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Abstract. We propose a logic where the players may not know the outcome
function of the strategic game being played. It is an epistemic extension of games
of propositional control. The main contribution of the paper is to lay down a
logical framework for the combined analysis of (1) game theoretic properties of
strategic games and (2) epistemic properties. The logic enables reasoning about
agents and coalitions knowingly bringing about a particular consequence or a
particular solution concept.

1 Introduction

In game theory, uncertainty typically stems from the ignorance of which actions have
been performed by other agents. Some logics have been designed so as to model some
aspects of imperfect knowledge in a dynamic and strategic setting. See for instance [6,
7], [2], [3], [9]. In this note however, we build a logic to reason about strategic games
where the players have uncertainty about other players’ moves, and might also not know
the outcome function of the game being played.

We base our framework upon the logic of games and propositional control [12]
where every agent controls a set of propositional atoms. The repertoire of action (or
choices) of an agent i then corresponds to the set of valuations of the atoms controlled
by i. In addition to this notion of action, the logic comprises preferences. It allows to
characterise a large variety of solution concepts.

In this note, to account for the players’ lack of knowledge about the game being
actually played, we add a notion of moment, which can be conceived as a possible
world. Agents control the exact same set of atoms at every moment, and hence always
have the same action repertoire. However, the outcome function, that is the consequence
of a particular action profile, may differ from one moment to another. Since an agent
may not be able to distinguish two different moments, part of agents’ ignorance is about
the outcome function of the game being played itself. It can be exemplified as follows.

Example 1. Ray is blind and cannot see if the the lamp is on or off. He has two possible
strategies: (1) switching the light or (2) remaining passive. If the lamp is on (resp. off),
switching the light will lead to a moment where the light is off (resp. on). Remaining
passive will not change the moment: if the lamp is off (resp. on), it will stay in a moment
where it is off (resp. on). Hence, Ray knows his actions but ignores their outcomes.

Just like in [3], we are interested in a particular kind of knowledge that we shall call
commitment-dependent. It is a somewhat a refinement of ‘static’ standard knowledge
about the moments. When an agent cannot distinguish between two moments s1 and



s2, it also cannot a priori rule out any outcome of either two moments. However, by
committing to a particular choice, the agent also refines its knowledge about the possible
next outcomes.

In fact, in a dynamic environment, commitment-dependent knowledge is relevant
even if the agents have perfect knowledge about the moment.

Example 2. Ann is facing a lamp that is turned off and she sees so. She has two possi-
ble strategies: (1) switching the light on or (2) remaining passive. She does not know
whether the light will be on at the next step as both outcomes are possible depending
on her action. However she will know once she commits to a strategy, and that, even
before actually performing the action.

We present briefly the frames of propositional control in the next section and we
introduce our logic for reasoning about games and knowledge in Section 3. In Section
4 we discuss the interplay between strategies and knowledge. In Section 5, we give
an example of application in which we use the logic for analysing whether a group of
players can knowingly play a Nash equilibrium.

2 Propositional control

Coalition Logic of Propositional Control (CL-PC) [14] is a logic that deals with agency
and contingent ability of players in strategic games. Every player controls the truth
values of a particular set of atoms Ati. The set of possible valuations over Ati is easily
understood as representing the set of actions in the repertoire of the player i.

Definition 1 (frames). A frame of propositional control is a tuple 〈N, (Ati)〉, such that:

– N = {1, 2, . . . n} is a nonempty finite set of players;
– Ati is the set of atoms controlled by agent i.

We require that Ati ∩ Atj = ∅ for i , j.

We define the set of controlled atoms At = At1 ∪ . . . ∪ Atn. Every variable is controlled
by one and only one agent: the sets Ati form a partition of At. We refer to AtC as the
union of the controlled atoms Ati of every agent i in C.

Definition 2 (valuations and reification). Given a coalition C ⊆ N, a C-valuation θC

is a function θC : AtC −→ {tt, ff}. Also, we define:

π(θC) ,
∧

p∈AtC ,θC(p)=tt

p ∧
∧

q∈AtC ,θC(q)=ff

¬q.

Game theoretically, a C-valuation (viz. a valuation of all the variables in AtC) can be
identified with a coalitional action. Like an action profile, an N-valuation specifies one
choice for every player. The function π allows us to reify these valuations in the object
language.

We note Θ the set of N-valuations. When it is clear from the context, we shall write
θ instead of θN . Hence, θC can be conceived of the restriction of θ to AtC. Given θ and



θ′ in Θ, we write θ ≡C θ′ to mean θC = θ′C. We shall sometimes slightly abuse notation
and decompose a valuation θ. Let {C1, . . .Ck} a partition of N; we denote by θN the tuple
(θC1 , . . . , θCk ).

CL-PC allows to reason about strategic game forms when the set of outcomes is the
set of N-valuations.

In [12], a logic of games is built upon CL-PC. It consists in adding a set of conse-
quences (the outcomes of the valuations) and preferences over the consequences.

Definition 3. A game of propositional control with consequences (notation: GPCC) is
a tuple 〈N, (Ati), S, o, (�i)〉, such that:

– 〈N, (Ati)〉 is a frame of propositional control;
– S is a nonempty finite set of atoms such that At ∩ S = ∅;
– o maps a θN valuation to an element of S;
– �i is a preference relation over S for every agent i.

In the next section, we present an epistemic extension of the models and propose
a logic that allows to express properties of a strategic game where the players may not
know the outcome function.

3 Games of propositional control under imperfect information

The language L(N, (Ati), S) is inductively defined by the following grammar:

ϕF > | a | ¬ϕ | ϕ ∨ ϕ | ^Cϕ | _iϕ | Kiϕ | ECϕ | CCϕ

where a is an atom of At ∪ S, C ⊆ N is a coalition and i ∈ N is a player.
The formula ^Cϕ reads that providing that the players outside C hold on with their

current choice, the coalition C can ensure ϕ. _iϕ reads that the player i prefers ϕ (or is
indifferent). Kiϕ means that agent i knows that ϕ.

We aim at modelling players that could be incapable of knowing which game they
are actually playing; We need a mechanism that allows to deal with several GPCC. We
note G[N, (Ati), S] the set of GPCC over the sets N, Ati (i ∈ N) and S.

The models are merely a set of strategic games in G[N, (Ati), S] with a relation of
indistinguishability over it for every player. We have a set of moments S and a function
gpcc that associates a GPCC to every moment. (Note that this is reminiscent of effectiv-
ity structures in Coalition Logic [10], which consist in a set of moments and a function
associating a game form to every moment.) We also have an equivalence relation ∼i

over S meant as a relation of indistinguishably of the player i.
In this note, we will assume that a player has the same preferences over conse-

quences in two indistinguishable moments.
We will need a way of referring to the semantical objects in a specific game. Given

a GPCC G we will denote its outcome function by oG and its preference profile by
�G. Hence, a GPCC G is a tuple 〈N, (Ati), S, oG, (�G

i )〉, where N, Ati and S are fixed
parameters.

We can now define the models rigorously.



Definition 4 (models of games and knowledge). A model of games and knowledge is
a tuple M = (N, (Ati), S, gpcc, (∼i)), where:

– N is a finite non-empty set of players;
– Ati is a finite set of atoms such that Ati ∩ Atj = ∅ whenever i , j;
– S is a set of moments;
– gpcc : S −→ G[N, (Ati), S];
– ∼i is an equivalence relation over S such that for every {x, y, q1, q2} ⊆ S, if q1 ∼i q2

then x �gpcc(q1) y iff x �gpcc(q2) y.

Everything is rather self-explaining. Remark simply that the last item takes care about
our assumption about the uniformity of preferences in indistinguishable moments.

In the models defined previously, ∼i are the individual epistemic relations. From
them we can define the notions of group indistinguishability that will give rise for every
coalition C to (i) mutual knowledge (operator: EC), and (ii) common knowledge (CC).

We say there is a mutual knowledge within a group C that ϕ holds when every player
in C knows that ϕ. We say there is common knowledge within a group C that ϕ when it
is mutual knowledge that ϕ, it is mutual knowledge that it is mutual knowledge that ϕ,
and so on. Formally, these concepts correspond to the following relations:

mutual knowledge: ∼EC = ∪k∈C ∼k

common knowledge: ∼CC =∼+
EC

, where + is the reflexive and transitive closure

Definition 5 (truth values of L(N, (Ati), S)). The truth value of a formula of
L(N, (Ati), S) is wrt. a model M = (S, gpcc,∼i), a moment s in S and an N-valuation of
the controlled atoms (θ ∈ Θ). It is inductively given by:

M, s, θ |= >
M, s, θ |= x iff ogpcc(s)(θ) = x , x ∈ S
M, s, θ |= p iff θ(p) = tt , p ∈ At
M, s, θ |= ¬ϕ iff M, s, θ 6|= ϕ
M, s, θ |= ϕ ∨ ψ iff M, s, θ |= ϕ or M, s, θ |= ψ
M, s, θ |= ^Cϕ iff there is a θ′ ∈ Θ such that θ′ ≡N\C θ and M, s, θ′ |= ϕ

M, s, θ |= _iϕ iff there is a θ′ ∈ Θ such that ogpcc(s)(θ) �gpcc(s)
i ogpcc(s)(θ′)

and M, s, θ′ |= ϕ
M, s, θ |= Kiϕ iff for all s′ s.t. s ∼i s′ and for all θ′ ∈ Θ s.t. θ′ ≡i θ

we have M, s′, θ′ |= ϕ.
M, s, θ |= ECϕ iff for all s′ s.t. s ∼EC s′ and for all θ′ ∈ Θ s.t. θ′ ≡C θ

we have M, s′, θ′ |= ϕ;
M, s, θ |= CCϕ iff for all s′ s.t. s ∼CC s′ and for all θ′ ∈ Θ s.t. θ′ ≡C θ

we have M, s′, θ′ |= ϕ.

The truth of ϕ in all models is defined by |= ϕ. The classical operators ∧,→,↔ can
be defined as usual. We also define �Cϕ , ¬^C¬ϕ and �iϕ , ¬_i¬ϕ.

We define the operator of brute choice as follows

[C]ϕ , �N\Cϕ.

It corresponds to the fact that if the players in C commit to their current strategy, then
ϕ holds whatever other agents do.



4 Knowledge and strategies

In this section, we first explain why the logic of the modalities of knowledge presented
so far is different from standard epistemic logic. However, we will see that the modal-
ities �iKi, �CCC and �CEC obey the standard principles of epistemic logic. After pre-
senting an alternative account of coalitional power with imperfect information, we show
how the logic can model many properties about the interaction between knowledge and
power of coalitions.

4.1 A logic of uniform choices

The resulting logic, combining the operators of individual and group knowledge is not
a standard epistemic logic.

In standard epistemic logic we would expect the formula E{i,j}ϕ → Kiϕ to be a
valid principle. However, it is easy to build a model of games and knowledge such that
E{i,j}ϕ∧¬Kiϕ or C{i,j}ϕ∧¬Kiϕ are satisfied. This is typically the case when ∼j⊆∼i. This
has to do with the evaluation of the operators of knowledge being uniform over the
choice of the coalition.

To have a better grasp of the distinction, we can see easily that the formula ECϕ ↔∧
k∈C Kkϕ is not sound in our models, though a valid principle of standard epistemic

logic. It would be if we were to replace the truth value of the operator EC by this
alternative semantics:

M, s, θ |=alt ECϕ iff for all s′ s.t. s ∼EC s′ and for all θ′ ∈ Θ s.t. θ′ ≡i θ for some i ∈ C
we have M, s′, θ′ |= ϕ.

But then, it just does not correspond to what we want to express about a group of agents
that have mutual knowledge of how to achieve something together. It would merely
reflect a notion of mutual knowledge that some agents of the coalition can achieve the
state of affairs individually.1

In [7], the authors propose the notion of constructive knowledge.

“The agents A constructively know that [the coalition B can achieve ϕ] if they
can present a strategy for B that guarantees achieving ϕ.” [7, p. 426]

Constructive knowledge is then a matter of knowing (or identifying) a choice of a group
of agents. Within our semantics, it corresponds to a (epistemically) uniform choice: the
set of pairs moment/valuation such that the moments are indistinguishable by the group
and the valuations may only differ by the truth value of the atoms that are not controlled
by a member of the group.

Our modalities of knowledge for a coalition C are relativised to the moment, but
also to the hypothetical commitment of the players in C: they depend on the current
actions (valuations) of the players in C. The notion of knowledge reflected by these
operators is one of commitment-dependent knowledge. As we have seen in Examples 1
and 2, the knowledge of Ray and Ann changes when they commit to a particular choice.

1 An analogous observation can be done for common knowledge.



If we wanted to define mutual knowledge in terms of individual knowledge, we
would need to use a local definition where, given a particular commitment (here π(θC)),
the formula ECϕ is equivalent to a formula that does not contain EC but refers to π(θC).
The appropriate definition of mutual knowledge is then:

π(θC)→

ECϕ↔
∧
k∈C

Kk(π(θC)→ ϕ)

 (def (E))

4.2 The underlying epistemic logic

Since evaluations of formulae are wrt. a N-valuation (strategy profile), the knowledge
operators are intended to reflect the fact that agents are committed to their strategies.
The notion of knowledge of a player i formalised by the operator Ki is not a knowledge
relative to a moment but rather relative to a pair moment / strategy profile (or equiva-
lently – since the knowledge does not depend on other player’s strategy – relative to a
moment / player i’s strategy). Thus, we are just concerned by equivalent i-valuations in
i-indistinguishable moments.

The knowledge of player i relative to a moment can be captured by the defined
modality

Kiϕ , �iKiϕ.

It corresponds to the knowledge i has whatever its strategy. In this context, the inter-
pretation of the epistemic modalities resembles Stalnaker’s safe knowledge [11]: Kiϕ
implies that i knows that ϕ and continues to know ϕ if any commitment is taken.2

Mutual and common knowledge are defined along the same pattern as individual
knowledge. Mutual knowledge relative to a moment is defined:

ECϕ , �CECϕ

and common knowledge relative to a moment is defined:

CCϕ , �CCCϕ.

Proposition 1. The following standard principles of epistemic logic are sound:

ECϕ↔
∧

k∈C Kkϕ
(CCϕ ∧ CC(ϕ→ ψ))→ CCψ
CCϕ→ ϕ
CCϕ→ CCCCϕ
CC(ϕ→ ECϕ)→ (ϕ→ CCϕ)

4.3 Knowledge and logics of power

In [13], van der Hoek and Wooldridge propose an extension of ATL with knowledge.
The logic however cannot distinguish between knowing the mere existence of a strategy
to achieve something from knowing how to achieve something.

To enable this, the authors of [6] introduce a collection of logics for reasoning about
“knowing how to play”. They analyse several situations of interaction such as:

2 We thank Hans van Ditmarsch for suggesting this connection.



1. the agent i has a strategy and he knows that playing it will lead to...
2. the agent i knows that the player j has a strategy...
3. the group A has mutual knowledge of a collective strategy...
4. the group A has common knowledge of a collective strategy...
5. the group A has mutual/common knowledge of a collective strategy of group B such

that...

To have a grasp of these notions, the logic ATOL is proposed in [6]. Its language
comprises a collection of primitive ad hoc operators of the form

〈〈A〉〉KBϕ

which means that the coalition B has the knowledge of type K (we use K as a generic
notation for individual, mutual, or common knowledge) to identify a strategy of the
coalition A to achieve ϕ. (Operators are in fact more specific than that as they are also
specific to one temporal operator. But we are not concerned with temporal aspects here.)

In [7], the authors propose a logic (CSL) with the same abilities that ATOL but using
a much nicer syntax. However, this is done to the price of a non-standard semantics.
Indeed, the truth-values of the logic is not relative to a possible world but relative to a
set of possible world.

It is shown in [8] that the language of CSL admits a normal form. By restricting
the language of CSL to its normal form, it is possible to evaluate the formulae in a
more standard way. However, as the authors write, it is a technical trick that is much
appreciated to use in theoretical analysis, but a restricted language washes away some
of the conceptual impact.

4.4 In our logic

Before going on, we must point out two significant differences with the logics of the
previous proposals. First, unlike the proposals in the setting of ATL, our logic does
not deal explicitly with time. This may be a drawback but it should be noted that the
problems of interaction between strategic behaviour and knowledge in which we are
interested to clarify are also present in the one-shot strategies setting of ATL-like logics.

Second, the language of our logic is somewhat built from ‘more elementary bricks’.
This is all good as it makes it more flexible. We will actually see that we can give
definitions of numbers of concepts that make a lot of sense. A major drawback however,
is that the formulae can be complex in size. It is not problematic from a modelling
point of view as the defined notions can (and should) be used. What might be more
problematic is that it will have to be translated back into the basic language if we need
to reason with them. Computer scientists are used to that, though. It is merely like
writing in a high level programming language like C or Java and compiling it to obtain
a machine code in assembly language.

Finally, maybe the main contribution of the present note is to present a logic that
combines reasoning about strategic knowledge and reasoning about game equilibria.
(See Section 5.)



Knowing how to play ATL-like logics only deal with what the players can do. In our
logic we can talk about what players do. This is related to the STIT logics [1, 4]. Our
notions of knowledge are inherently linked to the notion of agency, due to the following
valid principles:

KCϕ→ [C]ϕ (inclk)

The operators of knowledge Ki, EC and CC capture a notion of knowledge after a hypo-
thetical commitment to a particular strategy.

Players’ knowledge is dependent on their hypothetical commitment to a strategy.
Back to Example 2, Ann can know that the lamp will be on at the next step by simply
committing to her choice of switching the light on. But it does not mean that it will
be on, as she still could take the other choice. Hence, the way we model the notion
“knowing how to play” in our logic is by counterfactual reasoning. The player some-
what assesses its options (^i) and see whether it leads to some state of affairs.

Knowing how to play ϕ is having a uniform choice to bring about ϕ.

This is reminiscent of the constructs of abilities within the deliberative STIT theory [5].
The formula [i]ϕ (already defined on page 4) represents actual agency of the agent i
for ϕ. It formalises a brute choice of i leading to ϕ. Ability (or power) for a state of
affairs ϕ is formalised by ^i[i]ϕ (or 〈N\{i}〉[i]ϕ in the language of STIT). The power of
a coalition is

^C[C]ϕ.

The notion of “knowing how to play” is analogous. It is grasped by the formula

^CKCϕ

It means that the players in C have a group strategy such that if they commit to it, they
commonly know that ϕ. This construct was first used in [3].

Identifying a strategy In some situations, a group C1 could have the information to
identify a strategy of the coalition C2 such that C2 would see to it that ϕ if they play it.

The formula
KC1 (π(θC2 )→ [C2]ϕ)

says that coalition C1 can identify (with knowledge of type K) C2’s strategy θC2 as a
winning strategy for ϕ.

5 Example of application: Knowing how to play a Nash
equilibirum

In [12], a variety of strategic equilibria have been formalised: Pareto optimality, core
membership, strong Nash equilibrium, etc. Only the solution concept of Nash equilib-
rium will be used here. In this section we show on an example how to reason about
coalitions knowing how to play a Nash equilibrium.



The first step is to define the Nash equilibria in the logical language. It is handy to
introduce the notion of (weak) best response by an agent i.

WBRi ,
∨
x∈K

(x ∧ �i_ix).

A player i plays a best response in an N-valuation if, x being the outcome, for every
deviation of i, i prefers x.

NE ,
∧
i∈N

WBRi.

A valuation is a Nash equilibrium if every player plays a best response.

Consider now the following voting procedure. There are five possible candidates:
two Republicans McCon and Rooney, two Democrats Claton and Obomo and one in-
dependent Nadar. The set of moments is

S = {claton, obomo,mccon, rooney, nadar, om, or, cm, cr}.

claton corresponds to a moment in which Claton has been elected, etc. We are not
interested in what is going on in these moments. We are more concerned about the
moments om, or, cm and cr where a vote is supposed to take place. om correspond to a
moment in which Obomo and McCon have been chosen respectively as the Democrat
and the Republican candidate, etc.

There are two voters
N = {Ronald,Donald}.

Ronald’s political opinions lean towards those of the Republican party, and Donald
is some kind of a Democrat. Ronald is well informed about the Republican primaries
and knows whether Rooney or McCon is candidate for the presidential vote. However,
he ignores which one of Obomo or Claton is the Democrat candidate. Symmetrically,
Donald knows who is the Democrat candidate but not the Republican one.

We have
∼Ronald= {(om, cm), (or, cr)}∗

and
∼Donald= {(om, or), (cm, cr)}∗

where ∗ is the equivalence closure.
Each voter controls one atom. Setting it true counts as supporting his custom polit-

ical party, setting it false counts as voting for the other party:

AtRonald = {rep} and AtDonald = {dem}.

At om, or, cm and cr, both voters have to choose between Republican and Democrat.
If they both vote for the Democrat party (i.e., valuation {dem 7→ tt, rep 7→ ff}), the
Democrat candidate is elected. If they both vote for the Republican party (i.e., {dem 7→
ff, rep 7→ tt}), the Republican candidate is elected. If they fail to coordinate, Nadar is
elected (i.e., {dem 7→ tt, rep 7→ tt} or {dem 7→ ff, rep 7→ ff}).



obomo

rooney

rooney

clatonclaton

mccon

NE

NE

NE

NE

mcconnadar

nadarnadar

nadar

nadar

nadar nadar

NE

gpcc(or)

gpcc(cr)gpcc(cm)

∼Donald

∼Ronald
∼Ronald

obomo

NE

nadar

gpcc(om)

∼Donald

Fig. 1. Representation of the voting procedure. Donald plays rows, Ronald plays columns. In
all four strategic games, first row is dem 7→ tt and second row is dem 7→ ff. First column is
rep 7→ ff and second column is rep 7→ tt. Preferences are not represented, but each NE indicates
a Nash equilibrium.

We will make abstraction of the preferences about the moments om, cm, or and cr.
We are only interested in the preferences about the moments representing the elected
candidate of the elections. Suppose Ronald’s preferences are as follows:

claton =Ronald nadar <Ronald obomo <Ronald rooney <Ronald mccon

and Donald’s preferences are

mccon <Donald nadar =Donald claton <Donald rooney <Donald obomo.

The Nash equilibria of the four strategic games that are possible after the primaries are
represented by NE on Figure 1.

We can verify the following properties of strategy identification and knowing how
to play. For all θ ∈ Θ we have:

– Ronald cannot know when they are playing a collective strategy leading to a Nash
equilibrium.

M, or, θ 6|= KRonald[{Donald,Ronald}]NE

– Nevertheless, he can identify such a strategy.

M, or, θ |= KRonald((dem ∧ ¬rep)→ [{Donald,Ronald}]NE)



– In fact, Donald can identify the same strategy too.

M, or, θ |= KDonald(dem ∧ ¬rep)→ [{Donald,Ronald}]NE

– As a consequence they have the mutual knowledge that the strategy {dem 7→ tt, rep 7→
ff} leads to a Nash equilibrium.

M, or, θ |= E{Ronald,Donald}((dem ∧ ¬rep)→ [{Donald,Ronald}]NE)

– Specifically at {dem 7→ tt, rep 7→ ff}, they mutually know they are playing a Nash
equilibrium.

M, or, {dem 7→ tt, rep 7→ ff} |= E{Ronald,Donald}NE

– They have the mutual knowledge of how to play to achieve a Nash equilibrium.

M, or, θ |= ^{Ronald,Donald}E{Ronald,Donald}NE

– However, it is not common knowledge.

M, or, {dem 7→ tt, rep 7→ ff} 6|= C{Ronald,Donald}NE

– In fact, they do not have the common knowledge of how to play to achieve a Nash
equilibrium.

M, or, θ 6|= ^{Ronald,Donald}C{Ronald,Donald}NE
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