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Abstract

We propose a logical framework to represent and
reason about agent interactions in normative sys-
tems. Our starting point is a dynamic logic
of propositional assignments whose satisfiability
problem is PSPACE-complete. We show that it
embeds Coalition Logic of Propositional Control
CL-PC and that various notions of ability and ca-
pability can be captured in it. We illustrate it on
a water resource management case study. Finally,
we show how the logic can be easily extended in
order to represent constitutive rules which are also
an essential component of the modelling of social
reality.

1 Introduction

We show that dynamic logic of propositional assignment
PDL-PA provides a logical framework for normative systems,
with concrete models to design rich social situations and an
intuitive language to talk about institutional facts. The basic
idea is that agents have a repertoire of actions to set propo-
sitional variables p to true (+p) or to false (−p). These as-
signments are combined by means of the standard PDL pro-
gram operators of test, sequential and nondeterministic com-
position and iteration. We will show that PDL-PA embeds
Coalition Logic of Propositional Control CL-PC [Hoek and
Wooldridge, 2005].

We implement in PDL-PA an agentive and a normative di-
mension by supposing that the logic has special propositional
variables Ai(α) and Pi(α), where i is an agent and α is an as-
signment. Ai(α) read as “i is able to perform α” and Pi(α)
as “i is allowed to perform α”. This allows to distinguish be-
tween practical possibilities (alias abilities) and deontic pos-
sibilities (alias permissions, authorizations): an agent may be
able to make a propositional variable q true, but not allowed
to, and the other way round. This distinction also shows up
when it comes to dynamics: we have change of abilities and
change of permissions. An example of the former is when the
president of a university gives some amount of resources to a
department. An example of the latter is when he authorizes
the department to spend that money for a particular purpose.
Abilities and permissions may evolve, too; We capture this in
our language by assignments such as +Ai(+p), +Pi(−p), etc.

In the logic PDL-PA we may moreover reason about
higher-order abilities and permissions: agents may be able or
allowed to change abilities or permissions. For example the
president of the university i has the permission to authorize
the vice-president j to sign a document in the name of the
institution. In our language this can be written Pi(+P j(+s)),
where s denotes that the document is signed. Assignments
may again modify these abilities and permissions. Beyond
the (ontic and deontic) possibility to perform an action the
logic PDL-PA allows to talk about the (ontic and deontic) pos-
sibility to attain a certain state of affairs. We call this the ca-
pability of an agent or a coalition of agents. (Our distinction
between ‘ability’ and ‘capability’ is therefore: ability is about
agents’ actions, whereas capability is about outcomes that an
agent can ensure.)

We introduce the basic logic PDL-PA in Section 2 and
prove that satisfiability checking is PSPACE-complete. In
Section 3 we embed CL-PC into PDL-PA by using a basic no-
tion of capability. In Section 4 we provide a general analysis
of different kinds of ontic and deontic abilities and capabili-
ties (possibly of higher order). In Section 5 we provide a case
study of water resource management. Finally, in Section 6
we extend PDL-PA in order to represent constitutive rules
[Searle, 1969; 1995], that are essential when modelling social
reality. To that end we add a binary connective� to the lan-
guage whose arguments are assignments and where α1 � α2
reads “α1 counts as α2”. We prove that satisfiability checking
within that extension of PDL-PA has the same complexity as
in PDL-PA. We conclude in Section 7 and discuss research
avenues for future work.

2 Dynamic logic of propositional assignment

This section introduces the syntax and the semantics of the
logic PDL-PA. It is basically an instantiation of propositional
dynamic logic PDL [Harel et al., 2000] with concrete pro-
grams to assign propositional variables to true or false. We
will show how it allows to represent and reason about abili-
ties, permissions, and changes of abilities and permissions in
multiagent systems (MASs).

2.1 Language

Assignments are expressions of the form +p or −p and modify
the truth value of the propositional variable p: +p sets p to
true, and −p sets p to false.
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Throughout the paper, P = {p, q, . . .} is a countable set of
propositional variables. The language of PDL-PA is made up
of events π and formulas ϕ and is defined by the following
BNF:

π � +p | −p | π; π | π ∪ π | π∗ | ϕ?
ϕ � p | � | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

where p ranges over P.
Just as in PDL, π1; π2 is sequential composition, π1 ∪ π2

is nondeterministic composition, π∗ is iteration, and ϕ? is the
test of ϕ. The formula 〈π〉ϕ reads “there is an execution of π
such that ϕ is true afterwards”.

The set of all assignments isA = {+p : p ∈ P}∪{−p : p ∈
P}. α, α′, . . . range over A. The set of all formulas is noted
F , and the set of all events is noted E. We define Pϕ and Pπ
to be the set of variables from P occurring in ϕ (resp. π).

The length of a formula ϕ, noted |ϕ|, is the number of sym-
bols used to write down ϕ (without 〈, 〉, and parentheses),
where the length of a propositional variable is 1. For example
|〈+p〉(p ∨ q)| = 2 + 3 = 5.

The logical connectives ∧, → and ↔ have the usual mean-
ing. The formula [π]ϕ abbreviates ¬〈π〉¬ϕ. The event skip
abbreviates �? (“nothing happens”).

2.2 Semantics

Definition 1 A valuation V is a subset of 2P.
The truth conditions are the customary ones for�,⊥, nega-

tion and disjunction. The dynamic operators are interpreted
by means of an update relation on valuations.

V |= p iff p ∈ V
V |= 〈π〉ϕ iff there is a V ′ such that VRπV ′ and V ′ |= ϕ

Rπ is a binary relation on valuations that allows to interpret
events and that is defined together with |= by mutual recur-
sion:

R+p = {(V,V ∪ {p}) : V is a valuation }
R−p = {(V,V \ {p}) : V is a valuation }
Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rπ∗ = (Rπ)∗
Rϕ? = {(V,V) : V |= ϕ}

A formula ϕ is satisfiable if and only if V |= ϕ for some
valuation V , and ϕ is valid if and only if ¬ϕ is not satisfiable.

2.3 Complexity

The following can be proved by adapting the proofs of [Hoek
and Wooldridge, 2005] and [Hoek et al., 2010].
Theorem 1 The problem of PDL-PA model checking is
PSPACE-complete.

Proof (sketch). Let us first establish that model checking is
PSPACE-hard. We reduce QSAT into the problem of model
checking PDL-PA. Consider a quantified Boolean formula

Φ = ∃x1∀x2 · · · ∃xm−1∀mxm ϕ

where ϕ is a propositional formula in CNF containing no vari-
ables other than x1, . . . , xm. (If necessary an even m can be
obtained by adding a dummy variable xm.) Let V = ∅ be
the PDL-PA valuation over the set of propositional variables
P = {x1, . . . , xm} that sets all variables to false. Let

ΦPDL-PA = 〈+x1 ∪ −x1〉[+x2 ∪ −x2] · · ·
〈+xm−1 ∪ −xm−1〉[+xm ∪ −xm] ϕ

It is readily checked that the QBF Φ is true iff V |= ΦPDL-PA.
Since both the size of ΦPDL-PA and the size of the model are
linear in the size of Φ, we conclude that model checking is
PSPACE-hard.

The proof of membership requires the following recursive
definition of the set of sequences of atomic events that are
admitted by a complex event π.

adm(+p) = {+p}
adm(−p) = {−p}
adm(π1; π2) = {α1;α2 : α1 ∈ adm(π1) & α2 ∈ adm(π2)}
adm(π1 ∪ π2) = adm(π1) ∪ adm(π2)
adm(π∗) = {α1; . . . ;αk : k ≥ 0 & α1, . . . , αk ∈ adm(π)}
adm(ϕ?) = {ϕ?}

In the fifth line we suppose α1; . . . ;αk is skip when k = 0.
The main point in the proof is that every possible update

of V by a complex event π can also be reached by a sequence
that is admitted by π and that is of length at most exponential
in the length of π. Precisely, it can be reached in at most 2|π|2

steps. This is the case despite the presence of the arbitrary it-
eration operator ∗, the reason being that any π∗ can only bring
about a finite number of valuation updates.

In detail, the proof is by induction on the structure of π.
The only nontrivial case is π = σ∗. Suppose VRσ∗V ′. Then
there are V0, . . . ,Vn such that V0 = V , Vn = V ′ and Vk−1RσVk
for every k ≤ n. As Rσ∗ is transitive we may suppose that Vk �
Vl for k � l, i.e. there are no loops. By induction hypothesis σ
admits α1, . . . αn such that Vk−1Rαk Vk and such that for every
k, |αk | ≤ 2|π|2 . The sequence α = α1; . . . ;αn is admitted by π.
All valuations reachable from V differ from V by the values
of the variables in Pπ. Hence there are at most 2Card(Pπ) ≤ 2|π|
such models. Notice that n cannot exceed 2Card(Pπ); otherwise
the sequence V0, . . . ,Vn would contain loops (contradicting
the previous assumption). We have:

|α| ≤ n × maxk≤n{|αk |} + n − 1
≤ 2|π| × 2|π|

2
+ 2|π|

≤ 2(|π|+1)2

≤ 2(|π∗|)2

Based on that one can prove that membership of a couple of
valuations (V,V ′) in Rπ can be decided in polynomial space.
Finally one can prove that a formula ϕ can be evaluated in
space polynomial in the size of ϕ; in particular, when evalu-
ating 〈π∗〉ϕ one may decide in polynomial space whether one
of the (at most 2(|π∗|)2

) valuations V ′ is accessible from V . �

Theorem 2 The problem of PDL-PA satisfiability checking is
PSPACE-complete.

Proof (sketch). Just as for model checking, hardness can be
proved by encoding QBFs.

Membership can be proved as follows: given ϕ we guess
a valuation V . A valuation of size polynomial in ϕ exists
because we can always restrict our attention to the propo-
sitional variables occurring in ϕ. Then we check whether
V |= ϕ. By Theorem 1 this can be done in polynomial time.
Hence PDL-PA satisfiability can be checked in NPSPACE =
PSPACE. �
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3 Embedding CL-PC
We now show that PDL-PA generalises Coalition Logic of
Propositional Control CL-PC [Hoek and Wooldridge, 2005].

Let A = {i, j, . . .} be a finite set of agents. A coalition is a
subset of agents J ⊆ A. We define Aϕ and Aπ to be the set of
agents from A occurring in formula ϕ (resp. event π).

We suppose that beyond a set of basic propositional vari-
ables P0, for every i ∈ A and p ∈ P0 there are propositional
variables Ai(+p) and Ai(−p) denoting that an agent i has the
ability to perform +p and −p. Assignments of variables in P0

are called basic. Hence
P = P

0 ∪ {Ai(+p) : i ∈ A and p ∈ P0}
∪ {Ai(−p) : i ∈ A and p ∈ P0}

Let us extend the language of PDL-PA by modal operators
of ontic capability �A0

J , one for every coalition J ⊆ 2A. The
formula �A0

J ϕ reads “the agents in J are able to achieve ϕ
by appropriately performing the actions in their repertoires”.
The truth condition is:

V |= �A0

J ϕ iff there are basic assignments α1, . . . , αn s.t.
V |= 〈α1; . . . ;αn〉ϕ and for every αk
there is i ∈ J with Ai(αk) ∈ V

The language of CL-PC is built from P0 by means of the
Boolean connectives plus operators �A0

J . The class of CL-PC
models is the set of PDL-PA models satisfying:

1. Ai(+p) ∈ V iff Ai(−p) ∈ V (symmetry);

2. for every α ∈ A there is i ∈ A such that Ai(α) ∈ V
(exhaustivity);

3. for every α ∈ A, if Ai(α) ∈ V and A j(α) ∈ V then i = j
(exclusivity).

Theorem 3 A CL-PC formula ϕ is CL-PC satisfiable iff
S ymϕ ∧ Exhϕ ∧ Exclϕ ∧ ϕ is PDL-PA satisfiable, where:

S ymϕ =
∧

i∈Aϕ,p∈Pϕ Ai(+p) ↔ Ai(−p)

Exhϕ =

⎧⎪⎨⎪⎩
∧

p∈Pϕ
∨

i∈A Ai(−p) when Aϕ = A∧
p∈Pϕ
∨

i∈Aϕ∪{ j0} Ai(−p) when ∃ j0 ∈ A \ Aϕ
Exclϕ =

∧
i, j∈Aϕ,i� j,p∈Pϕ ¬

(
Ai(−p) ∧ A j(−p)

)

The case analysis for Exhϕ accounts for the case where a
variable in ϕ is controlled by an agent not occurring in ϕ.
Only the case of assignments −p is mentioned in Exhϕ and
Exclϕ; the case +p follows by S ymϕ. We observe that the for-
mulations of the three properties on CL-PC models all have
length quadratic in the length of ϕ.

The above theorem says that if we extended our language
by modal operators �A0

J then we could do the same kind of
reasoning as in CL-PC. The next theorem says that actually
we do not need to extend our language because �A0

J can al-
ready be defined in the language of PDL-PA.

Theorem 4 Let ϕ be a formula in the language of PDL-PA
extended by modal operators �A0

J , for every J ⊆ 2A. Let Pϕ =
{p1, . . . , pn}. Then the formula �A0

J ϕ is PDL-PA equivalent to

〈skip ∪ (
∨

i∈J Ai(+p1)?;+p1) ∪ (
∨

i∈J Ai(−p1)?;−p1)〉 . . .
〈skip ∪ (

∨
i∈J Ai(+pn)?;+pn) ∪ (

∨
i∈J Ai(−pn)?;−pn)〉 ϕ

In the above formula, for every variable pk occurring in ϕ
there is a nondeterministic event which either does nothing
(skip) or checks whether one of the agents in J can modify
pk and does so. Observe that the length of that formula is
linear in the length of ϕ. Therefore our language is at least as
succinct as that of CL-PC.

The logic DCL-PC extends CL-PC by delegation events
i

p
� j [Hoek et al., 2010] of i transferring to j his control

over p. Such an event corresponds to the following event in
PDL-PA:

Ai(+p)?; Ai(−p)?;−Ai(+p);−Ai(−p);+A j(+p);+A j(−p)

4 Ability, permission and capability

In this section we study various forms of ability, permission
and capability. We first consider higher-order ability and per-
mission allowing to express that an agent is able (resp. autho-
rized) to perform a certain assignment (possibly of a proposi-
tional variable about ability or permission). We then consider
the capability of an agent or a coalition of agents to ensure
some outcome, distinguishing ontic and deontic capability.

4.1 Higher-order ability and permission

Let us suppose that for every p ∈ P and i ∈ A, the set P not
only contains the propositional variables Ai(+p) and Ai(−p)
that we have introduced in the preceding section, but also
Pi(+p) and Pi(−p). Pi(+p) is read “i is authorized to make
p true” (or “i has the permission to make p true”), and simi-
larly for Pi(−p). Contrarily to the preceding section, though,
we apply these constructions recursively, considering that p
itself may be a special propositional variable. We can now ex-
press e.g. that i is allowed to enable j to set p to false, written
Pi(+A j(−p)).

Assignments of the special propositional variables allow to
model change of first-order abilities and permissions as basic
assignments such as +Ai(+p) and +Pi(+p), etc. For example,
+Ai(+p) makes that i can perform the action of making p true,
and +Ai(−p) makes that i can perform the action of making p
false; −Ai(+p) makes that i cannot make p true, and −Ai(−p)
likewise, +Pi(+p) makes that i is authorized to perform the ac-
tion of making p true, and so on. Beyond, assignments also
allow to model change of higher-order abilities and permis-
sions. For instance, +Ai(+A j(+p)) makes that i can enable j
to perform a certain action. For example, if i wins $100,000
in the lottery then i can give to another agent j the ability to
buy a new car (by giving a part of the prize to j). +Pi(+P j(+p))
makes that i is authorized to authorize j to perform a certain
action. For example, suppose i is nominated president by the
parliament. Then, qua president, i is authorized to authorize
(by the act of promulgation) the minister of justice to start
the process of publishing a new law in the official journal of
record. +Pi(−A j(+p)) makes that i is authorized to hinder j
to perform a certain action. For example, suppose i is nom-
inated judge at some court. Then, qua judge of the court, i
is authorized to sentence some defendant j to imprisonment
and, consequently, to deprive j of his freedom.

Our language accounts for the notion of normative system
NSV defined as a set of permissions about the agents’ behav-
ior which belong to the valuation V , that is,
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NSV = {Pi(+p) ∈ V : i ∈ A and p ∈ P}∪
{Pi(−p) ∈ V : i ∈ A and p ∈ P}

As the set of prohibitions is the complement of the set of per-
missions, a normative system can also be seen as a set of
prohibitions about the agents’ behavior. This definition of
normative system therefore matches the definition accepted
by several authors in the area of MASs according to whom
a normative system is a set of constraints on the agents’ be-
haviour, which may or may not be followed by the agents; see
e.g. [Ågotnes et al., 2007; Shoham and Tennenholtz, 1996].

4.2 Capabilities beyond CL-PC
In Section 3 we have captured a notion of basic capability as
expressible in CL-PC where one quantifies only about phys-
ical actions, viz. the assignment of basic propositional vari-
ables in P0. The operator �A0

J can be generalised to an opera-
tor �A

J quantifying over all possible assignments A:
V |= �A

J ϕ iff there are assignments α1, . . . , αn ∈ A s.t.
V |= 〈α1; . . . ;αn〉ϕ and for every αk
there is i ∈ J with Ai(αk) ∈ V

Similarly, one may extend the language of PDL-PA by
modal operators of deontic capability�P

J , one for every coali-
tion J ⊆ 2A. �P

Jϕ reads “the agents in J are allowed to achieve
ϕ by legally performing the actions in their repertoires”. In
the same spirit we introduce a combined operator �AP

J , with
the obvious reading. The truth conditions are:

V |= �P
Jϕ iff there are assignments α1, . . . , αn ∈ A s.t.

V |= 〈α1; . . . ;αn〉ϕ, and for every αk
there is i ∈ J with Pi(αk) ∈ V

V |= �AP
J ϕ iff there are assignments α1, . . . , αn ∈ A s.t.

V |= 〈α1; . . . ;αn〉ϕ, and for every αk
there is i ∈ J with Ai(αk), Pi(αk) ∈ V

These operators will be handy in order to express capabil-
ities of agents and coalitions of agents. Just as for �A

J they
neither add expressiveness nor succinctness: there are formu-
las similar to that of Theorem 4 allowing to rewrite �P

Jϕ and
�AP

J ϕ to PDL-PA formulas of length polynomial in the length
of ϕ. Therefore complexity of reasoning with such operators
stays in PSPACE.

5 An example: managing water resources

This section illustrates an application of the logic PDL-PA in
a concrete normative system of water management.

There are two farmers f1 and f2 working in a certain area
close to a town called Thirstytown who need water in order
to irrigate their fields. In this area there are three different
exploitable water basins 1, 2 and 3. Only water basins 1 and 2
can be safely used by the farmers; basin 3 provides drinkable
water to the population of Thirstytown, and if it is exploited
for irrigation then Thirstytown will fall short of water. There
are two other actors in this scenario: c is the chief of the Water
Authority which has the jurisdiction over the area, and p is a
local policeman working in Thirstytown.

The propositional variables {b1, b2, b3} indicate whether the
level of water in a given basin is high or low: b1 means that
“the level of water in the basin 1 is high”, ¬b1 means that “the

level of water in the basin 1 is low”, etc. Furthermore, for ev-
ery farmer i ∈ { f1, f2} and for every propositional variable bh
with h ∈ {1, 2, 3}, Ai(−bh) expresses that basin h is physically
connected to the field of farmer i so that i is able to exploit the
water of the basin h, and Pi(−bh) expresses that i is authorized
to exploit the water of basin h.

ϕ1 =
∧

i∈{ f1 , f2}(Pi(−b1) ∧ Pi(−b2) ∧ ¬Pi(−b3))
ϕ2 = A f1 (−b1) ∧ A f1 (−b2) ∧ ¬A f1 (−b3)
ϕ3 = ¬A f2 (−b1) ∧ ¬A f2 (−b2) ∧ A f2 (−b3)
ϕ4 =

∧
i∈{ f1 , f2},h∈{1,2,3}(Ac(+Pp(+Ai(−bh))) ∧ Ac(+Pp(−Ai(−bh))))

ϕ5 =
∧

i∈{ f1 , f2},h∈{1,2,3}(Pc(+Pp(+Ai(−bh))) ∧ Pc(+Pp(−Ai(−bh))))
ϕ6 =

∧
i∈{ f1 , f2},h∈{1,2,3}(Ac(+Ai(−bh)) ∧ Ap(−Ai(−bh))∧

¬Pp(+Ai(−bh)) ∧ ¬Pp(−Ai(−bh)))

Table 1: Formulas describing the initial situation.

We suppose that the initial situation INIT is defined by the
conjunction of the following six facts, characterized by the
formulas ϕ1, . . . , ϕ6 of Table 1:

1. The farmers can legally only exploit basins 1 and 2 but
not basin 3 (formula ϕ1).

2. Farmer f1 has access to basins 1 and 2, but not to basin
3 (formula ϕ2).

3. Farmer f2 has access to basin 3, but not to basin 1 and 2
(formula ϕ3).

4. The chief of the Water Authority is able to authorize the
policeman of Thirstytown to add and remove connec-
tions between basins and fields (imagine that a connec-
tion between a basin and a field can be added or removed
by opening or closing a sluice gate) (formula ϕ4).

5. The chief of the Water Authority is authorized to au-
thorize the policeman of Thirstytown to add and remove
connections between basins and fields (formula ϕ5).

6. The policeman of Thirstytown is able to add and remove
the connections between basins and fields, but is not au-
thorized to do that (formula ϕ6).

The problem to be solved is to find an executable and au-
thorized procedure such that, given the initial situation INIT ,
it ensures that the situation GOAL will be achieved, where
GOAL is defined by the conjunction of the following two facts
ψ1 and ψ2.

1. Every farmer has exclusive control over at least one
basin in {1, 2}: each farmer’s field is connected to at least
one water basin in {1, 2} which is not connected to the
other farmer’s field. Formally:
∨

h∈{1,2}(A f1 (−bh) ∧ ¬A f2 (−bh)) ∧∨h∈{1,2}(A f2 (−bh) ∧ ¬A f1 (−bh))

2. No field is connected to basin 3: ¬A f1 (−b3)∧¬A f2 (−b3).
Let α+i,h = +Pp(+Ai(−bh)) and α−i,h = +Pp(−Ai(−bh)), and
πi,h = α

+
i,h;α−i,h be the event of the policeman getting autho-

rization to connect/disconnect the field of farmer i to basin
h.

Now, consider the following sequence of events.
1. The chief of the Water Authority authorizes the po-

liceman to modify the connections between basins and
fields. Formally: π1 =
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(Ac(α+f1,1) ∧ Pc(α+f1,1) ∧ Ac(α−f1,1) ∧ Pc(α−f1,1))?; π f1,1 ; . . . ;
(Ac(α+f2,3) ∧ Pc(α+f2,3) ∧ Ac(α−f2,3) ∧ Pc(α−f2,3))?; π f2,3

2. The policeman removes the connection between basin 1
and f1’s field. Formally: π2 =

(Ap(−A f1 (−b1)) ∧ Pp(−A f1 (−b1)))?;−A f1 (−b1)

3. The policeman adds the connection between basin 1 and
f2’s field. Formally: π3 =

(Ap(+A f2 (−b1)) ∧ Pp(+A f2 (−b1)))?;+A f2 (−b1)

4. The policeman removes the connection between basin 3
and f2’s field. Formally: π4 =

(Ap(−A f2 (−b3)) ∧ Pp(−A f2 (−b3)))?;−A f2 (−b3)

It can be shown that the formula
INIT → 〈π1; π2; π3; π4〉GOAL

is PDL-PA valid: given the initial situation INIT , the sequence
of events π1; π2; π3; π4 is an executable and authorized (legal)
procedure which ensures that GOAL will be achieved. We
may also quantify over an agent’s actions: the valid formula

INIT → �A
{p}(¬A f1 (−b3) ∧ ¬A f2 (−b3))

expresses that the policeman has the ontic capability to guar-
antee that no farmer has access to basin 3.

The formula INIT → �AP
{c} GOAL however is invalid: the

chief cannot ensure GOAL alone. In contrast, the formula
INIT → �AP

{c,p}GOAL is valid, meaning that the policeman and
the chief can cooperate to achieve the goal.

6 Integrating constitutive rules

According to several authors working in legal theory and in
the field of normative MASs (see, e.g., [Alchourrón and Bu-
lygin, 1971; Boella and Torre, 2004]), normative systems are
based both on regulative as well as constitutive (i.e. non-
regulative) components. That is, normative systems are not
only defined in terms of sets of permissions, obligations,
and prohibitions (i.e. norms of conduct) but also in terms
of rules which specify and create new forms of behavior
and concepts. According to Searle for instance “[. . . ] reg-
ulative rules regulate antecedently or independently exist-
ing forms of behavior [. . . ]. But constitutive rules do not
merely regulate, they create or define new forms of behav-
ior” [Searle, 1969, p. 33]. In Searle’s theory [Searle, 1969;
1995], constitutive rules are expressed by means of “counts-
as” assertions of the form “X counts as Y in context C” where
the context C refers to the normative system in which the rule
is specified. Constitutive rules relate “brute” physical facts,
actions, etc. with institutional facts, actions, etc. For exam-
ple, in the US, receiving a piece of paper with a certain shape,
color, etc. (a physical action) counts as receiving a five-dollar
bill (an institutional action). 1

While our logic PDL-PA allows to model and reason about
some regulative aspects of normative systems (permissions
and authorizations), it does not account for constitutive rules
which are an essential component to the modelling of social

1We only consider here the “counts-as” relation between events.
We note that Searle’s “counts-as” relation is also between objects
(such as pieces of paper and money).

reality. In this section, we show how PDL-PA can be extended
in order to describe them.

We postpone to future work an analysis of more subtle as-
pects of “counts-as” like for instance the relationship between
“counts-as” and the notion of institutional power, and the dis-
tinction between the “counts-as” relation and a notion of de-
pendence between events in the causal sense as in [Thielscher,
1997]. Note that the distinction between “counts-as” and
causality is somehow explicit in Goldman’s theory of action
[Goldman, 1970] where “causal generation” is opposed to
“conventional generation”. According to Goldman, physical
actions are causally generated, that is, they just consist in an
agent bringing about (i.e. causing) a certain state of affairs to
be true. On the other hand, institutional actions are conven-
tionally generated, by which he meant that actions such as
signalling before making a turn, and checkmating one’s oppo-
nent, exist in virtue of rules or conventions relating physical
actions with institutional effects.

We add to the language a primitive α1 � α2 that reads
that the occurrence of α1 counts as the occurrence of α2,
where α1 and α2 are assignments. For example, suppose we
are modelling driving laws. Then, the formula +80mph �
+overspeed means that if a car runs at 80mph this counts
as an overspeeding that has to be sanctioned. (We abstract
away from the institutional context in which the constitutive
rule applies.) Technically, our modelling is inspired from
Thielscher’s solution to the ramification problem in reason-
ing about actions [Thielscher, 1997].

Definition 2 A model with constitutive rules is a tuple (V,C)
such that V is a valuation and C ⊆ A × A is a reflexive and
transitive relation over assignments that satisfies the follow-
ing coherence constraint:

(Coh) (α,+q) � C or (α,−q) � C

When (α1, α2) ∈ C then the occurrence α1 counts as the
occurrence of α2. The constraint (Coh) says that an event
cannot have inconsistent ramifications. Note that it follows
from (Coh) together with reflexivity of C that (+q,−q) � C,
(+Pi(α),−Pi(α)) � C, etc.

Remark 1 It is worth noting that there is some disagreement
whether the “counts-as” relation should satisfy transitivity.
For a discussion on this matter see [Jones and Sergot, 1996;
Grossi et al., 2006; Lorini et al., 2009]. In addition, some
authors argue that the “counts-as” should satisfy contrapo-
sition [Grossi et al., 2006], while others have a different opin-
ion on this matter [Jones and Sergot, 1996]. We did not in-
clude contraposition in the list of properties of Definition 2;
however, the constraint “if (+p,+q) ∈ C then (−q,−p) ∈ C”
could be added to C.

The truth condition for the “counts-as” construction is:

(V,C) |= α1 � α2 iff (α1, α2) ∈ C

We have to modify the definition of the relation Rπ in order
to take the relation C into account; we only change the case
where π is an atomic event α:

Rα = {(V, (V \ {q : (α,−q) ∈ C}) ∪ {q : (α,+q) ∈ C})}
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Note that we are now able to define Rα without a case analysis
as we did previously. Note also that C is never updated.

We note the new logic PDL-PA�. Validity and satisfiability
in PDL-PA� are defined in the standard way. For example,
the following schemas are valid:

α� α
(α1 � α2) ∧ (α2 � α3) → (α1 � α3)
¬ ((α� +q) ∧ (α� −q))
〈α〉q ↔ ((α� +q) ∨ (q ∧ ¬(α� −q)))

The last equivalence is reminiscent of Reiter’s successor
state axioms in the Situation Calculus [Reiter, 2001]. It fol-
lows from it that (α� +q) → 〈α〉q. For example, if driving at
80mph counts as overspeeding (i.e. +80mph � +overspeed)
then, after starting to drive at 80mph, the driver will be over
the speed limit (i.e. 〈+80mph〉overspeed).

The proofs of the complexity results for PDL-PA can be
adapted straightforwardly to PDL-PA�.

Theorem 5 The problems of model checking and of satisfia-
bility checking in PDL-PA� are both PSPACE-complete.

7 Conclusion

We have presented the propositional dynamic logic of as-
signments PDL-PA, with assignments of the form +p and −p
that are combined by the standard program constructions of
PDL. The logic allows to reason about practical possibilities
(alias abilities) and deontic possibilities (alias permissions)
of agents and coalitions of agents, as well as the dynamics of
abilities and permissions. The abilities and permissions may
be higher-order. We have demonstrated the logic on an exam-
ple about water resource management. Finally, we have in-
troduced an extension of PDL-PA that allows to reason about
constitutive rules.

We have shown that the model checking problem and
the satisfiability problem are PSPACE-complete, both for
PDL-PA and its extension with the “counts-as” operator. This
contrasts with other formalisms that were proposed in the
literature. In most of them complexity results are not men-
tioned. The only complexity result we are aware of are by
Ågotnes et al. In [Ågotnes et al., 2007] a normative exten-
sion of CTL is presented. Its symbolic model checking prob-
lem is proved to be PSPACE complete in the interpreted case,
and EXPTIME hard in the uninterpreted case. In the former,
agents’ abilities and permissions are completely specified,
while in the latter only the abilities are completely specified.
In that respect, symbolic model checking in our logic pro-
vides more flexibility. We note however that their framework
has a richer temporal ontology than ours. We leave further
investigation of differences and similarities to future work.

A prominent benefit of our dynamic logic evaluated over
simple symbolic models is that their extension with further
notions relevant to social reality appears like a simpler task
than in any other formalism of the literature. We have demon-
strated that with the integration of constitutive rules. An in-
teresting direction of future research that we did not address
in Section 6 is the dynamics of constitutive rules in an insti-
tution. This could be done in a way that is in the very spirit
of this paper by integrating two new kinds of events: π1 + π2

adds π2 as a ramification of π1, and π1 − π2 withdraws π2 as
a ramification of π1. The only difficulty here is to design a
model update preserving the constraints on C. This is subject
of ongoing work.
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