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Abstract

We present the main logical theories of action. We distinguish theories
identifying an action with its result from theories studying actions in terms
of both their results and the means that result is obtained. The first family
includes most prominently the logic of seeing-to-it-that and the logic of
bringing-it-about-that. The second includes propositional dynamic logic
and its variants. For all these logics we overview their extensions by other
modalities such as modal operators of knowledge, belief, and obligation.
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1 Introduction

Actions such as raising one’s arm, switching on a computer, jumping a traffic
light, killing somebody, or waltzing are investigated in several areas of philoso-
phy, among others in philosophy of action, philosophy of language and philoso-
phy of law. Through the analogy between actions and programs the concept is
also relevant in computer science, in particular in artificial intelligence, multi-
agent systems and theoretical computer science. Several other concepts are
intimately related to action. One that is directly related is that of the ability
to act. Mental attitudes and norms also play an essential role in the study of
action.

It has been attempted since Aristotle to systematise the analysis of action.
Taking advantage of the mathematical advances in predicate logic, ontological
perspectives on action were proposed in the form of first-order theories in the
mid-20th century and have been very influential in philosophy. Concurrently,
various research programs investigated the logic of action as such, trying to
uncover the grand principles. These approaches are dominated by a modal view
of action, and a first survey of this field is in a 1992 special issue of Studia
Logica [45]. The present chapter overviews the resulting logics of action. We
start by introducing the main issues at stake.
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Actions as events brought about by agents. It is generally considered
that an action can be identified with an event that is brought about by an
agent [48, 14], as exemplified by Belnap talking about “an agent as a wart
on the skin of an action” [5]. The dedicated term in the literature is that an
agent is agentive for an event. Examples of events are that an arm goes up,
that a computer starts, that somebody dies, etc. So my action of switching the
computer on is identified with me bringing about the event that the computer
starts.

Essentially, there exist two different semantical accounts of events: the first
account identifies an event with a set of possible worlds, also called a proposition;
the second account identifies an event with a binary relation between possible
worlds, also called a transition relation. In the first view, events are facts of the
world, identified with propositions: subsets of the set of possible worlds where
the event occurs. To these propositions the usual set-theoretic operations can
be applied. We thus obtain a way to interpret complex events and actions that
are built with the logical connectives of propositional logic, such as negation,
conjunction, and material implication. In the second view, the transition re-
lations of atomic events are a given, and the transition relation of a complex
event is built up from them.

Action as result vs. action as ‘means+result’. The two views on the
semantics of events yielded two traditions of logics of action. The difference is
reflected by two different logical forms of action sentences they consider: the
first family is about sentences such as “I bring it about that the computer is
on” and focuses on the result of an action; the second family is about sentences
such as “I bring it about that the computer is on by pushing the power button”
and focuses on both the result and the means by which it is obtained.

The first family are the so-called logics of agency. The logic of seeing-to-
it-that (STIT) [6, 4] and the logic of bringing-it-about-that (BIAT) [41, 19, 20]
are two sub-families. These logics are studied in philosophy of action and more
recently in multi-agent systems. The second family contains variants and ex-
tensions of propositional dynamic logic (PDL). These latter logics were intro-
duced and studied in theoretical computer science, but were also investigated
by philosophers.

Potential action. A notion that is often studied along with actual agency
is the mere existence of a potential action. “He could have done otherwise”;
“She can win this match”; “The Democrats have a strategy to undermine the
influence of the Senate whatever the rest of the electorate does”; “I can switch
on the light if you want”; “He can! But he would be lucky!” Loaded with many
distinct but somewhat overlapping meanings, this notion has been called ability,
capability, opportunity, power, etc. In this chapter we will simply use ability as
an umbrella term for potential action.

Some meanings of the term ability have not yet been satisfyingly formalised
in logic. One in particular is Kenny’s sense of ability [29]: I am able to do an
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result means+result
potential only CL, ATL PDL
actual only BIAT linear PDL
potential+actual STIT, Elgesem’s BIAT PDL with actual actions, DLA

Table 1: Logical form and concepts of the logics of this chapter.

action if when I try to do that action under normal conditions then I usually
succeed. Kenny’s example is that of an expert dart player who is able to hit the
bullseye while a layman is not. Although very close to our real world experience,
one difficulty is to meaningfully capture in a formalism that ability is not a
sufficient condition for actual agency and that actual agency is not evidence of
ability à la Kenny.

Yet, possible action has been studied alongside actual action in some logical
formalisms. All of the logics presented in this chapter that deal with both actual
and potential agency subscribe the principle ‘actual agency implies potential
agency’, for short: ‘do implies can’.

• BIAT logic is about actual agency. Elgesem has added a notion of ability
to bring about a proposition. In his logic an ability still can exist without
actual agency: a lion in a zoo can catch a zebra. Both agency and ability
are primitive concepts in his logic (although they are defined by means of
the same semantic structure).

• STIT logic is primarily about actual agency and potential agency. It is
equipped with quantification over possible unrolling of events. Potential
agency for a proposition is then reduced to the existence of an unrolling
of events where actual agency for that proposition is expressed.

• Coalition logic CL [38] and alternating-time temporal logic ATL [1] are
about the ability of an agent to ensure something whatever the other
agents do. There is no notion of actual agency, and the language does not
explicitly refer to action terms.

• The standard version of PDL [22] enables to talk about the possibility of
the occurrence of an event and about what is true afterwards. Linear ver-
sions of PDL also allow to capture actual agency. Furthermore, there are
variants of PDL which allow to represent both actual action and potential
action such as PDL with actual actions [32] and DLA [24].

Table 1 classifies the logics that we are going to overview in this chapter
according to the distinctions ‘potential and/or actual agency’ and ‘result vs.
result+means’ .
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Actions and mental attitudes. Our actions are determined by our beliefs
and desires: I switch my computer on because I want to know the weather
forecast and believe I can find it on the Internet, or because I believe I got email
and want to read it, or because I want to send an email and believe my Internet
connection is not down.

According to an influential view due to Bratman, desires do not directly
lead to actions, but it is rather the intermediate mental attitude of intention
that triggers actions [7]. Cohen and Levesque designed a logic adding modal
operators of belief and choice to PDL within which intention can be defined [17].

Actions and deontic concepts. What we do is not only influenced by our
mental attitudes, but also by obligations and prohibitions. Indeed, there are
cases where agents perform actions independently of their beliefs and desires
merely because they are obliged to do so; think e.g. of soldiers blindly obeying
their commander.

Meyer gave a logical account of obligation and action that is based on
PDL [35], while Horty based his account on STIT [26, 25].

The rest of this chapter. We are now going to present the main logics of
action and discuss their basic logical principles. In the next section we introduce
the family of those logics allowing to talk about actions in terms of their results:
BIAT and STIT. Thereafter we present the family of logics allowing to talk about
actions in terms of results and means to achieve these results: PDL and its linear
variants. For each family we discuss the interplay with ability, mental attitudes
and norms.

Throughout this chapter ϕ,ψ, . . . denote formulas and i, j, . . . denote agents
(individuals) that populate the world.

2 Action as result

According to Belnap and Perloff’s ‘stit-thesis’ every agentive sentence can be
transformed into a sentence of the form “i sees to it that ϕ”, where i is an agent
and ϕ is a proposition. In other words, an action is identified with the result it
brings about. The sentence “agent i sees to it that ϕ” itself can then be viewed
as a proposition. This allows a purely logical analysis of agentive sentences.

Let us start by formulating several principles that all of the logics in this
section satisfy.

First, if we view agentive sentences as propositions then it is natural to
require that the set of worlds where ϕ is true contains the set of worlds where
i is agentive for ϕ. This is a principle of success: the proposition “i sees to it
that ϕ” should imply the proposition ϕ. In other words, it should be valid that
if i sees to it that ϕ then ϕ is true. Note that it follows from this principle that
an agent can never see to it that ϕ ∧ ¬ϕ.
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Second, the different approaches agree about the principle of aggregation:
“if i sees to it that ϕ and i sees to it that ψ then i sees to it that ϕ ∧ ψ”.

Third and as already discussed in the introduction, action implies ability.
This is a do implies can principle: “if i sees to it that ϕ then i is able to
achieve ϕ”.

Fourth, a bringing about of a proposition is not sensitive to the syntactical
formulation of that proposition. For example, if Zorro and Don Diego Vega are
the same person and one considers that their being dead is the same propo-
sition, then Sgt. Gonzales bringing about that Zorro is dead is equivalent to
Sgt. Gonzales bringing about that Don Diego Vega is dead. This is the princi-
ple of equivalents for actual agency. A similar principle can be formulated for
potential agency.

All variants of STIT and of BIAT satisfy the principles of success, of aggre-
gation, ‘do implies can’, and equivalents for agency. Beyond these standard
principles there are quite some differences that have been captured by quite
different semantics. We therefore present the two families separately.

The main difference between BIAT logic and STIT logic is that the latter
satisfies a principle of independence of agents while the former does not: in
STIT it is assumed that each combination of the agents’ individual actions can
be chosen jointly, while this is not required in BIAT. It may be argued that
while the principle of independence of agents is acceptable in the case of choice
(or trying), it is less so in the case of action. Suppose two agents are standing
in front of a room door and intend to enter the room. The door is too narrow
to allow them to successfully enter at the same time, even though each agent
can successfully enter if the other agent does nothing. While the two agents
can simultaneously decide/try to enter the room, their attempts will fail to be
performed successfully.

After the presentation of each family of logics we briefly mention extensions
by concepts such as knowledge, belief, intention, and obligation.

2.1 The logic of bringing-it-about-that BIAT

BIAT logic, the logic of bringing-it-about-that, dates back to Kanger and Pörn [28,
41].1 We here present Elgesem’s semantics [20] whose validities were axiomatised
by Governatori and Rotolo [21]. The semantics is in terms of selection function
models 〈W, {f}i, V 〉 where W is some set of possible worlds, V : P −→ 2W is
a valuation function mapping propositional variables to subsets of W , and for
every agent i, fi : W × 2W → 2W is a selection function associating a proposi-
tion to every possible world and proposition. The object fi(w,X) is the set of
those worlds where i realises the ability he has in w to bring about his goal X.
Therefore i is able to bring about X at w if fi(w,X) is nonempty; and i brings
about X at w if w belongs to fi(w,X).

The functions fi have to satisfy the following additional constraints:

1There is no well-established name in the literature, we therefore opted for the acronym
BIAT, justs as the well-established STIT stands for ‘seeing-to-it-that’.
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• fi(w,X) ⊆ X, for every X ⊆W and w ∈W ;

• fi(w,X1)∩fi(w,X2) ⊆ fi(w,X1∩X2), for every X1, X2 ⊆W and w ∈W ;

• fi(w,W ) = ∅, for every w ∈W .

The first two constraints correspond to the principle of success and to the
principle of aggregation. The third constraint says that an agent cannot be
agentive for a tautology.

The language of BIAT logic has modal operators of agency Biati and modal
operators of ability Cani, one of each for every agent i. The formula Biatiϕ
reads “i brings it about that ϕ”, and the formula Caniϕ reads “i can achieve
ϕ”.2

The truth conditions are as follows:

M,w |= p iff w ∈ V (p);
M,w |= Biatiϕ iff w ∈ fi(w, ||ϕ||M );
M,w |= Caniϕ iff fi(w, ||ϕ||M ) 6= ∅.

In the last two conditions the set ||ϕ||M is the extension of ϕ in M , i.e. the set

of possible worlds where ϕ is true: ||ϕ||M
def
= {w ∈W : M,w |= ϕ}.

Alternative semantic characterisations of the operators Biati exist in the
literature: Pörn proposed to simulate it by combining two more elementary
modal operators that are normal [41]; Carmo et col. have used neighborhood
semantics [43]. However, there are no completeness results for these alternative
semantics.

So, what are the axioms of BIAT, i.e., what are the formulas of the language
that are true in every model? As announced above, the axioms of success,
aggregation, and ‘do implies can’ are all valid in BIAT logic, and the rule of
equivalents preserves BIAT validity:

Biatiϕ→ ϕ (1)

(Biatiϕ ∧ Biatiψ)→ Biati(ϕ ∧ ψ) (2)

Biatiϕ→ Caniϕ (3)

ϕ↔ ψ

Biatiϕ↔ Biatiψ
(4)

ϕ↔ ψ

Caniϕ↔ Caniψ
(5)

A subject that has been a source of disagreement in the literature is whether
an agent can bring about a logical tautology. Can John bring it about that
2 + 2 = 4? BIAT rules it out:

¬Cani> (6)

2Instead of Biati Jones and Pörn use Ei and Elgesem uses Doesi. Instead of Cani Elgesem
uses Abilityi.
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is an axiom. Together with the ‘do implies can’ axiom of Equation 3, it entails
that ¬Biati> is valid. That is, no agent is agentive for a tautology.

The principle that is maybe most surprisingly absent is the axiom of monotony
Biati(ϕ ∧ ψ) → (Biatiϕ ∧ Biatiψ): i may bring it about that ϕ ∧ ψ without
necessarily bringing it about that ϕ. Biati is therefore not a normal modal
‘box’ operator. The same is the case for the logic of the ability operators Cani.
Moreover, they do not satisfy the principle Cani(ϕ∨ψ)→ (Caniϕ∨Caniψ); to see
this take ψ = ¬ϕ. Therefore the latter cannot be modal ‘diamond’ operators ei-
ther. Moreover they do not satisfy ϕ→ Caniϕ. Due to these last two properties
Elgesem’s ability operators satisfy what Brown calls Kenny’s constraint [11].

In presence of several agents, these operators can be combined to express
interesting properties of interaction. One can say for instance that an agent
i makes (resp. can make) another agent j bring it about that ϕ, in formula:
BiatiBiatjϕ (resp. CaniBiatjϕ). Following the common law maxim “quid facit
per alium facit per se”, some authors consider that when i makes another agent
bring about something then i himself brings about that something [13]. Others
disagree [20]. Troquard [47], in a group extension of BIAT suggests a prin-
ciple BiatiBiatjϕ → Biat{i,j}ϕ, where Biat{i,j}ϕ indicates that the group
composed of i and j brings about ϕ together. Aiming at another kind of com-
promise, Santos et al. have proposed a logic with two kinds of agency operators:
one of indirect agency (noted Gi) satisfying the above principle and another one
of direct agency (noted Ei) which does not (and instead satisfies EiEjϕ→ ¬Eiϕ)
[42, 43].

Our next family of logics will validate this principle, and much more.

2.2 The logic of seeing-to-it-that STIT

While the temporal aspects were kept abstract in BIAT logics, the semantics of
STIT logics inherits the Ockhamist conception of time [50] where the truth of
statements is evaluated with respect to a moment that is situated on a particular
history through time (that is identified with a sequence of moments). This is
one of the reasons why the models of STIT logics that we are going to present
now [4, 26, 25] are more intricate. A systematic comparison between Belnap
et al.’s semantics for STIT and other semantics for STIT such as the Kripke-
style semantics by [31] and the bundled-tree semantics by [16] has been recently
proposed by [15].

A STIT model is based on a tree of moments which are the possible states of
the world. Every moment occurs at an instant, a mere time-stamp. A history is
a maximal path in the tree. When a moment belongs to a history we say that
the history passes through the moment. Time is therefore indeterministic, and
indeterminism is due mainly to agents making choices where they could have
chosen otherwise: at every moment m, each of the agents has a repertoire of
choices, and each of these choices consists in selecting a subset of the histories
passing through m. The future is understood to be on one of the selected histo-
ries. Then the future lies among the histories at the intersection of the choices
taken by all agents. Whatever each of the agents chooses, the intersection of all
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the agents’ choices must be non-empty. This is the independence constraint.
Formulas are evaluated in a STIT model M with respect to moment-history

pairs (m,h) such that m is on h. A significant variety of modalities of agency
have been studied within STIT logic, with sometimes only little differences.
We are going to mainly talk about two of them that are rather different: the
achievement stit and the Chellas stit. Both have in common with the BIAT
modality the principles of Equations 1, 2, 3, 4, and 5 of Section 2.1. The
achievement stit moreover satisfies the principle of Equation 6, while the Chellas
stit does not.

The theories are also equipped with an operator of historical possibility ♦.
The formula ♦ϕ reads “there is a possible history passing through the current
moment such that ϕ”. Formally speaking, given a history h and a moment m
passing through h (i.e., such that m is on h), the formula ♦ϕ is interpreted as
follows:

M,h,m |= ♦ϕ iff M,h′,m |= ϕ for some history h′ such that m is on h′.

We can define the dual modal operator � by stipulating �ϕ
def
= ¬♦¬ϕ and

thereby express the fact that “ϕ is settled true at the current moment”.

The original stit modality proposed by Belnap and Perloff [6] is the achieve-
ment stit. Let us write AStiti for that modal operator. An agent i sees to it
that ϕ if a previous choice of i made sure that ϕ is true at the current instant,
and ϕ could have been false at this instant had i done otherwise.

M,h,m |= AStitiϕ iff there is a moment m0 preceding m on h such that
(1) M,h′,m′ |= ϕ for every h′ and m′ such that
(1) (i) h and h′ are in the same choice of i at m0,
(1) (ii) m′ is on h′ and at the same instant as m;
(2) there is a history h′′ and a moment m′′ at the
(2) same instant as m with M,h′′,m′′ 6|= ϕ.

Just as in BIAT logic, the idea of achievement is conveyed by validity of the
principle of success (AStitiϕ→ ϕ) and by the principle that no agent sees to a
tautology (¬AStiti>).

Now comes a rather fascinating insight from such a complex modality. If
AStitiϕ is i doing ϕ, one can capture that agent i refrains from doing ϕ by the
formula AStiti¬AStitiϕ. What the logic tells us is that doing is equivalent to
refraining from refraining from doing :

AStitiϕ↔ AStiti¬(AStiti¬AStitiϕ).

(Precisely, this holds under the assumption that an agent does not perform an
infinite number of non-vacuous choices during a finite interval of time.)

Horty and Belnap [26] simplified the achievement stit into the deliberative
stit where the decisive choice of the action is at the current moment. The idea
of deliberativeness resides in that an agent is currently seeing to something
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but could as well see to something else. The logic of the Chellas stit further
simplifies the deliberative stit by removing the negative part from the truth
condition. Let us write CStiti for Chellas’s stit operator. Its semantics is as
follows:

M,h,m |= CStitiϕ iff M,h′,m |= ϕ for every h′ such that h and h′

are in the same choice of i at m.

Hence the Chellas stit operator is a simple quantification over the histories that
the current choice of the agent allows. A trained logician may observe that
‘being in the same choice cell’ is an equivalence relation and that every operator
CStiti therefore obeys the principles of modal logic S5.

While the axiom of monotony is invalid in BIAT logic, the corresponding
formula is valid for the Chellas stit:

CStiti(ϕ ∧ ψ)→ (CStitiϕ ∧ CStitiψ). (7)

The striking principle of the Chellas stit that earned it its name (because
Chellas has been a strong advocate, see [45]) is:

�ϕ→ CStitiϕ. (8)

In words, an agent cannot avoid what is settled; in particular he can and does
bring about every tautology.

Just as the achievement stit, both the Chellas stit operator and the delib-
erative stit operator satisfy that refraining from refraining from doing is doing
(even without the assumption that an agent does not perform an infinite number
of non-vacuous choices during a finite interval of time).

A common feature of all STIT logics is that the agents’ choices are con-
strained to be independent, while they are not necessarily so in BIAT logic. This
can be nicely characterised in the logic of the Chellas stit by the principle

(♦CStitiϕ ∧ ♦CStitjψ)→ ♦(CStitiϕ ∧ CStitjψ), for i 6= j. (9)

It follows that when i and j are different then ♦CStitiϕ ∧ ♦CStitj¬ϕ is un-
satisfiable (because CStitiϕ → ϕ is valid and because ♦ is a normal modal
operator). This principle can straightforwardly be extended from two agents i
and j to any finite number of agents and is central in Xu’s axiomatisation of the
Chellas stit ([4, Chap. 17]). In contrast, there is no BIAT formula corresponding
to Equation 9, simply because the right hand side of the implication cannot
be expressed (due to the absence of an operator of historic possibility in the
existing BIAT logics).

A somewhat surprising consequence of the independence of agents is the
validity of the following ‘make do implies settled’ principle:

CStitiCStitjϕ→ �ϕ, for i 6= j. (10)

In words, i can make j see to it that ϕ only if ϕ is settled. This highlights
that unlike in BIAT, in STIT logics we cannot reason about the power of agents
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over others. While this principle may be felt to be unfortunate from the point of
view of common sense, it accommodates well with social choice theory and game
theory. In [2] it is shown that the schema of Equation 10 is actually equivalent
to the schema of Equation 9 and that its generalisation to any finite number
of agents can substitute Xu’s axiom of independence in the axiomatisation of
STIT.

We just mention that when combined with the operator of historical possi-
bility, the Chellas stit operator can express the deliberative stit operator DStiti
as follows:

DStitiϕ
def
= CStitiϕ ∧ ♦¬ϕ.

The other way round, the Chellas stit operator can be expressed by DStiti as:

CStitiϕ
def
= DStitiϕ ∨�¬ϕ.

The Chellas stit operator together with historical possibility also allows to
express by ♦CStitiϕ that an agent has the ability to see to it that ϕ. The
schema CStitiϕ→ ♦CStitiϕ is valid and provides a ‘do implies can’ principle.
While the aggregation principle is clearly invalid for that ability operator, it
satisfies monotony and the principle ♦CStiti>. Hence every CStiti is a nor-
mal modal diamond operator (violating therefore Kenny’s constraint for ability
operators).

2.3 Extensions

Temporal operators. Broersen et al. [10] have added the temporal operators
of linear-time temporal logic LTL to the stit language. In that language they
introduce another modality of ability different from the above as ♦CStitiXϕ,
where X is the temporal ‘next’ operator. They show that this definition of ability
matches the ability operator of Pauly’s coalition logic CL [38]. They also show
that the further addition of the ‘eventually’ modality of LTL allows to reduce
alternating-time temporal logic ATL [1] to that temporal extension of STIT.

Lorini recently extended the stit language by future tense and past tense
operators and provided a complete axiomatization for this temporal extension of
stit [31]. The semantics for temporal stit used by Lorini is based on the concept
of temporal Kripke stit model which extends Zanardo’s concept of Ockhamist
model [50] with a choice component.

Ciuni and Zanardo extended the stit language by (restricted) branching-time
operators of computational tree logic CTL and proved a completeness result [16].

Mental attitudes and deontic concepts. Starting with Kanger and Lin-
dahl [30], many researchers working on logics of agency were interested in deon-
tic concepts such as the obligation or the permission to act. Starting from the
neighbourhood semantics for BIAT logic, Santos et al. added a modal operator
of obligation Obl to the language [42, 43, 12]. Then the formula OblBiatiϕ
expresses that agent i is obliged to bring it about that ϕ.
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Horty proposed to integrate obligation into branching-time structures by
means of a function idl which for every moment m selects the ideal histories
among all the histories running through m: those where all the obligations are
fulfilled [25].

M,h,m |= Oblϕ iff M,h′,m |= ϕ for every h′ such that h′ ∈ idl(m).

Much less work was done on the integration of mental attitudes into logics
of agency. For some first attempts see [49, 9]. More recently, some authors have
worked on the combination of epistemic logic and STIT logic by enriching the
STIT semantics with names for choices and action tokens [34, 27].

Resource-sensitive agency. In [39, 40], Porello and Troquard have proposed
a variant of BIAT logic, where the modality of agency is used to formalise agents
using, transforming, and producing consumable resources. Using Linear Logic
in place of classical logic, one can write sentences like

(egg ⊗ egg ⊗ Biati(egg ⊗ egg ( omelet))( omelet ,

saying that if agent i transforms two eggs into one omelet, and two eggs are
available, then one omelet can be produced. On the other hand, omelet does
not follow from egg ⊗ Biati(egg ⊗ egg ( omelet) as the resources are too few.

3 Action as ‘means+result’

The preceding analysis of actions was merely in terms of their results. Another
tradition studies not only the result, but also the means the agent employs to
attain that result. The logical form of such sentences is “i brings it about that
ϕ by doing α”.

If we identify “i does α” as “i brings it about that ψ”, for some appropriate
proposition ψ, then we end up with an analysis of a dyadic agency operator, as
studied by Segerberg [46].

We will not present that view in more detail here and just note that Segerberg’s
logic turns out to be an instance of the action theory that we are going to present
now. Instead of identifying events and actions with propositions, that theory
views them as ‘things that happen’, coming with some change in the world. It
is then natural to interpret events and actions as transitions between possible
worlds, just as computer programs running from an initial state to an end state.
This view is taken by propositional dynamic logic PDL, which has names to
identify these transitions. It is a view of action whose development has bene-
fited from the synergies between philosophy and the formal science of computer
programming.

The availability of names for actions allows to build complex actions from
atomic actions. The latter may then be identified with basic actions: actions
that make up an agent’s repertoire. In practice, the choice of granularity for
the set of these actions depends on the application at hand. While raising an
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arm could be taken as a basic action when modeling a voting procedure, a
choreographer might want to decompose the raising of an arm into more basic
performances of bodily movements.

In the interpretation of actions, an edge between two possible worlds may
stand for two different things, depending on how the events of the world will
unroll: first, it might be an actual transition corresponding to the event actually
taking place; second, it might be a possible transition that does not actually
occur. The logic that we are going to present now mainly adopts the latter
perspective.

3.1 Propositional dynamic logic PDL

Standard PDL has names for events. In this section we describe an agentive
version of PDL as used in several places in the artificial intelligence literature
(e.g., [36, 23]. In that version, atomic actions take the form i:α where i is an
agent and α is an atomic event. Complex actions —alias programs— are then
built recursively from these atomic actions by means of the PDL connectives “;”
(sequential composition), “∪” (nondeterministic composition), “∗” (iteration),
and “?” (test). For instance, the complex event

π1 = (¬treeDown?; i:chop)∗; treeDown?

describes i’s felling a tree by performing the atomic ‘chop’ action until the tree
is down.

The language of PDL has modal operators Possπ where i is an agent and
π is an action. The formula Possπϕ reads “there is a possible execution of π
after which ϕ is true”.3 Due to indeterminism, there might be several possible
executions of π. While Possπ quantifies existentially over these executions, the
dual modal operator Afterπ quantifies universally. It is definable from the

former by Afterπϕ
def
= ¬Possπ¬ϕ.

While in the ‘action-as-result’ view of BIAT and STIT logics actions are
interpreted as propositions, in PDL an atomic action i:α is interpreted as a set
of edges of the transition relation: there is an edge from world w1 to world
w2 that is labeled i:α if it is possible to execute i:α in w1 and w2 is a possible
outcome world. The set of all these edges makes up the accessibility relation Ri:α
associated to i:α. Complex actions are then interpreted by operations such as
relation composition in the case of sequential composition “;” or set union in the
case of nondeterministic composition “∪”. For instance, our example action π1
is interpreted by the set of couples (w,w′) such that one can go from w through
finite chop-paths running through possible worlds satisfying ¬treeDown and
whose last possible world w′ satisfies treeDown.

The formula Possπϕ is true at a world w if there is a couple (w,w′) in Rπ
such that ϕ is true at world w′:

M,w |= Possπϕ iff M,w′ |= ϕ for some w′ such that wRπw
′.

3The standard notation is 〈π〉ϕ; we here deviate in order to be able to distinguish actual
action from potential action.
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The formula Possπϕ therefore expresses a weak notion of ability: the action
π might occur and ϕ could be true afterwards. The modal operators Possπ are
normal modal diamond operators. Hence the axiom Possπ(ϕ ∨ ψ)→ Possπϕ ∨
Possπψ is valid (violating therefore Kenny’s principle for ability operators).

As we have announced above, Segerberg’s dyadic agency operator can be
viewed as an instantiation of PDL. His atomic events α take the form δiψ
where ψ is a proposition. In that framework he argues for principles such as
transitivity: when i brings about ϕ2 by bringing about ϕ1 and i brings about
ϕ3 by bringing about ϕ2, does i bring about ϕ3 by bringing about ϕ1? This
can formally be written as (Afterδiϕ1

ϕ1 ∧ Afterδiϕ2
ϕ3)→ Afterδiϕ1

ϕ3.

3.2 Linear-time propositional dynamic logic PDL

Probably Cohen and Levesque were the first to adapt PDL in order to model
actual agency [17]. The modalities are interpreted in linear-time PDL models:
every world w has a unique history running through it. We distinguish modal
operators of actual action by writing them as Happπϕ, read “π is performed, and
ϕ is true afterwards”. Then the following principle for basic actions characterises
linear PDL models:

(Happi:α> ∧ Happj:α′ϕ)→ Happi:αϕ (11)

Cohen and Levesque’s linear PDL being only about actual action, Lorini and
Demolombe [32] proposed a logic combining PDL operators of potential action
Possi:α with linear PDL operators of actual action Happi:α. In this logic, that
we call here PDL with actual actions, the ‘do implies can’ principle takes the
form of the valid schema for atomic actions:

Happi:αϕ→ Possi:αϕ. (12)

Another logic which allows to represent both actual action and potential action
is the Dynamic Logic of Agency (DLA) [24]. That logic combines linear PDL
operators of actual action Happi:α with the historical possibility operator of STIT
logic: potential action is expressed by the formula ♦Happi:αϕ which has to be
read “there is a possible history passing through the current moment such that
agent i performs α, and ϕ is true afterwards”.

An extension of DLA with program constructions of PDL, called Ockhamist
PDL (OPDL), has been recently proposed in [3]. It is shown that both PDL and
Full Computation Tree Logic CTL∗ can be polynomially embedded into OPDL.

3.3 Extensions

PDL plus knowledge and belief. The first to add a modal operator of
knowledge to a PDL-like logic was Moore [37]. This allowed him to formulate
and study a principle of perfect recall (aka ‘no forgetting’) KnowiAfterαϕ →
AfterαKnowiϕ, as well as the converse principle of ‘no miracles’ (aka ‘no learn-
ing’). Similar axioms for belief have also been studied in the literature, in partic-
ular under the ‘denomination successor state axiom for knowledge’ in artificial
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intelligence [44]. Principles of perfect recall and ‘no miracles’ play a central
role in public announcement logic and more generally dynamic epistemic logics.
These logics consider particular atomic events: announcements of (the truth of)
formulas. Such events do not change the world, but only the agents’ epistemic
states. An overview of dynamic epistemic logics can be found in [18].

PDL plus obligations. Meyer’s account extends PDL by a violation constant
V that was first proposed by Anderson. Agent i’s being forbidden to do basic
action α is then reduced to all possible executions of α by i resulting in possible
worlds where V is true; and i’s permission to do α is reduced to some execution
of α resulting in a possible world where V is false. In formulas:

Perm(i:α)
def
= Possi:α¬V

Forb(i:α)
def
= ¬Perm(i:α)

def
= ¬Possi:α¬V

def
= Afteri:αV

One may account for the obligation to perform an action by stipulating that
every non-performance of α by i results in a violation state. It is however
subject to debate how the complement of an action should be defined (see e.g.
the discussion in [8]).

Linear PDL plus belief and intentions. Cohen and Levesque have analysed
intention in linear PDL [17]. In their account intentions are defined in several
steps from the concept of strongly realistic preference: among the worlds that
are possible for an agent there is a subset the agent prefers. There is a modal
operator Prefi for each agent i, and Prefiϕ reads “i chooses ϕ to be true”.4

Such a notion of preference is strongly realistic in the sense that belief logically
implies preference. Furthermore, there are the temporal operators “eventually”
(noted F), “henceforth” (noted G), and “until” (noted U) that are interpreted on
histories of linear PDL models just as in linear-time temporal logic LTL.

The incremental construction is then as follows. (1) Agent i has the goal

that ϕ if i prefers that ϕ is eventually true, formally Goaliϕ
def
= PrefiFϕ.

(2) i has the achievement goal that ϕ if i has the goal that ϕ and believes

that ϕ is currently false, formally AGoaliϕ
def
= Goaliϕ ∧ Beli¬ϕ. (3) i has

the persistent goal that ϕ if i has the achievement goal that ϕ and will keep
that goal until it is either fulfilled or believed to be out of reach, formally

PGoaliϕ
def
= AGoaliϕ∧ (AGoaliϕ) U (Beliϕ∨ BeliG¬ϕ). (4) i has the intention

that ϕ if i has the persistent goal that ϕ and believes he can achieve that goal by
an action of his. The formal definition requires quantification over i’s actions;
we do not go in the details here.

Lorini and Herzig [33] complemented Cohen and Levesque’s approach by
integrating the concept of an attempt to perform an action. The central principle
there is “can and attempts implies does”: if i intends to (attempt to) perform

4The original notation is Choicei instead of Prefi, but we preferred to avoid any confusion
with the concept of choice in stit theory.
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α and α is feasible then α will indeed take place. This principle is a sort of
converse to the ‘do implies can’ principle.
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