profile m = 〈m1, . . . ,mn〉 (one move for each agent) to the world E(w,m).

Let C be a CGS. The component Mov determines which of the moves from
M are available for an agent at a world w. Let prof(w) be the set of available
move profiles at world w, i.e.,

prof(w) = {〈m1, . . . ,mn〉 | mi ∈Mov(w, i)}.

A move profile is used to determine a successor of a world using the transition
function E. Let succ(w) be the set of possible successors of w, formally

succ(w) = {E(w,m) |m ∈ prof(w)}.

An infinite sequence λ = x0x1x2 · · · ∈ Wω of worlds is called a play or
computation if xi+1 ∈ succ(xi) for all positions i ≥ 0. Denote with λ[i] the i-th
component xi in λ, and with λ[0, i] the initial sequence x0 · · ·xi of λ.

A strategy for an agent a ∈ Σ is a function fa that maps a world w from
W to a move profile fa(w) ∈ Mov(w, a) available to a at w. A strategy for a
coalition A ⊆ Σ is a set FA of strategies with FA = {σa | a ∈ A} containing one
strategy for every agent in A. We refer to a strategy also as strategy context. We
denote with strat(A) the set of strategies available to coalition A. The strate-
gies considered here are memoryless as they are functions from worlds to move
profiles and, thus, do not take previously visited states into account.

We define two operations on strategies: upgrade and release of strategies.
Let FA and F be strategies for sets of agents, where FA contains strategies for
the agents in A. The upgrade of F with the strategies in FA is the result of
overwriting F with strategies for the agents in A ∩ dom(F ) and supplementing
F with strategies for agents for which F does not already provide a strategy



(i.e., for agents in A \ dom(F )). We will use ◦ as a strategy upgrade operator.
Formally,

FA ◦ F = FA ∪ {fa ∈ F | a /∈ A}.

The release of the strategies for the agents in B from F is the restriction of F to
strategies for agents that do not occur in B (i.e., for agents in Σ \B). Formally,
for C = Σ \B,

F |C = {fa ∈ F | a ∈ C}.

The set out(w,FA) of outcomes of a strategy FA for the agents in A starting
at a world w is the set of all plays λ = x0x1x2 · · · ∈ Wω such that x0 = w and,
for every i ≥ 0, there is a move profile m = 〈m1, . . . ,mn〉 ∈ prof(xi) such that:

(i) ma = fa(xi), for all a ∈ A; and

(ii) xi+1 = E(xi,m).

The truth values of ATL∗sc-formulas over CGSs is given as follows, where
state formulas are evaluated at worlds (or game positions) and path formulas
over infinite paths in a CGS.

Definition 3 (ATL∗sc Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and a strategy context F , the consequence relation |= is inductively
defined as follows:

– C, w |=F p iff p ∈ V (w), for all atomic propositions p ∈ Π;

– C, w |=F ¬ϕ iff C, w 6|=F ϕ;

– C, w |=F ϕ1 ∨ ϕ2 iff C, w |=F ϕ1 or C, w |=F ϕ2;

– C, w |=F ·〉A〈·ϕ iff C, w |=S ϕ, where S = F |Σ\A;

– C, w |=F 〈·A·〉ψ iff there is FA ∈ strat(A) such that for all plays λ ∈ out(w, S),
it holds that C, λ |=S ψ, where S = FA ◦ F ;

– C, λ |=F ϕ iff C, λ[0] |=F ϕ, when ϕ is a state formula;

– C, λ |=F ¬ψ iff C, λ 6|=F ψ;

– C, λ |=F ψ1 ∨ ψ2 iff C, λ |=F ψ1 ∨ ψ2;

– C, λ |=F ©ϕ iff C, λ[1] |=F ϕ;

– C, λ |=F (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, λ[i] |=F ϕ2 and C, λ[j] |=F

ϕ1 for all j with 0≤j<i.

A formula ϕ is satisfiable if C, w |=F ϕ for some CGS C, some world w in C
and some strategy context F in C; a formula is called valid if C, w |=F ϕ for all
C, all w and all F .

In this paper, we do not assume agents being capable of perfect recall. In fact,
we use a semantics for ATLsc and ATL∗sc that is based on memoryless strategies.
This means that agents use strategies that prescribe for every world which move
to take. The history of previously visited worlds is not taken into account. In [4,
6], these logics are denoted with ATLsc,0 and ATL∗sc,0.



3 Strategy contexts and explicit strategies

In this section, we contrast the notion of strategy contexts with explicit strate-
gies. Many notions relevant to strategies come into the picture and our principal
aim is to discuss them informally. We first present ATLES, the extension of ATL
with explicit strategies from [19] (Section 3.1). We introduce it over CGSs while
its original presentation was in terms of alternating transition systems. We then
translate a fragment of ATLsc into ATLES (Section 3.2).

3.1 ATLES

The language of ATL is enriched with symbols for strategies and commitment
functions that assign agents to strategies they are committed to play. Thus
ATLES allows to reason explicitly about strategies. This is not possible with any
of ATL and ATLsc (and their respective LTL-extensions) as strategies are pure
semantic constructs and they do not occur in the object language.

Formally, the signature of the language is extended by a set Υ of strategy
terms, where Υ =

⋃
a∈Σ Υa and Υa is a countably infinite set of strategy terms

σa for agent a in Σ. A commitment function is a partial function ρ : Σ → Υ
with a finite domain mapping an agent a ∈ Σ to a strategy term ρ(a) ∈ Υa for
a. Note that a commitment function ρ is a finite object and as such it is used
to additionally parameterise path-quantifiers as 〈〈A〉〉ρ. The set dom(ρ) consists
of the committed agents. If ρ(a) is defined, then ρ contains a mapping of the
form a 7→ σa which is called a commitment of agent a (or a commits) to play
the strategy denoted by the strategy term σa. On the other hand, if ρ(a) is
undefined, then a does not commit to any strategy and, thus, a can quantify
freely over the strategies available to a. The reading of an ATL-path quantifier
〈〈A〉〉 with commitment function ρ is as follows:

〈〈A〉〉ρϕ states that, given the commitment of any agent b in dom(ρ)
to use the strategy denoted by ρ(b), the agents in A \ dom(ρ) have a
strategy to ensure the temporal property ϕ, no matter what the agents
in Σ \ (dom(ρ) ∪A) do.

Notice that the committed agents in dom(ρ) do not take part in the quantification
over strategies in 〈〈A〉〉ρ.

We remark that 〈〈A〉〉ρ is not how the path quantifier really looks like when
used in a formula. The symbol ρ is merely a meta-logical reference to an actual
commitment function, which is a collection of mappings of the form a 7→ σa,
where σa is a strategy term for agent a. This should be considered when analysing
the length of a formula.

The notion of commitment to strategies requires the same strategies to be
played again at a later stage. This means, in formulas of the form 〈〈A〉〉ρΨ , the
same commitment a 7→ σa from ρ occurs in a commitment function ξ of a nested
path quantifier 〈〈B〉〉ξ in Ψ . Both ρ and ξ prescribe the strategy term σa for agent
a (or, in both cases, a commits to σa). We have that ρ(a) = ξ(a). Release of
commitment to σa is modelled as easily as committing to it in the first place.



This is achieved by having a commitment function χ of a nested path quantifier
not include the commitment a 7→ σa, i.e., either χ(a) 6= σa or χ is undefined for a.
In case release of commitment is not desired, the notion of irrevocable strategies
is used. It can be modelled explicitly in ATLES by only allowing commitment
functions ρ to extend conservatively the commitment functions ξ under whose
range they occur, i.e., ρ and ξ agree for all agents in dom(ξ). Thus, IATL can be
defined in ATLES while avoiding the update semantics employed in [1].

The language of ATLES is defined over the extended signature 〈Π,Σ,Υ〉.
Definition 4 (ATLES Syntax). The following grammar defines state formulas
ϕ and path formulas ψ, where p ranges over Π, A ranges over finite subsets of
Σ and ρ over commitment functions. The language of ATLES consists of state
formulas.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρψ
ψ ::=©ϕ | 2ϕ | ϕU ϕ

The language of ATLES could easily be extended to allow for negation of the
temporal operators next-time and until. We refrain from extending the syntax
in this paper as we use the established complexity result of the satisfiability
problem for ATLES from [19] in order to use ATLES to determine a decidable
fragment of ATLsc whose satisfiability can be solved in ExpTime.

Strategy terms in Υ are interpreted as strategies in a CGS via assignments.
An assignment a in C is a function mapping strategy terms σa in Υa for any
agent a in Σ to a strategy a(σa) in strat(a) for a in C. Note that the assignment
a in a CGS acts like an assignment in First-order Logic with the difference that
in ATLES strategy terms are mapped to actual strategies in the CGS instead of
domain elements as in FOL. In [19] an assignment is called denotation function,
which comes as a component of an ATS.

To define the semantics of ATLES, we use the notions of a strategy and out-
come as in Section 2. We lift the notion of assignment to commitment functions
as follows. The application of an assignment a to a commitment function ρ is
the set a(ρ) of strategies for the agents in dom(ρ). Formally,

a(ρ) = {fa ∈ strat(a) | fa = a(ρ(a)), a ∈ dom(ρ)}.

It is readily checked that a(ρ) is indeed a set of strategies, one for each agent in
dom(ρ). To see this, recall that ρ is functional, i.e., it yields exactly one strategy
term ρ(a) for every agent for which ρ is defined.

An assignment a acts as an interpretation of the commitment function ρ
(i.e. the strategy terms in ρ). We can view a strategy term σa = ρ(a), for any
a in dom(ρ), as a constant rather than a variable. As we will see below in the
semantics of ATLES, the assignment a does not change during the evaluation of a
formula and, thus, the strategy a(σa) is fixed. We can think of the strategy term
σa as being existentially quantified in the sense that there exists a strategy for a
that is referenced by σa and provided by a. ATLES does not provide references
to universally quantified strategies.

Using the notion of assignments, we can now define how to interpret the
formulas of ATLES over CGSs.



Definition 5 (ATLES Semantics). Given a CGS C = 〈W,R, V,Σ,M,Mov,E〉
for 〈Σ,Π〉 and an assignment a, the consequence relation |= is inductively defined
as follows, and the notions of validity and satisfiability are defined as usual:

– C, w |=a p iff w ∈ V (p), for all atomic propositions p ∈ Π;
– C, w |=a ¬ϕ iff C, w 6|=a ϕ;
– C, w |=a ϕ1 ∨ ϕ2 iff C, w |=a ϕ1 or C, w |=a ϕ2;
– C, w |=a 〈〈A〉〉ρψ iff there is a strategy FA in strat(A) such that for all plays
λ ∈ out(w, S), it holds that C, λ |=a ψ, where S = a(ρ) ◦ FA;

– C, λ |=a ©ϕ iff C, λ[1] |=a ϕ;
– C, λ |=a 2ϕ iff C, λ[i] |=a ϕ for all positions i ≥ 0;
– C, λ |=a (ϕ1 U ϕ2) iff there is an i ≥ 0 such that C, λ[i] |=a ϕ2 and C, λ[j] |=a

ϕ1 for all positions j with 0≤j<i.

The ATLES semantics of 〈〈A〉〉ρ is similar to the semantics of 〈·A·〉 in ATLsc,
which facilitates comparison. We recall that the operator ◦ from Section 2 yields
a(ρ) ◦ FA = a(ρ) ∪ {fa ∈ FA | a /∈ dom(ρ)}. Intuitively, a(ρ) ◦ FA states that
commitments of agents are respected as prescribed in ρ, all other agents in A
play their just selected strategies.

3.2 Comparing ATLsc and ATLES

Obvious differences between ATLsc and ATLES are that, while the former includes
a separate release operator ·〉A〈· and a strategy context in the semantics, the
latter allows to specify commitments in the form of a 7→ σa in the syntax which
are interpreted using assignments. However, commitments and assignments in
ATLES can play the roles of strategy release and strategy contexts in ATLsc.
A crucial difference between the logics is the semantics of the path quantifiers
〈·A·〉 and 〈〈A〉〉ρ. For 〈·A·〉, the strategies FA selected by A upgrade or overwrite
the strategy context Fcontext (cf. Def. 3), whereas, for 〈〈A〉〉ρ, the strategies a(ρ)
specified by the commitment ρ are supplemented by FA (cf. Def. 5). The set of
plays considered for further evaluation depends on the upgraded context FA ◦
Fcontext or the supplemented commitments a(ρ) ◦ FA. Both are not necessarily
equivalent. The following proposition states under which conditions 〈·A·〉 and
〈〈A〉〉ρ determine the same set out(x, S) of plays, where S is defined as S =
FA ◦ Fcontext in the former case, and S = a(ρ) ◦ FA in the latter.

Proposition 1. It holds that FA ◦ Fcontext = a(ρ) ◦ FA if one of the following
three conditions is satisfied:

(i) Fcontext = a(ρ) = ∅;
(ii) FA = ∅ and Fcontext = a(ρ); or

(iii) FA = Fcontext = a(ρ).

The proposition can be shown by using the fact that the strategy upgrade op-
erator ◦ forms an idempotent semigroup on the set strat of strategies, and that
◦ is not commutative.

Proposition 1 makes clear that a strategy context Fcontext in ATLsc corre-
sponds to the strategy commitment a(ρ) in ATLES with the difference that



Fcontext is a purely semantic object, whereas a(ρ) consists of a syntactic com-
ponent ρ and a semantic component a. This means we can explicitly describe
strategy contexts in the language of ATLES, whereas in ATLsc we have to make
use of 〈·A·〉 and ·〉A〈· that describe that strategies for A are either pushed into
the context or released from it. Notice how using strategy commitments in the
syntax is more flexible than the strategy context model as every path quantifier
in ATLES can be parameterised with a different commitment function, which
describes explicitly which agent is using what strategy. In particular, this does
not require a dedicated release operator.

The notion of irrevocable strategies is captured in ATLsc by carefully avoiding
quantification over strategies of committed agents. In ATLES, irrevocability can
be made explicit in the syntax.

Once a strategy in the strategy context is overwritten with a new strategy
or released, it cannot be recovered in ATLsc, because any reference to it is lost.
This could be described with the notion of forgetting forever. Not so in ATLES,
where ‘forgetting forever’ can be modelled explicitly in the language, but it is
no restriction of the logic as in ATLsc. In fact, an agent in ATLES may resume a
commitment after releasing it, which also captures a notion of agents having a
strategy memory.

A strength of ATLsc is to push any strategy that is available to an agent into
the context. This is achieved with formulas of the form ¬〈·A·〉ψ, where the agents
in A quantify universally over their strategies FA. In the semantics, before we
continue with the evaluation of the path formula ψ, the strategies FA are used
to upgrade the strategy context (cf. Def. 3). This is another crucial difference
to ATLES, which is restricted to existential quantification over commitments.
To make more precise the relationship between ATLsc and ATLES, we present
an equivalence preserving mapping from a fragment of ATLsc into ATLES. The
fragment under consideration is represented by the set of ATLsc-formulas where
(i) a negated path subformula can only have the form ¬(>U ϕ), and (ii) every
〈·A·〉 (for any A) is under the scope of an even number of negations. Let us denote
L(e) this language. Let us also denote L(o) the language satisfying (i) but such
that every 〈·A·〉 (for any A) is under the scope of an odd number of negations.
We define the translation tr(·, ·) as follows:

tr(p, ξ)
def
= p;

tr(¬ϕo, ξ)
def
= ¬tr(ϕo, ξ);

tr(ϕ1 ∨ ϕ2, ξ)
def
= tr(ϕ1, ξ) ∨ tr(ϕ2, ξ);

tr(·〉A〈·ϕ, ξ) def
= tr(ϕ, χ), where χ = ξ|Σ\A;

tr(〈·A·〉©ϕ, ξ) def
= 〈〈A〉〉ρ© tr(ϕ, ρ);

tr(〈·A·〉2ϕ, ξ) def
= 〈〈A〉〉ρ2 tr(ϕ, ρ);

tr(〈·A·〉(ϕ1 U ϕ2), ξ)
def
= 〈〈A〉〉ρ(tr(ϕ1, ρ)U tr(ϕ2, ρ)),

where ϕo is in L(o), ϕ, ϕ1 and ϕ2 are in L(e), and where the commitment
function ρ overwrites/updates ξ at A with fresh strategy terms. Formally,

ρ = ξ|dom(ξ)\A ∪ {a 7→ σa | a ∈ A, σa is fresh}.



The following proposition states that tr(·, ·) is indeed equivalence preserv-
ing. The proof works by induction on the structure of ATLsc-formulas that are
translated.

Proposition 2. Let ϕ be a formula in L(e), C a CGS, x a world in C and F a
strategy in C. The following are equivalent:

(a) C, x |=F ϕ;
(b) C, x |=a tr(ϕ, ρF ), for some 〈ρF , F 〉-compatible assignment a,

where ρF = {a 7→ σa | fa ∈ F, σa is fresh} and an assignment a is 〈ρF , F 〉-
compatible if a(ρF (a)) = fa, for every a ∈ dom(ρF ) and fa ∈ F .

The satisfiability checking problem for L(e) can be solved in ExpTime by
Proposition 2 and the fact that ATLES is in ExpTime [19]. This is in contrast
with the complexity of full ATLsc, which we establish in the following section.

4 Complexity

This section is devoted to investigating the computational complexity of ATLsc
and ATL∗sc.

Generally, high expressiveness tends to come with the price of high compu-
tational complexity of reasoning problems. While the model checking problem
was already considered in [6, 4] (and shown to be between 2ExpTime-hard and
non-elementary for ATLsc, while it is 2ExpTime-complete for ATL∗, cf. [2]), we
focus here on the satisfiability problem. The lower complexity bounds carry over
to ATLsc and ATL∗sc from their respective fragments ATL and ATL∗. It turns out,
however, that extending ATL with strategy contexts comes with a much higher
price. In the following we show that ATLsc is undecidable. In fact, we show this
for the release-free fragment of ATLsc. We use a reduction of the satisfiability
problem for the product logic S5n, which is known to be undecidable. As we
have hinted upon in the introduction, ATLsc can capture some type of STIT ac-
tual group agency. Thus the undecidability of ATLsc may not come as a surprise
considering the undecidability of Chellas’ STIT logic of group agency ([10]).

4.1 Product logic S5

The language of S5n is the basic propositional n-modal language given by the
following grammar, where p ranges over Π, and i ∈ {1, . . . , n}:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 3iϕ.

The semantic structures for S5n are as follows. A universal product S5n-frame is
a tuple F = (W1× · · · ×Wn, R1, . . . , Rn), where for every i ∈ {1, . . . , n}, Wi is a
non-empty set of worlds and Ri is the universal relation on Wi. As the relations
Ri are determined by the sets Wi, we also denote such frames by (W1×· · ·×Wn).
An S5n-model is a pair M = (F, V ), where F = (W1 × · · · ×Wn) is a universal



product S5n-frame and V a valuation in F mapping every propositional variable
p to a subset V (p) of W1 × · · · ×Wn. The consequence relation |=S5n is defined
inductively between S5n-models M, worlds x = 〈x1, . . . , xn〉 in M and formulas
of S5n as follows:

– (M,x) |= p iff x ∈ V (p);
– (M,x) |= ¬ϕ iff (M,x) 6|=S5n ϕ;
– (M,x) |= ϕ ∨ ψ iff (M,x) |=S5n ϕ or (M,x) |=S5n ψ;
– (M,x) |= 3iϕ iff there is a yi ∈Wi such that (M,y) |= ϕ,

where y = 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉.

We make use of the following results.

Theorem 1. The satisfiability problem for S5n over finite models is

(i) NExpTime-complete for n = 2; and
(ii) undecidable for all n ≥ 3.

As S52 has the finite model property ([17]), (i) follows from Marx’s result on
the NExpTime-hardness of S52 ([16]). Undecidability of S5n, for n ≥ 3, over
arbitrary models was shown by Maddux ([15]) in an algebraic setting, via a re-
duction of the undecidable word problem of semigroups. As the word problem
of all finite semigroups is also undecidable ([8]), Maddux’s original proof actu-
ally shows the undecidability of S5n reasoning restricted to finite models (even
though S5n lacks the finite model property for n ≥ 3, cf. [13]). Another way of
showing the undecidability of finite model reasoning with S5n, for n = 3, is using
Trakhtenbrot’s theorem ([3, Section 2.1.2]). He showed how to encode the ω×ω
grid and halting Turing machines in finite models, using the first-order language
having binary predicates and 3 variables only. This language can be translated
to S53 while keeping the models finite, using the Halmos-Johnson technique ([9,
12], see also [7, Section 8.1]).1

4.2 Satisfiability of ATLsc

Theorem 2. The satisfiability problem for ATLsc is

(i) NP-hard for formulas with n = 1 agent;
(ii) NExpTime-hard for formulas with n = 2 agents; and
(iii) undecidable for formuals with n ≥ 3 agents.

We show the lower complexity bounds in Theorem 2 by a reduction of the satis-
fiability problem for S5n to the problem for ATLsc. We leave the matching upper
bounds for (i) and (ii) as open problems. Define inductively a translation tr(·)
mapping S5n-formulas to formulas of ATLsc as follows:

tr(p)
def
= 〈·∅·〉©p;

tr(¬ϕ)
def
= ¬tr(ϕ);

tr(ϕ ∨ ψ)
def
= tr(ϕ) ∨ tr(ψ);

tr(3iϕ)
def
= 〈·i·〉(⊥U tr(ϕ)).

1 We are grateful to Agi Kurucz for referencing and summarising these details for us.



Notice that the translation does not make use of the strategy release operator
·〉A〈· of ATLsc. Thus Theorem 2 holds already for the ·〉A〈·-free fragment of ATLsc.

Lemma 1. Let ϕ be an S5n-formula and let Σϕ be the set of agents that occur
in ϕ. The following are equivalent:

(i) ϕ is satisfiable wrt. S5n in a finite model;
(ii) 〈·Σϕ·〉⊥U tr(ϕ) is satisfiable wrt. ATLsc.

Proof. “(i)⇒ (ii)”: Given a finite S5n-model M = (F, V ) with F = (W1 × · · · ×
Wn), we construct a CGS CM = 〈WM, VM, ΣM,MM,MovM, EM〉 as follows.
Set:

– WM = W1 × · · · ×Wn;
– VM(w) = {p | w ∈ V (p)}, for all w ∈WM;
– ΣM = {1, . . . , n};
– MovM(w, i) = {{〈x1, . . . , xn〉 | xj ∈ Wj for all j 6= i} | xi ∈ Wi}, for all

w ∈WM and all i ∈ ΣM;
– MM =

⋃
i=1,...,nMovM(w, i), for some arbitrary w ∈WM; and

– EM(w,m) ∈
⋂
i=1,...,nmi, for all w ∈ WM and all m = 〈m1, . . . ,mn〉 ∈

prof(w),

where prof(w) = {〈m1, . . . ,mn〉 | mi ∈ MovM(w, i)}. It is readily checked that
CM is indeed a CGS. To see this, note that for all m = 〈m1, . . . ,mn〉 ∈ prof(w),
each mi is a subset of WM, and verify that the intersection

⋂
i=1,...,nmi is a

singleton set.
Given a world x = 〈x1, . . . , xn〉 in M, set the strategy Fx = {fx1 , . . . , fxn } for

the agents in ΣM as follows: For all i = 1, . . . , n and all w ∈WM,

fxi (w) = {〈y1, . . . , yn〉 | yi = xi, yj ∈Wj for all j 6= i}.

Fx is indeed a strategy for ΣM as fxi (w) ∈ Mov(w, i), for all i = 1, . . . , n and
w ∈ WM. Note that Fx specifies the same complete move profile 〈fx1 (w), . . . ,
fxn (w)〉 at every state w in CM.

To show this direction of the lemma, it is sufficient to show that, for all
S5n-formulas ϕ, all S5n-models and worlds x in M and states w in CM:

M,x |=S5n ϕ iff CM,w |=Fx tr(ϕ). (1)

Fx specifies the same state EM(w, Fx) = x as successor of any state w in CM. It
follows that the set out(w, Fx) consists of exactly one play λ such that λ[i] = x,
for all positions i ≥ 0. Together with the right-hand side of (1), this implies that
CM,w |=S 〈·Σϕ·〉2tr(ϕ) and CM,w |=S 〈·Σϕ·〉⊥U tr(ϕ), for any strategy S for
ΣM. Hence, the left-to-right direction of the lemma follows.

To show (1), we proceed by induction on the structure of ϕ. In the induction
base, ϕ is a proposition p. The following equivalences hold: M,x |=S5n p iff
x ∈ V (p) iff p ∈ VM(x) iff, for every state w in CM, CM,w |=Fx 〈·∅·〉©p. For the
induction step, assume that we have already shown the induction hypothesis for
ϕ. Consider the following case of the induction step (we omit the Boolean cases):



– ϕ = 3iψ. Then: M,x |=S5n 3iψ iff there is a yi ∈Wi such that M,x′ |=S5n

ψ, where x′ = 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉. By the induction hypothesis,
this is equivalent to CM,w |=Fx′ tr(ψ) (for all w). The strategy fx

′

i (w) is a
move in MovM(w, a) available to agent i at any state w in WM. Since Fx

and Fx′ differ at most in their i-th component, we have that CM,w |=Fx

〈·i·〉⊥U tr(ψ), which is equivalent to CM,w |=Fx tr(3iψ).

This finishes the induction and, thus, this direction of the proof.

“(ii) ⇒ (i)”: Given a CGS C = 〈W,V,Σ,M,Mov,E〉 for 〈Σ,Π〉 with Σ =
{1, . . . , n} and a world x in C, construct an S5n-model M(C,x) = (F(C,x), V(C,x))

with F(C,x) = (W
(C,x)
1 × · · · ×W (C,x)

n ) as follows. Set:

– W
(C,x)
i = Mov(x, i) for all i ∈ Σ; and

– V(C,x)(p) = {m ∈W (C,x)
1 × · · · ×W (C,x)

n | p ∈ V (E(x,m))}, for all p ∈ Π.

It is readily checked that M(C,x) is indeed a finite S5n-model. While a move profile
determines a unique successor E(x,m) at a state x, two move profiles m1 6= m2

may be mapped to the same successor, i.e. E(x,m1) = E(x,m2). However, in
the product model M(C,x) the move profiles m1 and m2 are different worlds. Let
FΣ = {f1, . . . , fn} be a strategy in C for the agents in Σ. A world m in M(C,x)
is called an FΣ,x-world if E(x,m) = λ[1] with {λ} = out(x, FΣ,x).

To show this direction of the lemma, it is sufficient to show that, for all S5n-
formulas ϕ, for all CGSs C, all worlds x in C and all strategies F for Σ, and all
F -worlds wF in M(C,x):

C, x |=F tr(ϕ) iff M(C,x),wF |=S5n ϕ. (2)

Then, the right-to-left direction of the lemma follows from (2) together with the
fact that C, x |=S 〈·Σϕ·〉tr(ϕ) implies C, x |=F tr(ϕ), for any strategy S.

To show (2), we proceed by induction on the structure of ϕ. In the induction
base, ϕ is a proposition p. The following equivalences hold: C, x |=F tr(p) iff
C, x |=F 〈·∅·〉©p iff C, y |=F p, where y = out(x, F ) iff p ∈ V (y) iff wF ∈ V(C,x)(p)
iff M(C,x),wF |=S5n p. For the induction step, assume that we have already
shown the induction hypothesis for ϕ. Again, we skip the Boolean cases and
proceed with the interesting case:

– ϕ = 3iψ. Then: C, x |=F tr(3iψ) iff C, x |=F 〈·i·〉⊥U tr(ψ) iff there is a
strategy fi such that it holds that C, x |=S tr(ψ), with S = {fi} ∪ {fb ∈ F |
b 6= i}. By the induction hypothesis, we obtain M(C,x),wS |=S5n ψ. Since F
and S are identical with the possible exception of the strategy fi for agent
i, the worlds wS and wF differ at most in their i-th component. We have
that M(C,x),wF |=S5n 3iψ. The other direction of this case can be shown
similarly.

ut

Corollary 1. The satisfiability problem of any variant of ATL with strategy con-
texts in [4] is undecidable.
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