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Abstract. We propose a logical framework to represent and reason about some
important aspects of a theory of institutional action: (1) the distinctions between
physical facts and actions and institutional facts and actions; (2) the distinction
between causality and ‘counts-as’; (3) the notion of institutional power. Tech-
nically, our contribution consists in extending a dynamic logic of propositional
assignments with constructions allowing to express that an agent plays a given
role; that a physical action causes another physical action; that a physical action
performed by an agent playing a given role counts as an institutional action.

1 Introduction

We present a logical framework in which we can represent and reason about some im-
portant aspects of a theory of institutional action: (1) the distinctions between physical
facts and actions and institutional facts and actions; (2) the distinction between causal-
ity and ‘counts-as’; (3) the notion of institutional power. Our framework is that of a
dynamic logic of propositional assignments in the sense of [32, 33, 6, 2]. In preceding
work [14] we have shown that this logic allows to reason about agent capabilities in the
sense of coalition logic [26] and coalition logic of propositional control [16, 15]. We
here refine our account by distinguishing ‘brute’, physical facts from institutional facts.
This leads us to the distinction between brute actions (changing brute facts) from insti-
tutional actions (changing institutional facts). We moreover add constructions allowing
to express that an agent plays a given role; that a physical action causes another phys-
ical action (e.g. Jack’s action of shooting Joe causes Jack’s action of killing Joe); that
a physical action performed by an agent playing a given role counts as an institutional
action (e.g. an agent’s act of performing certain gestures during the wedding ceremony
while playing the role of priest counts as the act of marrying the couple). This provides
a full-blown account of normative systems.

The paper is organized as follows. Section 2 establishes the conceptual basis of the
logical analysis developed in the rest of the paper, providing a detailed discussion of
the philosophical theory of institutional action developed by Goldman, Searle and other
scholars, and it explains how the logic presented in the paper takes into account its
different dimensions and aspects. Section 3 presents the syntax and the semantics of
the logic, while Section 4 provides a complete axiomatization as well as a complexity
result for the satisfiability problem. In Section 5 the logic is exploited to formalize the
concept of institutional power. In Section 6 we discuss related works in the area of logic
of normative systems. We finally conclude in Section 7 by discussing some perspectives
for future work.



2 Institutional actions: conceptual analysis

Some background and clarifications of the notion of institutional action are needed
in order to ground the logical analysis presented in the rest of the paper on a solid
conceptual basis.

Physical facts and actions vs. institutional facts and actions. According to several au-
thors working in legal theory and in the field of normative multiagent systems (MAS)
(see e.g. [1, 3]), normative systems are based both on regulative as well as constitu-
tive (i.e., non-regulative) components. That is, normative systems are not only defined
in terms of sets of permissions, obligations, and prohibitions (i.e. norms of conduct)
but also in terms of rules which specify and create new forms of behavior and con-
cepts. According to Searle for instance “[. . . ] regulative rules regulate antecedently or
independently existing forms of behavior [. . . ]. But constitutive rules do not merely reg-
ulate, they create or define new forms of behavior” [29, p. 33]. In Searle’s theory [29,
30], constitutive rules are expressed by means of ‘counts-as’ assertions of the form “X
counts as Y in context C” where the context C refers to the normative system in which
the rule is specified. Constitutive rules relate “brute” physical facts and actions with
institutional facts and actions. For example, in the context of the US federal reserve,
receiving a piece of paper with a certain shape, color, etc. (a physical action) counts
as receiving a certain amount of money (an institutional action); or in the context of
Catholic Church the priest’s action of performing certain gestures during the wedding
ceremony (which is a physical action) counts as the act of marrying the couple (which
is an institutional action). Although Searle’s counts-as relation is between objects in
general (such as a piece of paper counting as an amount of money), in this work we
only consider the counts-as’ relation between actions.

As pointed out by [17], the counts-as relation may also relate two institutional ac-
tions. For example, in the context of chess, the action of checkmating the opponent (an
institutional action) counts as the action of winning the game (an institutional action).

Causality vs. counts-as. In his seminal work on the philosophical theory of action,
Goldman studied a fundamental relation between actions and events of the form “ac-
tion α is done by doing a different action β” [8]. The word “by” expresses a relation
between actions which Goldman calls generation. This means that an action can be
performed by way of one or more actions. According to Goldman’s theory, there are
actions which have a deep recursive structure. In fact, there could be an action α done
by doing an action β which in turn is done by doing a further action γ and so on. Such
a decomposition of an agent’s action α stops at the level of basic actions. Basic actions
therefore represent the agent’s only direct intervention in the process of doing α. As
Davidson puts it, “the rest is up to nature” [5].3 By way of example, consider Jack’s
action of killing Joe. Jack kills Joe by shooting him and Jacks shoots Joe by pulling
the trigger of the gun. Jack’s bodily movement of pulling the trigger (which consists in
Jack’s moving his forefinger in a certain way) is a basic action, as it is the only part of
the action of killing Joe which is directly controlled by Jack.

3 See [19] for a formal analysis of basic actions in dynamic logic.



Goldman’s theory opposes “causal generation” to “conventional generation”. The
latter can be identified with Searle’s counts-as relation. According to Goldman, physi-
cal actions are causally generated, that is, they just consist in an agent bringing about
(i.e. causing) a certain state of affairs to be true. On the other hand, institutional ac-
tions are conventionally generated, by which he meant that actions such as signaling
before making a turn, and checkmating one’s opponent, exist in virtue of rules or con-
ventions relating physical actions with institutional effects. For example, in the sentence
“a player wins a chess game against his opponent by checkmating him” the word “by”
expresses a relation of conventional generation, that is, the action of checkmating the
opponent counts-as the action of winning the chess game. On the contrary, in the sen-
tence “Jack kills Joe by shooting him” the word “by” expresses a relation of causal
generation, that is, Jack’s action of shooting Joe causes the action of killing Joe (i.e. the
action of making Joe dead). To carry the example further, the action of killing Joe might
conventionally generate the action of murdering Joe (which is an institutional action).

We here explore Goldman’s view. We assume that the causal relation and the counts-
as’ relation between actions are ontologically different for at least two reasons. While
the former relates a physical action to another physical action, the latter relates a phys-
ical action to an institutional action, or an institutional action to another institutional
action. Moreover, while the causal relation is merely a relation between physical ac-
tions performed by an agent, counts-as’ is a relation between actions performed by an
agent playing a certain role in a given institutional context. For example, in the institu-
tional context of Catholic Church, an agent’s act of performing certain gestures during
the wedding ceremony while playing the role of priest counts as the act of marrying
the couple. As the next paragraph highlights, this aspect of counts-as is fundamental to
understand the notion of institutional power.

Institutional power. Some legal and social theorists [4, 29, 12] as well as some logi-
cians [17, 20, 22] have emphasized the tight relationship between counts-as and the
notion of institutional power. According to these authors, there exists a specific kind
of norms called norms of competence whose function in a legal system is to assign in-
stitutional powers to the agents playing certain roles within a given institution.4 Such
power-conferring norms should not be reduced to norms of conduct such as obligations,
prohibitions, commands and permissions. On the contrary, they are expressed by means
of counts-as assertions relating physical or institutional actions to institutional actions.
They have a fundamental function in normative and legal systems since they provide
the criteria for institutional change, that is, they provide the criteria for the creation and
modification of institutional facts (e.g. agent i and agent j are married, this house is i’s
property, etc.). In other words, according to these authors, saying that “an agent playing
the role r has the institutional power to do the institutional action α by doing action β”
just means that “an agent’s performance of action β while playing the role r counts as
the agent’s performance of the institutional action α”. For example, “an agent playing
the role of priest has the institutional power to marry a couple by performing certain

4 From this perspective, a given role can be identified with the set of norms of competence
concerning it. This view is compatible with [27] in which a role is defined as a set (or cluster)
of norms.



gestures during the wedding ceremony” just means that “an agent’s act of performing
certain gestures during the wedding ceremony while playing the role of priest counts as
the act of marrying the couple”.

The interesting aspect of this notion of institutional power is that it allows to prop-
erly understand how (human or software) agents, conceived as physical entities, can
produce institutional effects by way of performing physical actions and by playing cer-
tain social roles. To summarize, the crucial point is the following. A given agent i has the
ability to perform a certain institutional action α by way of performing another action
β because: (1) the agent plays a certain social role r; (2) there is a norm of competence
establishing that the performance of action α by an agent playing the role r counts as
the performance of the institutional action β. For example, an agent i has the ability of
marrying a couple by performing certain gestures during a wedding ceremony because:
(1) i plays the role of priest; (2) there is a norm of competence establishing that an
agent’s physical act of performing certain gestures during the wedding ceremony while
playing the role of priest counts as the institutional act of marrying the couple.

Remarks on the nature of roles and brute abilities. In the framework presented in Sec-
tion 3, the world the agents populate will be a mere database listing the atomic facts
that are true at this very moment. The world is dynamic because the agents can act
upon their environment by changing the truth value of these atomic facts. Our proposal
relies on the assumption that an agent’s brute abilities can be identified with the set of
propositional assignments that he can perform. As shown in [14], such a framework
also supports the models of propositional control [16, 7].

Roles are central in our study of institutional abilities. It is by occupying roles that
an agent’s brute action generates an institutional event. However, we do not need at this
stage to ground our proposal on a rigorous ontology of roles. We refer to [23] for a
foundational ontology of roles and a detailed interdisciplinary review of the literature.

The rest of the paper. We start by splitting the set of propositional variables into two
disjoint sets: atomic physical facts and atomic institutional facts. In the logic presented
in Section 3, a physical action just consists in setting to ‘true’ or to ‘false’ some atomic
physical fact, while an institutional action consists in setting to ‘true’ or to ‘false’ some
atomic institutional fact. The latter actions can only be performed indirectly, i.e. by
performing a physical action. Moreover, we distinguish two different relations between
actions: “counts-as” and “causes”. There are conditionals of the form α1 ⇒ α2 ex-
pressing that i’s performance of the physical action α1 causes the performance of the
physical action α2, and there are conditionals of the form α1

r
{ α2 expressing that i’s

performance of the physical or institutional action α1 in the social role r counts as the
performance of the institutional action α2. Finally, in Section 5, we study the notion of
institutional power by introducing special modal operators describing an agent’s capa-
bility of producing a given institutional effect by way of performing a physical action
while playing a given social role.

For the sake of simplicity we suppose that there is only one institution.



3 Logic

This section introduces the syntax and the semantics of the logic. It is basically an
extension of our logic of [14] by a causality relation.

3.1 Language

We suppose that there is a finite set of agents A, a finite set of roles R, and a countable
set of propositional variables.

Propositional variables are meant to capture the atomic facts about the world. They
are partitioned into two kinds: facts about the physical world (or brute facts) and facts
about the institutional world (or institutional facts) and are collected in two sets Pphys

and Pinst. These sets form a partition, and we thus assume that P = Pphys ∪ Pinst and
Pphys ∩ Pinst = ∅. Our propositional variables are therefore typed.

These sets are again composed of variables of different sub-types: we suppose that
they respectively contain a countable set P0

phys ⊆ Pphys of basic physical facts; and a
countable set P0

inst ⊆ Pinst of basic institutional facts. Beyond these basic variables the
set Pinst contains variables denoting that an agent plays a role and the set Pphys contains
variables denoting that an agent is able to assign a variable to true or false. We suppose
that the latter covers the case of ability variables being themselves assigned; we will
therefore need a recursive definition.

In the sequel we are going to analyze in more detail what kinds of propositions
actually populate P.

Institutional facts. We have assumed the existence of a finite set of roles R. These roles
are occupied by agents. We write Ri(r) to formalize the fact that agent i ∈ A occupies
the role r ∈ R. Holding a role is a societal construct, and an atomic institutional fact. It
is also a contingent fact (or anti-rigid [23]) meaning that role occupations can change.
Hence, we assume that expressions of the form Ri(r) are propositional variables in Pinst.
These are the only ’special’ atomic institutional facts in Pinst and we therefore have
Pinst = P0

inst ∪ {Ri(r) : r ∈ R, i ∈ A}. We can write this in a BNF:

Pinst : pinst F p0
inst | Ri(r)

where p0
inst ranges over the set of basic institutional facts P0

inst, i ranges over the set of
agents A, and r ranges over the set of roles R. Then the language Linst of (complex)
institutional facts is defined by the following grammar:

Linst : ϕinst F pinst | ¬ϕinst | ϕinst ∨ ϕinst

where pinst ranges over the set of atomic institutional facts Pinst.

Assignments. Assignments are expressions of the form p←> or p←⊥, where p is a
propositional variable from P. Assignments and formulas are different entities: the for-
mer are events modifying the truth values of propositional variables. The event p←>
sets p to true, and the event p←⊥ sets p to false. We sometimes write p←τ in order to



talk about p←> and p←⊥ in an economic way; τ is therefore a placeholder for either
> or ⊥.

The sets
Aphys = {p←τ : p ∈ Pphys, τ ∈ {>,⊥}}
Ainst = {p←τ : p ∈ Pinst, τ ∈ {>,⊥}}

respectively collect the assignments of brute facts and the assignments of institutional
facts. Observe thatAphys∩Ainst = ∅ because Pphys∩Pinst = ∅. The set of all assignments
is A = Aphys ∪ Ainst. We write αphys, α

′
phys, . . . to denote assignments from Aphys and

αinst, α
′
inst, . . . to denote assignments from Ainst. We sometimes use α, α′, . . . to denote

generic assignments fromA.

Physical facts. We assume that an agent can act upon his environment by assigning
values to some propositional variables. We also assume that these variables can only be
the atomic physical facts in Pphys, while the values of the atomic institutional facts of
Pinst can only be modified indirectly.

For a physical assignment event α ∈ Aphys and an agent i ∈ A, we formalize that i
has the physical ability to perform α by writing Ai(α). We take that the physical ability
of an agent to perform an action is itself an atomic physical fact. Moreover, we assume
that agent’s physical abilities are contingent facts. Hence, we assume that expressions
of the form Ai(α) are propositional variables in Pphys.

We allow this to be recursive: for every ability variable Ai(α) there is an ability
variable A j(Ai(α)←>) that is also an atomic physical fact.

We suppose that the set of atomic physical facts Pphys is made up of the basic phys-
ical facts of P0

phys plus all these ability variables, and nothing else. This set is therefore
built according to the following grammar:

Pphys : pphys F p0
phys | Ai(pphys←τ)

where p0
phys ranges over the set of basic brute facts P0

phys and τ ranges over the set
{>,⊥}. Then the language Lphys of (complex) physical facts is defined by the following
grammar:

Lphys : ϕphys F pphys | ¬ϕphys | ϕphys ∨ ϕphys

where pphys ranges over the set of atomic brute facts Pphys.

‘Causes’. We have a binary connective⇒ relating assignments of physical facts: if α1
and α2 are both assignments in Aphys then α1 ⇒ α2 expresses that the performance of
α1 triggers α2. For example, p←> ⇒ q←⊥ says that the atomic physical fact q is made
false by making the atomic physical fact p true.

‘Counts-as’. We have a ternary connective{ whose arguments are a role, an atomic
fact, and an atomic institutional fact, written α1

r
{ α2. For instance, we write p←>

r
{

q←⊥ to formalize the fact that setting the (physical or institutional) fact p to true while
acting in role r counts as setting the institutional fact q to false.



Achieving by doing. Actions are physical events performed by an agent. The formula
〈i:pphys←τ〉ϕ reads “i can achieve ϕ by performing pphys←τ”. By convention, we adopt
a strong reading of ‘can’ and assume that if i does not have the ability to perform
pphys←τ, then i cannot achieve anything by performing pphys←τ.

Definition of the language. The languageL of the logic is fully defined by the following
grammar:

L : ϕF pphys | pinst | αphys ⇒ αphys | αphys
r
{ αinst | αinst

r
{ αinst |

¬ϕ | ϕ ∨ ϕ | 〈i:αphys〉ϕ

where pphys and pinst respectively range over the set of brute facts Pphys and the set of
institutional facts Pinst; αphys and αinst respectively range over the set of assignments of
physical factsAphys and the set of assignments of institutional factsAinst; r ranges over
the set of roles R; and i ranges over the set of agents A.

The logical constants > and ⊥ and the logical connectives ∧, → and ↔ have the
usual meaning.

Remarks. A few remarks about our choices of language are in order. As our assign-
ments only operate on P, the truth values of α ⇒ β and α

r
{ β cannot be re-assigned.

Assignments being the only means to change things in our logic, it follows that the
‘causes’ and the ‘counts-as’ relation do not evolve. We are aware that assuming that
causality and counts-as relation are rigid facts of the world is a limitation of our formal
theory. For instance, that flipping a switch causes the light to go on can be changed by
an action of disconnecting the electric wires; and the counts-as relation in an institution
can be changed by way of new agreements, laws, etc.

In contrast, we have modeled the ability relation and the role-playing relation by
means of propositional variables Ai(α) and Ri(r), and these variables are elements of
P. Both are therefore contingent facts of the world, just like the physical fact that “the
pen is on the table” [23], and their truth values can change due to the performance of
assignments.

Let us have a closer look at the way these changes are brought about. First, agent i’s
ability to perform α being a (non-basic) physical fact of Pphys, that fact can be modified
by an assignment event that is performed by some agent j; precisely, some agent j
for which A j(Ai(α)←>) or A j(Ai(α)←⊥) holds. The fact Ai(α) can also be modified
indirectly by the causality relation. For instance, my action of grabbing John’s arm
causes the loss of John’s ability to raise his arm. Second, an agent playing a role being
an institutional fact of Pinst, that fact cannot be modified directly by an agent’s action:
just as any institutional fact, it can only change via the application of the counts-as
relation. This allows a very strict control over the institutional consequences of an event.

3.2 Models

A model is a tuple

M = (A,R,P0
phys,P

0
inst,Vphys,Vinst,Cphys,Cinst)



where the sets A, R, P0
phys and P0

inst are as detailed above; Vphys ⊆ P
0
phys and Vinst ⊆

P0
inst are valuations describing which atomic fact are true; Cphys ⊆ Aphys × Aphys is a

relation between assignments of physical facts; and Cinst : R −→ 2A×Ainst is a function
mapping roles to relations between assignments and institutional assignments. When
(α1, α2) ∈ Cphys then the occurrence of action α1 causes the occurrence of action α2.
When (α1, α2) ∈ Cinst(r) then the occurrence of action α1 performed by an agent playing
role r counts as the occurrence of action α2. The relations Cphys and Cinst(r) are nothing
but the relations of “causal generation” and “conventional generation” in Goldman’s
sense as described in Section 2.

3.3 Constraints on models

Models have to satisfy the following two constraints:

(Reflphys) Cphys is reflexive:
for every α ∈ Aphys, (α, α) ∈ Cphys.

(Cohphys) Cphys is coherent:
for every α ∈ Aphys and q ∈ P, if (α, q←>) ∈ Cphys then (α, q←⊥) <
Cphys.

(Transphys) Cphys is transitive:
Cphys ◦Cphys ⊆ Cphys

(Cohinst) Cinst is coherent:
for every α ∈ A, q ∈ P, and r1, r2 ∈ R,
if (α, q←>) ∈ Cinst(r1) then (α, q←⊥) < Cinst(r2).

(Transphys,inst) Cphys and Cinst satisfy a mixed transitivity property:
for every r ∈ R, Cphys ◦Cinst(r) ⊆ Cinst(r).

In the rest of the section we briefly discuss these properties in the light of our expo-
sition in Section 2. (See also [28] for a review of properties of causality relations in the
framework of artificial intelligence.)

The constraint (Reflphys) means that we consider that causality is reflexive. We are
aware that this can be criticized because causes temporally precede their effects. It how-
ever simplifies the technicalities when updating models; the reader may wish to think
of it as the reflexive closure of the causality relation. (Cohphys) says that a physical ac-
tion cannot have inconsistent causal ramifications. (Cohinst) is a similar principle for
the counts-as relation: for every assignment α there cannot be two roles leading to
inconsistent consequences via the counts-as relations. Constraint (Transphys,inst) is the
institutional counterpart of the transitivity of causality as expressed by (Transphys).

Reflexivity of event generation relations is rejected by Goldman [8, p. 5] on the
simple ground that it is not intuitive to say that John turns on the light by turning on
the light. In our proposal, the counts-as relation is not necessarily reflexive; we however



allow that α
r
{ α if α is an institutional action. Moreover, our modeling of the causality

relation assumes reflexivity. This is essentially motivated by the fact that this way, our
definitions are less cluttered, but since Goldman’s argument against reflexivity is merely
linguistic, we believe it is not a major conceptual transgression.

Goldman insists that an event generation relation should be antisymmetric. We nei-
ther preclude the symmetry of the causality relation nor of the counts-as relation since
we could have for instance that a subset of events form an equivalence class in which
all events causally generate all events.

It is worth noting that there is some disagreement in the literature whether the
counts-as relation should satisfy transitivity. For a discussion on this matter see [17,
11, 21]. In our logic this is not necessarily the case.

Finally, some author argues that the counts-as should satisfy contraposition [11],
while other authors have a different opinion on this matter [17]. Again, we remain un-
committed w.r.t. this point, and it may be the case that (p←>, q←>) ∈ Cinst(r) while
(q←⊥, p←⊥) < Cinst(r).

3.4 Updating a model by an action

An agent’s capability can be represented semantically by the valuations V ′ his actions
can bring about. This is achieved by interpreting the agents’ actions as model updates.

Definition 1. Let

M = (A,R,P0
phys,P

0
inst,Vphys,Vinst,Cphys,Cinst)

be a model and let α ∈ Aphys. The update of M by the action i:α is defined as

Mi:α = (A,R,P0
phys,P

0
inst,V

α
phys,V

i:α
inst,Cphys,Cinst)

where the updates V i:α
phys and V i:α

inst of the valuations Vphys and Vinst by i:α are defined as
follows:

Vα
phys =

(
Vphys \ {q : (α, q←⊥) ∈ Cphys}

)
∪ {q : (α, q←>) ∈ Cphys}

V i:α
inst = ( Vinst \ {q : ∃r ∈ R : Ri(r) ∈ Vinst, (α, q←⊥) ∈ Cinst(r)} )

∪ {q : ∃r ∈ R : Ri(r) ∈ Vinst, (α, q←>) ∈ Cinst(r)}

Actions therefore (1) directly affect the physical world (via the causality relation),
and (2) affect the institutional world via the counts-as relation.5 Suppose that α = p←>.
Then, due to reflexivity of the causality relation Cphys, the valuation V p←>

phys contains p
and V p←⊥

phys does not contain p. Note that the physical valuation is actually updated by
the event α, not by the action i:α.

Our constraints on models are clearly preserved under updates because neither the
causal relation nor the counts-as relation can be modified.

Let us illustrate our definition by a couple of examples.
5 Note that the order of the set theoretic operations in the definition seems to privilege positive

facts; however, due to our two constraints (Cohphys) and (Cohinst) —and also because Pphys and
Pinst have empty intersection— the ramifications of an assignment of a physical fact will never
conflict.



Example 1. Suppose Vinst contains Ri(r1) and p←>
r1
{ q←>, i.e. agent i plays role r1,

and in role r1 making p true counts as making q true. Then V p←>
phys contains p, and V i:p←>

inst
contains q. Hence, under the hypothesis that Vphys contains Ai(p←>) (that is that agent
i is indeed able to make p true), agent i can achieve about p ∧ q by doing p←>.

Example 2. Suppose Vinst contains Ri(r1) and Ri(r2), and (p←>, q1←>) ∈ Cinst(r1) and
(p←>, q2←⊥) ∈ Cinst(r2), i.e. agent i plays two roles r1 and r2, and in role r1 this counts
as making q1 true, while in role r2 this counts as making q2 false. Then in Mi:p←>, the
valuation V p←>

phys contains p and V i:p←>
inst contains q1 and does not contain q2. Hence,

assuming that Vphys contains Ai(p←>) (that is agent i is indeed able to make p true),
agent i can achieve p ∧ q1 ∧ ¬q2 by doing p←>.

3.5 Truth conditions

Let

M = (A,R,P0
phys,P

0
inst,Vphys,Vinst,Cphys,Cinst)

be a model. The truth conditions are as usual for the Boolean operators, and we only
state those clauses that are not standard.

M |= pphys iff pphys ∈ Vphys

M |= pinst iff pinst ∈ Vinst

M |= α1 ⇒ α2 iff (α1, α2) ∈ Cphys

M |= α1
r
{ α2 iff (α1, α2) ∈ Cinst(r)

M |= 〈i:αphys〉ϕ iff Ai(αphys) ∈ Vphys and Mi:αphys |= ϕ

The operator 〈i:αphys〉ϕ captures the notion of “achieving by doing” that has been
sketched in Section 3.1 and in the two examples of the last sub-section.

4 Axiomatization and complexity

The logic is axiomatized as an extension of classical propositional logic with (1) a the-
ory describing the constraints imposed on the counts-as and causality relations, (2) the
reduction axioms of the dynamic operator, and (3) an inference rule of replacement of
equivalents in the scope of a dynamic operator.

Theory of counts-as and causality.

α⇒ α
(α⇒ p←⊥)→ ¬(α⇒ p←>)
(α

r1
{ p←>)→ ¬(α

r2
{ p←⊥)

((α1 ⇒ α2) ∧ (α2 ⇒ α3))→ (α1 ⇒ α3)
((α1 ⇒ α2) ∧ (α2

r1
{ α3))→ (α1

r1
{ α3)



Reduction axioms for the dynamic operator.

〈i:α〉> ↔ Ai(α)
〈i:α〉⊥ ↔ ⊥

〈i:α〉(α1 ⇒ α2) ↔ Ai(α) ∧ (α1 ⇒ α2)
〈i:α〉(α1

r
{ α2)↔ Ai(α) ∧ (α1

r
{ α2)

〈i:α〉pphys ↔ Ai(α) ∧ ( (α⇒ pphys←>) ∨ (pphys ∧ ¬(α⇒ pphys←⊥)) )
〈i:α〉pinst ↔ Ai(α) ∧ (

∨
r∈R(Ri(r) ∧ (α

r
{ pinst←>))

∨(pinst ∧ ¬
∨

r∈R(Ri(r) ∧ (α
r
{ pinst←⊥))) )

〈i:α〉¬ϕ ↔ Ai(α) ∧ ¬〈i:α〉ϕ
〈i:α〉(ϕ ∨ ψ) ↔ Ai(α) ∧ (〈i:α〉ϕ ∨ 〈i:α〉ψ)

Inference rule.
From ϕ↔ ψ infer 〈i:α〉ϕ↔ 〈i:α〉ψ

Proofs are defined in the standard way. For example, the rule of replacement of
equivalents can be proved from our axiomatization (due to the inference rule).

Given a formula ϕ let red(ϕ) be the formula obtained by iterating the application
of the reduction axioms from the left to the right. Thanks to the rule of replacement of
equivalents it is clear that red(ϕ)↔ ϕ is valid.

Proposition 1. For every formula ϕ, red(ϕ) ↔ ϕ is valid, and the length of red(ϕ) is
linear in the length of ϕ.

Proposition 2. Let ϕ be a formula without dynamic operators 〈.〉. ϕ is valid if and
only if Tϕ → ϕ is valid in classical propositional logic, where Tϕ is the conjunction
of the axiom schemas of the theory of counts-as and causality instantiated by those
assignments occurring in ϕ.

As the length of Tϕ is cubic in the length of ϕ we obtain a complexity result for our
logic.

Corollary 1. The problem of checking satisfiability of a formula is NP-complete.

Our logic has therefore the same complexity as classical propositional logic. We how-
ever believe that it allows to express things in a more natural way. In the rest of the
paper we give some arguments for this.

5 Institutional power and compact characterization¡

Let S be a finite set of assignments. We identify the concept “agent i has the capability
to achieve outcome ϕ by possibly performing one of the actions in the set S ” with the
formula

^i:Sϕ
def
= ϕ ∨

∨
α∈S

〈i:α〉ϕ

If ϕ belongs to the language of institutional facts Linst then i’s capability to achieve ϕ
can be rightly called i’s institutional power to achieve ϕ by doing actions from S .



We now illustrate our logic by adapting an example of water management from [14].
In that paper, beyond abilities Ai(α) there are also atomic facts Pi(α) whose intended
meaning is that agent i is permitted to perform α. Clearly, it seems natural to assume
that such atomic facts are institutional facts from Pinst. Note that any combination of
abilities and permissions is consistent: an agent might be able to perform α but not
permitted to do so, etc.

Example 3. There are two farmers i1 and i2 working in a certain area close to a town
called Thirstytown who need water in order to irrigate their fields. In this area there
are three different exploitable water basins 1, 2 and 3. Only water basins 1 and 2 can
be safely used by the farmers; basin 3 provides drinkable water to the population of
Thirstytown, and if it is exploited for irrigation then Thirstytown will fall short of water.
There are two other actors in this scenario: agent i3 plays the role of chief of the Water
Authority which has the jurisdiction over the area, and agent i4 is a local policeman
working in Thirstytown. Let wAuth denote the role of head of water authority, and let
pol denote the role of policeman. We consider that Ri3 (wAuth) and Ri4 (pol) are both
true.

The propositional variables {p1, p2, p3} indicate whether the level of water in a given
basin is high or low: p1 means that “the level of water in the basin 1 is high”, ¬p1 means
that “the level of water in the basin 1 is low”, etc. Furthermore, for every farmer ik ∈
{i1, i2} and for every propositional variable ph with h ∈ {1, 2, 3}, Aik (ph←⊥) expresses
that basin h is physically connected to the field of farmer ik so that ik is able to exploit
the water of basin h and Pik (ph←⊥) expresses that ik is authorized to exploit the water
of basin h.

Let prohibSignh mean that there are prohibition-to-pump signs at basin h. We sup-

pose that the the counts-as relation is such that prohibSignh←>
pol
{ Pik (ph←⊥)←⊥ for

every k and h: to make prohibSignh true action while performing the policeman role
counts as disallowing to anybody to pump water from that basin.

Our causality relation allows us to model indirect effects of actions. For example,
basin 1 being close to basin 2, farmer pumping from 1 also lowers the water level in
basin 2. This can be expressed by stating p1←⊥ ⇒ p2←⊥.

Our definition of capability is only about performance of a single action from the
set S . It can be generalized by allowing for arbitrary combinations of actions from S .
Let us introduce a modal operator of iterative capability ^∗i:S whose truth condition is:

M |= ^∗i:Sϕ iff there is a sequence (α1, . . . , αn) of assignments from S such that
M |= 〈i:α1〉 . . . 〈i:αn〉ϕ

It is useful to first introduce the dynamic logic program operators skip and ∪. Their
semantics requires to move from the functional interpretation of actions to a relational
interpretation: now for every action i:α, Ri:α relates models M to their updates Mi:α. The
recursive definition of Rπ is as follows, where π is a program:

Ri:α = {(M,M′) : M′ = Mi:α}

Rskip = {(M,M′) : M′ = M}
Rπ1∪π2 = Rπ1 ∪ Rπ2



We therefore have 〈skip〉ϕ↔ ϕ and 〈i:α ∪ j:β〉ϕ↔ 〈i:α〉ϕ∨〈 j:β〉ϕ. The truth condition
becomes:

M |= 〈π〉ϕ iff M′ |= ϕ for every M′ such that MRπM′

As a simple illustration, observe that the above definition of ‘one shot capability’
^i:S can now be written in an alternative and more elegant way. Let S = {α1, . . . , αn} be
a set of assignments. We have:

^i:Sϕ↔ 〈skip ∪ i:α1 ∪ . . . ∪ i:αn〉ϕ

The next result states that in order to check whether ^∗i:Sϕ it suffices to check
whether ϕ can be obtained by performing some of the assignments in S once, in any
order, provided that abilities are not used before being acquired, and are not abandoned
before used.

Proposition 3. Let S = {α1, . . . , αcard(S )} be a set of assignments. The formula

^∗i:Sϕ↔ 〈skip ∪ i:α1〉 · · · 〈skip ∪ i:αcard(S )〉ϕ

is valid, where (α1, . . . , αcard(S )) is any ordering of the elements of S such that for all
αl ∈ S , whenever αk = Ai(αl)←> then k < l, and whenever αk = Ai(αl)←⊥ then l < k.

P (). Suppose M |= ^∗i:Sϕ. Hence there is a sequence (α1, . . . , αn) of assign-
ments from S such that M |= 〈i:α1〉 . . . 〈i:αn〉ϕ. We can permute assignments and put
them in the appropriate order by applying the following valid equivalences.

〈i:p←τ〉〈i:q←τ′〉ϕ ↔

〈i:q←τ′〉ϕ when q = p
〈i:q←τ′〉〈i:p←τ〉ϕ when q , p

〈i:α〉〈i:A j(β)←>〉ϕ↔

〈i:α〉ϕ when β = α and j = i
〈i:A j(β)←>〉〈i:α〉ϕ when β , α or j , i

〈i:A j(β)←⊥〉〈i:α〉ϕ↔

⊥ when β = α and j = i
〈i:α〉〈i:A j(β)←⊥〉ϕ when β , α or j , i

The first equivalence allows to eliminate multiple occurrences of the same assignment
from S . The second equivalence allows to move ability gain assignments to the left,
while the third equivalence allows to move ability loss assignments to the right. To-
gether, these three equivalences allow to replace 〈i:α1〉 . . . 〈i:αn〉ϕ by the equivalent
〈i:β1〉 . . . 〈i:βm〉ϕ such that for all βl ∈ S , whenever βk = Ai(βl)←> then k < l, and
whenever βk = Ai(βl)←⊥ then l < k. It finally follows from the valid implication
ψ → 〈skip ∪ i:β〉ψ that those elements of S that are not in our sequence yet can be
inserted, and that M |= 〈skip ∪ i:β1〉 . . . 〈skip ∪ i:βcard(S )〉ϕ where (β1, . . . , βcard(S )) is
an ordering of the elements of S satisfying the condition of the proposition.

The other direction of the proof is straightforward. �

Note that unfolding the right-hand side of the equivalence in Proposition 3 yields
a formula in L that is exponentially larger. In fact, extending the language L with



the program construct ∪ increases the complexity of the logic from NP-complete to
PSPACE-complete.6 This seems to indicate that reasoning about the notion of iterative
capability with the operator ^∗i:Sϕ is computationally more expensive.

6 Related works

In the last decade several logicians have focused on a number of aspects of counts-as
such as institutional power [17], defeasibility [3, 9], contextual and classificatory as-
pects [11], mental aspects [21, 20], the distinction between brute facts and institutional
facts [10].

In their seminal paper [17], Jones and Sergot gave the status of an implication-like
logical connective to the counts-as relation. The latter links two propositions ϕ1 and
ϕ2 within a normative system (or institution) s. This is formally written ϕ1 {s ϕ2 and
reads “ϕ1 counts as ϕ2 in s”. Jones and Sergot gave a possible worlds semantics for the
counts-as connective together with an axiomatic characterization of the valid formulas
of that logic. In order to capture the notion of institutional power they extended their
logic with an action component: the ‘bringing it about that’ modal operator Eiϕ which
has to be read “agent i brings it about that ϕ”. Eiϕ1 {s Eiϕ2 then expresses that “in s,
i’s action of bringing about ϕ1 counts as i’s action of bringing about ϕ2”.

In a more recent paper [11], Grossi and colleagues paved the way towards a sub-
stantial simplification of Jones and Sergot’s logic. Contrarily to the latter they did not
consider the counts-as relation as primitive: the basic logical operators of Grossi et col.’s
logic are normal modal operators of the form [s]ϕ, reading “in normative system s, it is
the case that ϕ”. These operators can be combined with the standard Boolean operators.
For example, [s](ϕ→ ψ) is a formula of the language of Grossi et col., reading “in s, if
ϕ then ψ”. Based on the [s] connectives, Grossi et col. then define the counts-as connec-
tive. First of all they argue that the formula [s](ϕ → ψ) is already an approximation of
ϕ{s ψ. Nevertheless, this approximation validates formulas such as ϕ{s >: in s, any
ϕ counts as a tautology. This is felt to be counter-intuitive. Therefore, in order to better
capture Jones and Sergot’s{s connective, Grossi et col. introduce a so-called univer-
sal modality [∀], where [∀]ϕ reads “ϕ universally holds”. The latter is used in order to
strengthen the link between ϕ and ψ: in addition to [s](ϕ→ ψ), Grossi et col. moreover
require that for ϕ to count as ψ it should not be universally true that ϕ implies ψ. In
formulas, they define a so-called proper classificatory rule ϕ{cl+

s ψ by stipulating:

ϕ{cl+
s ψ

def
= [s](ϕ→ ψ) ∧ ¬[∀](ϕ→ ψ)

In this way they guarantee that no ϕ counts as a tautology.

There are several novel aspects in our logical analysis of counts-as. First of all,
differently from other approaches, our framework allows to explicitly represent physical
actions and institutional actions, as well as the links between the two kinds of actions.
By distinguishing in the object language a counts-as relation from a causal relation
between events, our logic clearly opposes Goldman’s notion of causal generation to that

6 There is an easy reduction from QSAT, see e.g. [14].



of conventional generation. We have shown that these two relations are ontologically
different for at least two reasons. While the former relates a physical action to another
physical action, the latter relates a physical action to an institutional action. Moreover,
while the causal relation is merely a relation between physical actions performed by an
agent, counts-as is a relation between actions performed by an agent playing a certain
role.

Furthermore, while previous logical accounts of counts-as were mainly conceptual
and did not consider decidability issues, our work also focuses on the computational
aspects of a logic of institutional action: we have provided in Section 4 a complete
axiomatization of our logic based on reduction axioms and have characterized the com-
plexity of the satisfiability problem.

We note that technically, our reduction axioms in terms of a causality relation are
close to causality-based solutions to the ramification problem in reasoning about actions
[18, 24, 25, 31, 28].

7 Conclusion

In the framework presented in this paper counts-as and causal relations are static, that
is, there is no way to update models in order to modify these relations. An interest-
ing direction of future research is to integrate into the framework a dynamic dimension
of counts-as and causality in order to be able to model interesting phenomena such
as: (1) the modification of causal connections between physical events (e.g. by dis-
connecting the electric wires, I can remove the causal relation “flipping the switch”
causes “turning on the lights”); (2) norm promulgation (creating a new counts-as rela-
tion between events); (3) norm cancellation (removing a pre-existent counts-as relation
between events).

Another interesting topic of future research is the creation of institutional facts.
We intend to extend our logic in order to model scenarios such as the following one.
Before 2000, it was not possible to assign a truth value to the sentence “he has a note
of 50 Euro in his pocket”, as the concept “Euro” was not an element of our vocabulary
of institutional facts and objects. After its introduction the Euro became an element
of our vocabulary of institutional facts and objects. This might be integrated into our
framework by adapting approaches to awareness such as [13].

Finally, at the current stage our logic allows to clearly distinguish physical actions
with physical effects from institutional actions with institutional effects. Nevertheless, it
does not support reasoning about physical actions that an agent may decide to perform
on the basis of his preferences. A further interesting direction of future research is to
relate our framework with game and decision theory by introducing a notion of pref-
erence. This extended framework will allow to reason about situations in which agents
desire that certain physical and/or institutional facts obtain, and choose strategically a
given physical action in order to ensure these facts.
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