
Almost certain termination for ALC weakening

Roberto Confalonieri1[0000−0003−0936−2123], Pietro
Galliani1[0000−0003−2544−5332], Oliver Kutz1[0000−0003−1517−7354], Daniele

Porello2[0000−0003−3655−0218], Guendalina Righetti1[0000−0002−4027−5434], and
Nicolas Troquard1[0000−0002−5763−6080]

1 Free University of Bozen-Bolzano, Faculty of Computer Science, Italy
name.surname@unibz.it

2 University of Genoa, Department of Antiquity, Philosophy, and History, Italy
daniele.porello@unige.it

Abstract. Concept refinement operators have been introduced to de-
scribe and compute generalisations and specialisations of concepts, with,
amongst others, applications in concept learning and ontology repair
through axiom weakening. We here provide a probabilistic proof of almost-
certain termination for iterated refinements, thus for an axiom weakening
procedure for the fine-grained repair of ALC ontologies. We determine
the computational complexity of refinement membership, and discuss
performance aspects of a prototypical implementation, verifying that
almost-certain termination means actual termination in practice.

Keywords: axiom weakening · refinement operator · ontology repair ·
almost-certain termination.

1 Introduction

The traditional approach to repairing inconsistent ontologies amounts to iden-
tifying problematic axioms and removing them (e.g., [18,10,9,4]). Whilst this
approach is sufficient to guarantee the consistency of the resulting ontology, it
often leads to unnecessary information loss.

Approaches to repairing ontologies more gently via axiom weakening were
proposed in the literature [8,6,19,2]. In [6], concept refinement in EL++ ontolo-
gies is introduced in the context of concept invention. A concept refinement op-
erator to generalise EL++ concepts is proposed and its properties are analysed.
This line of work was continued in [19], where the authors define an abstract re-
finement operator for generalising and specialising ALC concepts and weakening
ALC axioms. They propose an ontology repair procedure that solves inconsis-
tencies by weakening axioms rather than by removing them. In [2], the authors
present general theoretical results for axiom weakening in Description Logics
(DLs) and EL in particular. Refinement operators in Description Logic have also
been studied with applications to Machine Learning [5,13,12,14].

Concept refinement operators come in two flavours [11]. A generalisation
operator w.r.t. an ontology O is a function γ that associates with a concept

2 R. Confalonieri et al.

C a set γO(C) of concepts which are ‘super-concepts’ of C. Dually, a special-
isation operator w.r.t. an ontology O is a function ρ that associates with a
concept C a set ρO(C) of concepts which are ‘sub-concepts’ of C. The notions
of ‘super’, and ‘sub-concept’ are here implicitly defined by the respective func-
tions, rather than by a purely syntactic procedure. Intuitively, a concept D is
a generalised super-concept of concept C w.r.t. ontology O if in every model
of the ontology the extension of D subsumes the extension of C. So for in-
stance, the concept ∃has_component.Carbon is a generalisation of LivingBeing
and = 2 has_bodypart.Legs is a specialisation of LivingBeing (assuming an ap-
propriate background ontology O).

Refinement operators enjoy a few properties that render them suitable for
an implementation of axiom weakening [19]. In particular, deciding whether a
concept is a refinement of another concept has the same worst-case complexity
as deciding concept subsumption in the underlying logic. Refinement operators
are then used to weaken axioms, and to repair inconsistent ontologies. Experi-
mentally, it is shown that repairing ontologies via axiom weakening maintains
significantly more information than repairing ontologies via axiom deletion, us-
ing e.g., measures that evaluate preservation of taxonomic structure. Ontology
repairs via concept refinements and axiom weakening have also been used to
merge two mutually inconsistent ontologies [17].

In this paper, we fill a gap in the above sketched research landscape and
provide a proof of almost-certain termination of the ontology repair procedure
based on the axiom weakening proposed in [19]. Since infinite non-stabilising
chains of refinements exist in principle, this is the best we could hope for. We
also verify in an empirical study that this theoretical result implies actual and
robust (that is, reproducible) termination in a number of test scenarios using
real world as well as synthetic ontologies.

2 Preliminaries

From a formal point of view, an ontology is a set of formulas in an appropriate
logical language with the purpose of describing a particular domain of interest.
We briefly introduce ALC; for full details see [1]. The syntax of ALC is based on
two disjoint sets NC and NR, concept names and role names respectively. The
set of ALC concepts is generated by the grammar (where R ∈ NR and A ∈ NC):

C ::= ⊥ | ⊤ | A | ¬C | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

In the following, L(NC , NR) denotes the set of concepts and roles that can be
built over NC , NR in ALC. nnf(C) denotes the negation normal form of concept
C. |C| denotes the size of a concept, defined as:

Definition 1. The size |C| of a concept C is inductively defined as follows. For
C ∈ NC∪{⊤,⊥}, |C| = 1. Then, |¬C| = 1+|C|; |C⊓D| = |C⊔D| = 1+|C|+|D|;
and |∃R.C| = |∀R.C| = 1 + |C|.

A TBox T is a finite set of concept inclusions (GCIs) of the form C ⊑ D where
C and D are concepts. It is used to store terminological knowledge regarding

Almost certain termination for ALC weakening 3

the relationships between concepts. An ABox A is a finite set of formulas of the
form C(a) and R(a, b), which express knowledge about objects in the knowledge
domain. An ALC ontology O = T ∪A is defined by a TBox T and an ABox A.

The semantics of ALC is defined through interpretations I = (∆I , ·I), where
∆I is a non-empty domain, and ·I is a function mapping every individual name
to an element of ∆I , each concept name to a subset of the domain, and each role
name to a binary relation on the domain; see [1] for details. The interpretation
I is a model of the ontology O if it satisfies all the axioms in O. Given two
concepts C and D, we say that C is subsumed by D w.r.t. ontology O (C ⊑O D)
if CI ⊆ DI for every model I of O, where we write CI for the extension of the
concept C according to I. We write C ≡O D when C ⊑O D and D ⊑O C. C is
strictly subsumed by D w.r.t. O (C ⊏O D) if C ⊑O D and C ̸≡O D.

We now define the upward and downward covers of concept names and atomic
roles respectively. In this paper, their range will consist of the finite set of sub-
concepts of the ontology O, which is defined as follows:

Definition 2. For O an ALC ontology, the set of subconcepts of O is given by

sub(O) = {⊤,⊥} ∪
⋃

C(a)∈A

sub(C) ∪
⋃

C⊑D∈T

(
sub(C) ∪ sub(D)

)
,

where O = T ∪A. sub(C) is the set of subconcepts in C inductively defined over
the structure of C.

Intuitively, the upward cover of the concept C collects the most specific sub-
concepts of O that subsume C; conversely, the downward cover of C collects
the most general subconcepts from O subsumed by C. The concepts in sub(O)
are some concepts that are relevant in the context of O, and that are used as
building blocks for generalisations and specialisations. The properties of sub(O)
guarantee that the upward and downward cover sets are finite.

Definition 3. Let O = T ∪ A be an ontology. Let C be a concept, the upward
cover and downward cover of C w.r.t. O are:

UpCovO(C) := {D ∈ sub(O) | C ⊑O D and
∄.D′ ∈ sub(O) with C ⊏O D′ ⊏O D},

DownCovO(C) := {D ∈ sub(O) | D ⊑O C and
∄.D′ ∈ sub(O) with D ⊏O D′ ⊏O C}.

Note that the basic UpCovO and DownCovO ‘miss’ a mumber of relevant refine-
ments, depending on the definition of sub(O). Consider the following example.

Example 1. Let NC = {A,B,C} and O = {A ⊑ B}. Then sub(O) = {A,B,⊤,⊥}.
According to Def. 3, UpCovO(A ⊓ C) = {A}. Iterating, we get UpCovO(A) =
{A,B} and UpCovO(B) = {B,⊤}. Semantically, B ⊓ C is also a generalisation
of A ⊓ C w.r.t. O. However, it is missed by the iterated application of UpCovO,
because B ⊓ C ̸∈ sub(O). Similarly, UpCovO(∃R.A) = {⊤}, even though one
would expect semantically that also ∃R.B is a generalisation of ∃R.A.

4 R. Confalonieri et al.

ζ↑,↓(A) = ↑(A) , A ∈ NC

ζ↑,↓(¬A) = {nnf(¬C) | C ∈ ↓(A)} ∪ ↑(¬A) , A ∈ NC

ζ↑,↓(⊤) = ↑(⊤)
ζ↑,↓(⊥) = ↑(⊥)

ζ↑,↓(C ⊓D) = {C′ ⊓D | C′ ∈ ζ↑,↓(C)}∪
{C ⊓D′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C ⊓D)

ζ↑,↓(C ⊔D) = {C′ ⊔D | C′ ∈ ζ↑,↓(C)}∪
{C ⊔D′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C ⊔D)

ζ↑,↓(∀R.C) = {∀R′.C | R′ ∈ ↓(R)} ∪ {∀R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∀R.C)

ζ↑,↓(∃R.C) = {∃R′.C | R′ ∈ ↑(R)} ∪ {∃R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∃R.C)

Table 1. Abstract refinement operator for ALC.

To address this situation, we introduce generalisation and specialisation opera-
tors that recursively exploit the syntactic structure of the concept being refined.
Let ↑ and ↓ be two functions with domain L(NC , NR) that map every concept to
a set of concepts in L(NC , NR). We define ζ↑,↓, the abstract refinement operator,
by induction on the structure of concept descriptions as shown in Table 1. We
now define concrete refinement operators from the abstract operator ζ↑,↓.

Definition 4. The generalisation operator and specialisation operator are de-
fined, respectively, as

γO = ζUpCovO,DownCovO and ρO = ζDowCovO,UpCovO .

Returning to Example 1, notice that for NC = {A,B,C} and O = {A ⊑ B}, we
now have γO(A ⊓ C) = {A ⊓ C,B ⊓ C,A ⊓ ⊤, A} as well as ∃R.B ∈ γO(∃R.A).

Some comments are in order about Table 1. As in [19] the domain of γO
and ρO is the set of concepts in negation normal form. In practice it can be
extended straightforwardly to all concepts by modifying the clause ζ↑,↓(¬A)
with ζ↑,↓(¬C) = {nnf(¬C ′) | C ′ ∈ ↓(C)} ∪ ↑(¬C).

Definition 5. Given a DL concept C, its i-th refinement iteration by means of
ζ↑,↓ (viz., ζi↑,↓(C)) is inductively defined as follows:

– ζ0↑,↓(C) = {C};
– ζj+1

↑,↓ (C) = ζj↑,↓(C) ∪
⋃

C′∈ζj
↑,↓(C) ζ↑,↓(C

′), j ≥ 0.

The set of all concepts reachable from C by means of ζ↑,↓ in a finite number of
steps is ζ∗↑,↓(C) =

⋃
i≥0 ζ

i
↑,↓(C).

Lemma 1. L(NC , NR) is closed under γO and ρO. If C ∈ L(NC , NR) then
every refinement in γO(C) and ρO(C) is also in L(NC , NR).

Almost certain termination for ALC weakening 5

Algorithm 1 RepairOntologyWeaken(O)
1: Oref ← FindMaximallyConsistentSet(O)
2: while O is inconsistent do
3: ϕbad ← FindBadAxiom(O)
4: Φweaker ← WeakenAxiom(ϕbad, Oref)
5: O ← O \ {ϕbad} ∪ Φweaker

6: end while
7: Return O

3 Repairing Ontologies

The refinement operators can be used as components of a method for repairing
inconsistent ALC ontologies by weakening, instead of removing, problematic ax-
ioms. Given an inconsistent ontology O = T ∪ A, we proceed as described in
Algorithm 1.

We first need to find a consistent subontology Oref of O to serve as refer-
ence ontology to be able to compute a non-trivial upcover and downcover. One
approach is to pick a random maximally consistent subset of O (line 1), and
choose it as reference ontology Oref; another option is to choose the intersection
of all maximally consistent subsets of O (e.g., [15]). Once a reference ontology
Oref has been chosen, and as long as O is inconsistent, we select a ‘bad axiom’
(line 3) in T ∪A) and replace it with a random weakening of it w.r.t. Oref (lines
4 and 5). For added flexibility, a weakening of an axiom is a set of axioms.

Definition 6 (Axiom weakening). For O = T ∪ A an ALC ontology and ϕ
an axiom in T ∪A, the set of (least) weakenings of ϕ is the set gO(ϕ) such that:

– gO(C ⊑ D) = {{C ′ ⊑ D} | C ′ ∈ ρO(C)} ∪ {{C ⊑ D′} | D′ ∈ γO(D)};
– gO(C(a)) = {{C ′(a)} | C ′ ∈ γO(C)};
– gO(R(a, b)) = {{R(a, b)}, {⊤(a),⊤(b)}}.

The subprocedure WeakenAxiom(ϕ,Oref) randomly returns one set of axioms
in gOref(ϕ). For every subsumption or assertional axiom ϕ, the set of axioms in
the set gOref(ϕ) are indeed weaker than ϕ, in the sense that – given the reference
ontology Oref – ϕ entails them (and the opposite is not guaranteed).

Lemma 2. For every subsumption or assertional axiom ϕ, if Φ′ ∈ gO(ϕ), then
ϕ |=O Φ′.

Proof. Suppose {C ′ ⊑ D′} ∈ gO(C ⊑ D). Then, by the definitions of gO, γO,
and ρO, it clearly follows that C ′ ⊑ C and D ⊑ D′ are inferred from O. Thus,
by transitivity of subsumption, we obtain that C ⊑ D |=O C ′ ⊑ D′. For the
weakening of class assertions, the result follows in a similar way. For the weak-
ening of role assertions, the result simply follows from the definition of ⊤. ⊓⊔

The cases of GCIs and class assertions axioms are rather straightforward. The
weakening of a GCI C ⊑ D is obtained by either generalising D or specialising C.

6 R. Confalonieri et al.

The weakening of the class assertion C(a) is obtained by generalising C. As the
refinement operators are reflexive, the choice here is also to make gO reflexive,
so an axiom may be weakened into itself. For the case of the role assertion axiom
R(a, b), one should observe that in absence of role hierarchies, nominals, and set
constructors, there is nothing weaker apart from a trivial statement. Weakening
R(a, b) into the two axioms ⊤(a) and ⊤(b) allows us to preserve the signature.
To keep gO reflexive, we also allow R(a, b) to be weakened into itself.

Clearly, substituting an axiom ϕ with one axiom from gO(ϕ) cannot diminish
the set of interpretations of an ontology: if I is an interpretation that satisfies the
axioms of an ontology before such a replacement, I satisfies the same axioms even
after it. Since any concept can be generalised to the ⊤ concept or specialised to
the ⊥ concept (in finitely many steps), any subsumption axiom is a finite number
of weakenings away from the trivial axiom ⊥ ⊑ ⊤. Any assertional axiom C(a)
is also a finite number of generalisations away from the trivial assertion ⊤(a).
Similarly, every assertional axiom of type R(a, b) is one step of generalisation
away from the set of trivial assertions ⊤(a) and ⊤(b) (whilst maintaining the
signature of the Abox).

Theorem 1. If Algorithm 1 returns O, then O is a consistent ALC ontology.

Example 2. Consider the ontology O containing the following inconsistent set of
axioms:

(1) Vehicle ⊑ ∃has.Motor; (2) Bike ⊑ Vehicle;
(3) Bike ⊑ ¬∃has.Motor; (4) Motor ⊑ MeansOfPropulsion.

Suppose that FindBadAxiom(O) returns axiom (1) as the most problematic one.
According to our definitions, a possible weakening of the axiom returned by
WeakenAxiom((1), Oref) may be (1)∗ Vehicle ⊑ ∃has.MeansOfPropulsion. Replac-
ing axiom (1) with its weakening (1)∗, the resulting ontology becomes consistent.

4 Iterated refinements and termination

Clearly, the set of “one-step” refinements of a concept is always finite, given the
finiteness of sub(O). Moreover, every concept can be refined in a finite number
of iterations to ⊤ (or ⊥). Nonetheless, an iterated application of the refinement
operator can lead to cases of non-termination. For instance, given an ontology
defined as O = {A ⊑ ∃R.A}, if we generalise the concept A w.r.t. O it is easy
to see that we can obtain an infinite chain of generalisations that never reaches
⊤, i.e., A ⊑O ∃R.A ⊑O ∃R.∃R.A For practical reasons, this may need to be
avoided, or mitigated. Running into this non-termination ‘problem’ is not new
in the DL literature. In [3], the problem occurs in the context of finding a least
common subsumer of DL concepts. Different solutions have been proposed to
avoid this situation. Typically, some assumptions are made over the structure of
the TBox, or a fixed role depth of concepts is considered. In the latter view, it is
possible to restrict the number of nested quantifiers in a concept description to
a fixed constant k, to forbid generalisations/specialisations already picked along

Almost certain termination for ALC weakening 7

a chain from being picked again, and to introduce the definition of role depth
of a concept to prevent infinite refinements. If this role depth upper bound is
reached in the refinement of a concept, then ⊤ and ⊥ are taken as generalisation
and specialisation of the given concept respectively.

Another possibility is to abandon certain termination and adopt almost-
certain (or almost-sure) termination, that is, termination with probability 1.
The idea is to associate probabilities to the refinement ‘branches’ available at
each refinement step. In what follows, we will show that, indeed, if we start from
any concept C and choose uniformly at random a generalisation out of its set of
possible generalisations (or a specialisation out of its set of specialisations: results
and proofs are entirely symmetrical) we will almost surely reach ⊤ (⊥) within
a finite number of steps. This implies at once that an axiom will almost surely
not be indefinitely weakened by our procedure, and that Algorithm 1 will almost
surely terminate. The key ingredient of the proof is Lemma 3, which establishes
an upper-bound on the rate of growth of the set of possible generalisations
(specialisations) along a chain.

Definition 7. Let O be an ALC ontology and let C ∈ sub(O). Then let F (C) =
|γO(C)| be the number of generalisations of C, let F ′(C) = |ρO(C)| be the number
of specialisations of C and let G(C) = max({|C ′| | C ′ ∈ γO(C)∪ ρO(C)}) be the
maximum size of any generalisation or specialisation of C.

The upper bound to the size of γ(C) and ρ(C) provided in part 1 of the following
lemma gives a uniform upper bound to the size of generalisation/specialisation
sets, for which we so far only knew that they are always finite.

Lemma 3. Let O be an ALC ontology and let C be any concept (not necessarily
in sub(O)). Furthermore, let k = | sub(O)| and q = max({|C|, |nnf(¬C)| | C ∈
sub(O}). Then the following two properties hold:

1. F (C), F ′(C) ≤ 3k|C|;
2. G(C) ≤ |C|+ q.

Proof. The proof is by structural induction. The intuition behind it is the fol-
lowing: by our definitions, in a generalisation/specialisation step we essentially
select a single subcomponent C ′ of the current expression C and we replace it
with some element of sub(O). But this set is finite, and the number of subcompo-
nents of an expression C increases linearly with the size of C. Thus, the number
of possible generalisations/specialisations of C increases linearly with the size of
C, and every generalisation/specialisation step increases the size of the resulting
expression by some at most constant amount. We next present the main parts
of the structural induction on C (leaving out the analogous cases for ∃R.C and
C ⊔D), which we assume is in Negation Normal Form.

1. If C is an atomic concept A, ⊤, or ⊥ then γO(C) = UpCovO(C), ρO(C) =
DownCovO(C) and |C| = 1. Thus, F (C), F ′(C) ≤ | sub(O)| ≤ k ≤ 3k|C| and
G(C) ≤ q < q + 1, as required.

2. If C is a negated atomic concept ¬A, γO(C) = {nnf(¬C)|C ∈ DownCovO(A)} ∪
UpCovO(¬A), ρO(C) = {nnf(¬C)|C ∈ UpCovO(A)}∪DownCovO(¬A), and |C| = 2.
Thus, F (C), F ′(C) ≤ 2| sub(O)| ≤ 2k ≤ 3k|C| and G(C) ≤ q < q + 2.

8 R. Confalonieri et al.

3. |C ⊓D| = |C|+ |D|+1 and γO(C ⊓D) = {C′ ⊓D | C′ ∈ γO(C)} ∪ {C ⊓D′ | D′ ∈
γO(D)} ∪ UpCovO(C ⊓D).
By induction hypothesis, |{C′ ⊓ D | C′ ∈ γO(C)}| ≤ 3k|C| and |{C ⊓ D′ | D′ ∈
γO(D)| ≤ 3k|D| and furthermore |UpCovO(C ⊓D)| ≤ k, and so

F (C ⊓D) ≤ 3k|C|+ 3k|D|+ k ≤ 3k|C ⊓D|.

Moreover, by induction hypothesis if C′ ∈ γO(C) then |C′| ≤ G(C) ≤ |C|+ q, and
so |C′⊓D| ≤ |C|+|D|+1+q = |C⊓D|+q; if D′ ∈ γO(D) then |D| ≤ G(D) ≤ |D|+q
and so C ⊓D′ ≤ |C|+ |D|+1+ q = |C ⊓D|+ q; and |C′′| ≤ q ≤ |C ⊓D|+ q for all
C′′ ∈ UpCovO(C⊓D). Thus, for all C′′ ∈ γ(C⊓D) we have that |C′′| ≤ |C⊓D|+q.
Similarly, ρO(C ⊓ D) = {C′ ⊓ D | C′ ∈ ρO(C)} ∪ {C ⊓ D′ | D′ ∈ ρO(D)} ∪
DownCovO(C ⊓D), and a completely analogous argument applies.

4. |∀R.C| = |C|+1 and γO(∀R.C) = {∀R.C′ | C′ ∈ γO(C)}∪UpCovO(∀R.C). By in-
duction hypothesis, |{∀R.C′ | C′ ∈ γO(C)}| ≤ 3k|C|; moreover, |UpCovO(∀R.C)| ≤
k. Thus, F (∀R.C) ≤ 3k|C| + k ≤ 3k(|C| + 1) = 3k|∀R.C|. Furthermore, if C′ ∈
γO(C), by induction hypothesis |C′| ≤ |C|+ q and hence |∀R.C′| ≤ |C|+ 1 + q =
|∀R.C| + q; and if C′′ ∈ UpCovO(∀R.C) then |C′′| ≤ q ≤ |∀R.C| + q; and so
whenever C′′ ∈ γO(∀R.C) we have that |C′′| ≤ |∀R.C|+ q, as required.
Similarly, ρO(∀R.C) = {∀R.C′ | C′ ∈ ρO(C)} ∪ DownCovO(∀R.C), and a com-
pletely analogous argument shows that F ′(∀R.C) ≤ 3k|∀R.C| and that |C′′| ≤
|∀R.C|+ q for all C′′ ∈ ρO(∀R.C). ⊓⊔

We can now prove our required result by showing that, even though the size of
the concept expression – and, therefore, the number of possible generalisations
– grows with every generalisation step, it grows slowly enough such that the
generalisation chain will almost surely eventually pick an element in the upcover
of the current concept which is strictly more general than it. Thus, ⊤ will be
almost surely reached in a finite number of steps.

Theorem 2. Let O be an ALC ontology, let C be any ALC concept, and let
(Ci)i∈N be a sequence of concepts such that C0 = C and each Ci+1 is chosen
randomly in γO(Ci) according to the uniform distribution.
Then, with probability 1, there exists some i ∈ N such that Ci = ⊤.

Proof. Let us first prove that, if C ̸≡O ⊤, there is almost surely some Ci in the
chain such that Ci ≡O ⊤ (and, therefore, such that Ci′ ≡O ⊤ for all i′ > i).

By the previous lemma, we know that γO(Ci) contains at most 3k|Ci| con-
cepts. Furthermore, for every concept Ci such that Ci ̸≡O ⊤ there exists at
least one C ′ ∈ UpCovO(Ci) ⊆ γO(Ci) such that C ⊏O C ′ (for instance, the
⊤ concept itself): therefore, the probability that the successor of Ci will be
some Ci+1 ∈ UpCovO(Ci) such that Ci ⊏O Ci+1 is at least 1/(3k|Ci|). Now let
|C0| = N : since Ci+1 ∈ γO(Ci), we then have that |Ci| ≤ qi+N . Therefore, the
probability that at step i we do not select randomly an element of UpCovO(Ci)

that is strictly more general than Ci will be at most 3k(qi+N)−1
3k(qi+N) = i+ℓ−ϵ

i+ℓ for
ℓ = N/q and ϵ = 1/(3kq). But then the probability that we never select a
strictly more general element from the upcover will be at most

∏∞
i=0

i+ℓ−ϵ
i+ℓ = 0,3

3 One way to verify this is to observe that the series
∑∞

i=0(log(i+ ℓ− ϵ)− log(i+ ℓ))
diverges to minus infinity. This in turn may be verified by noting that

∑∞
i=0(log(i+

Almost certain termination for ALC weakening 9

and thus our generalisation sequence C = C0 ⊑O C1 ⊑O C2 . . . will almost surely
contain some Ci such that Ci+1 ∈ UpCovO(Ci) ⊆ sub(O) and C ⊑O Ci ⊏O Ci+1.
By the same argument, the generalisation sequence starting from Ci+1 will al-
most surely eventually reach some Cj+1 ∈ sub(O) with C ⊏O Ci+1 ⊏O Cj+1,
and so forth; and by applying this line of reasoning | sub(O)| times, we will almost
surely eventually reach some concept D ≡O ⊤, as required.

Now let us consider a generalisation chain D = D0 ⊑O D1 ⊑O D2 . . .,
where as before every Di+1 is chosen randomly among γ(D), starting from some
concept D ≡O ⊤. Now, since D ≡O ⊤ we have ⊤ ∈ UpCovO(D), and since
D ⊑O Di for all i, ⊤ ∈ UpCovO(Di) ⊆ γO(Di) for all i. Thus, at every iteration
step i we have a probability of at least 1/|γ(Di)| that Di+1 = ⊤; and if we let
N ′ = |D|, by the previous results we obtain at once that |γ(Di)| ≤ iq + N ′,
and hence that the probability that we do not end up generalising Di to ⊤ is
at most (3k(iq + N ′) − 1)/(3k(iq + N ′)), and finally that the probability that
we never reach ⊤ is

∏∞
i=0

3k(iq+N ′)−1
3k(iq+N ′) =

∏∞
i=0

i+ℓ′−ϵ′

i+ℓ′ = 0 where ℓ′ = N ′/q and
ϵ′ = 1/3kq. ⊓⊔

Note that, by our definitions, ⊤ can be further generalized to all elements
of its upcover (that is, all concepts of sub(O) which are equivalent to ⊤ with
respect to O), and similarly ⊥ can be further specialized to other concepts in its
downcover. If this behaviour is unwanted, it is easy to force the upcover of ⊤ to
contain only ⊤, and likewise for ⊥.

Corollary 1. Algorithm 1 almost surely terminates.

Proof. As long as the ontology O is inconsistent, Algorithm 1 will select one
axiom that appears in some minimally inconsistent subset of atoms and attempt
to weaken it. Since the ontology O contains a finite number of axioms, if the
algorithm never terminates then at least one of these axioms must be weakened
an infinite number of times without being ever turned into the trivial axiom
⊥ ⊑ ⊤, or an axiom ⊤(a) (or a trivial set of axioms {⊤(a),⊤(b)}). But this is
impossible because of Theorem 2. ⊓⊔

It is worth remarking that this proof of almost-sure termination does not imply
anything about the expected time of Algorithm 1 as a function of ontology size,
not even that this expected time is finite. Indeed, note that it is possible for a
randomised algorithm to almost surely terminate in finite time and yet have an
infinite expected runtime.4

ℓ − ϵ) − log(i + ℓ)) ≤
∑∞

i=0(log(i + ⌈ℓ⌉ − ϵ) − log(i + ⌈ℓ⌉)) =
∑∞

i=⌈ℓ⌉(log(i − ϵ) −
log(i)), because log(i+ ℓ− ϵ)− log(i+ ℓ) ≤ log(i+ ⌈ℓ⌉ − ϵ)− log(i+ ⌈ℓ⌉), and then
showing that −

∑∞
i=⌈ℓ⌉(log(i−ϵ)− log(i)) =

∑∞
i=⌈ℓ⌉ log(i)− log(i−ϵ) diverges to plus

infinity by means of the integral method: the terms of the series are all positive, and∫ U

⌈ℓ⌉ log(x)− log(x− ϵ)dx goes to infinity when U goes to infinity. Since the integral
diverges, so does the series, which gives us our conclusion.

4 For example, suppose that the algorithm terminates in exactly n steps with proba-
bility 6/π2 · n−2. Using the fact that

∑∞
n=1 n

−2 = π2/6, we have at once that the
algorithm terminates in finite time with probability 1. However, the expectation of
its runtime would be 6/π2 ∑∞

n=1 n
−1, which diverges to infinity.

10 R. Confalonieri et al.

Tighter upper bounds than those of Lemma 3 may allow us to make such an
estimate; we leave this question to future work.

5 Length of refinement chains and tractability in practice

We showed that the iterated weakening of concepts almost surely reaches ⊤ and
that Algorithm 1 almost surely terminates. But this does not tell the whole story
and we next discuss this from a more practical perspective.

The study of [19] provides empirical evidence that axiom weakening is signif-
icantly better than axiom removal for ontology repair (gentle vs. coarse repair).
Here instead, we focus on the experimental evaluation of the almost-sure termi-
nation of our algorithm. For simplicity of exposition we focus on the evaluation
of the problem of reaching the top concept by the iterated weakening of a con-
cept. (Axiom weakening and ontology repair tasks are barely more than many
repeated iterated weakenings.) The experiments exploit our implementation5 of
the refinement operator w.r.t. various reference (consistent) ontologies.

Ontologies. To better understand the practical aspects of our refinement oper-
ators, we performed experiments on real-world ontologies from the Gene Ontol-
ogy knowledge base6, and also using synthetic randomly generated ontologies.7
About the latter, an ontology named C[num-c]_R[num-r]_[pconnect-ratio]_
[cconnect-ratio]_[existconnect-ratio] is an ALC ontology, with a signature of
[num-c] atomic concepts and [num-r] roles. Given two atomic concepts C1 and
C2, some subset relations C1 ⊑ C2 and C1 ⊑ ¬C2 are randomly generated with
roughly the probability [pconnect-ratio] and [cconnect-ratio], respectively. Given
two atomic concepts C1 and C2, and a role R, subset relations C1 ⊑ ∃R.C2 and
C1 ⊑ ¬∃R.C2 are generated with probability roughly [existconnect-ratio]. All
atomic classes are populated with one individual. For a set of parameters, we
generated ontologies until a consistent one was found. Finally, we ran the experi-
ments also on a hand-crafted ontology. a-and-b is a very small manually designed
ontology.

A ⊑ A ⊓B
B ⊑ A ⊓B
A ⊑ ∃R.(A ⊓B)

Clearly, A, B, and A ⊓ B are logically equivalent. It will help to put light on
the limitations of the syntactic approach. It also serves to illustrate that despite
the likelihood to obtain very large concepts during the iterated refinement of a
concept, the process robustly terminates.

Setting and results. For each ontology, we ran a series of refinements. In each
case, we ran 1,000 times the iterated random weakening of the concept ⊥ until
5 The implementation is available at https://bitbucket.org/troquard/ontologyutils.
6 http://geneontology.org/docs/download-ontology/
7 These ontologies can be found in the directory ontologyutils/src/master/resources/

Random/ of the implementation.

https://bitbucket.org/troquard/ontologyutils
http://geneontology.org/docs/download-ontology/
ontologyutils/src/master/resources/Random/
ontologyutils/src/master/resources/Random/

Almost certain termination for ALC weakening 11

ontology axioms |NC | |NR| min max average median

goslim_mouse 13 44 9 2 14 4.948 5
goslim_plant 49 174 9 3 18 6.385 6
goslim_generic 72 143 9 2 17 5.170 5
goslim_drosophila 160 97 9 2 15 4.628 4
goslim_metagenomics 172 114 9 3 26 6.541 6
goslim_yeast 266 164 9 3 18 5.325 5
goslim_pir 670 514 9 3 22 7.422 7

C50_R10_0.001_0.001_0.001 164 51 10 2 17 4.648 4
C100_R10_0.001_0.001_0.001 413 101 10 2 17 4.925 4
C150_R10_0.001_0.001_0.001 803 151 10 2 17 5.043 5
C300_R10_0.0001_0.0001_0.0001 811 301 10 2 14 4.057 4

a-and-b 3 2 1 3 72 16.142 14

Table 2. Characteristics of ontologies, and sizes of the chains of generalisation over
1,000 runs of iterated generalisations from ⊥ to ⊤. (Axioms, |NC | and |NR| are the
number of logical axioms count, class count, and object property count as given by the
metrics of the ontology in Protégé [16].)

the concept ⊤ was reached. In each case, we recorded the minimum length of the
chain of refinements, the maximum length of the chain of refinements, the average
length, and the median length. The results are reported in Table 2, alongside
the characteristics of the ontologies (number of logical axioms, number of atomic
concepts, and number of atomic roles) used in the experiments.

The case of a-and-b. The ontology is specifically written to trip the almost
surely terminating iterated refinement procedure with our operator. When trying
to reach ⊤ from ⊥ in the ontology a-and-b by iterated weakening, first ⊤ is
weakened into ⊤, A, B, or A ⊓ B. Then at each step, an instance of A or B
may be replaced with A, B, or A ⊓B, or with ∃R.(A ⊓B); and ∃R.(. . .) can be
weakened, possibly replacing the instances A or B as before, or into ⊤.

During the iterated refinement of ⊥ with the weakening operator, we observed
(min, max, average, median): (3, 42, 17.05, 15) with 100 runs, (3, 72, 16.142, 14)
with 1,000 runs, (3, 76, 16.0958, 14) with 10,000 runs, (3, 92, 16.01316, 14) with
100,000 runs. We see that long chains of refinements occur, but the procedure
robustly terminates.

6 Outlook

We presented a set of refinement operators for ALC, proving the almost-certain
termination of their iterated application and verifying their practical tractability
via experimental evaluation. Further additions to the general rules of refinements
need to be studied, e.g., to deal with more general logics such as SROIQ, as
was initiated in [7]. Further directions of research include the study of high-level

12 R. Confalonieri et al.

heuristics and closure conditions (e.g., for sub(O)) to steer, enrich, and accelerate
the refinement process.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

2. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Proc. of KR 2018. pp. 319–328 (2018)

3. Baader, F., Küsters, R.: Nonstandard inferences in description logics: The story
so far. In: Mathematical Problems from Applied Logic I: Logics for the XXIst
Century. pp. 1–75. Springer (2006)

4. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Proc. of KI 2007. LNCS, vol. 4667, pp. 52–67. Springer (2007)

5. Badea, L., Nienhuys-Cheng, S.: A refinement operator for description logics. In:
Cussens, J., Frisch, A.M. (eds.) Proc. of 10th ILP Conference. LNCS, vol. 1866,
pp. 40–59. Springer (2000)

6. Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R., Plaza, E.:
Upward Refinement Operators for Conceptual Blending in the Description Logic
EL++. Annals of Mathematics and Artificial Intelligence 82(1-3), 69–99 (2018)

7. Confalonieri, R., Galliani, P., Kutz, O., Porello, D., Righetti, G., Troquard, N.: To-
wards even more irresistible axiom weakening. In: Borgwardt, S., Meyer, T. (eds.)
Proceedings of the 33rd International Workshop on Description Logics (DL 2020)
co-located with the 17th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2020), Online Event [Rhodes, Greece], September
12th to 14th, 2020. CEUR Workshop Proceedings, vol. 2663. CEUR-WS.org (2020),
http://ceur-ws.org/Vol-2663/paper-8.pdf

8. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent
owl 2 dl terminologies. In: Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management. pp. 919–928 (2014)

9. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts
in OWL ontologies. In: ESWC. vol. 6, pp. 170–184. Springer (2006)

10. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. Web Semantics: Science, Services and Agents on the World Wide
Web 3(4), 268–293 (2005)

11. van der Laag, P.R., Nienhuys-Cheng, S.H.: Completeness and properness of refine-
ment operators in inductive logic programming. The Journal of Logic Programming
34(3), 201–225 (1998)

12. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics.
In: Proc. of the 17th ILP Conference. pp. 161–174 (2007)

13. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
ALC description logic. In: Proc. of the 17th ILP Conference. pp. 147–160 (2007)

14. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Machine Learning 78(1-2), 203–250 (2010)

15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Proc. of RR 2010. LNCS, vol. 6333, pp. 103–
117. Springer (2010)

http://ceur-ws.org/Vol-2663/paper-8.pdf

Almost certain termination for ALC weakening 13

16. Musen, M.A.: The Protégé Project: A Look Back and a Look Forward. AI Matters
1(4), 4–12 (2015)

17. Porello, D., Troquard, N., Peñaloza, R., Confalonieri, R., Galliani, P., Kutz, O.:
Two Approaches to Ontology Aggregation Based on Axiom Weakening. In: Lang,
J. (ed.) Proc. of the 27th International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. pp. 1942–1948 (2018)

18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of IJCAI-03. pp. 355–362. Morgan Kauf-
mann (2003)

19. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.:
Repairing Ontologies via Axiom Weakening. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18). pp. 1981–1988. AAAI Press (2018)

	Almost certain termination for ALC weakening

