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Careful rational synthesis was defined in [7] as a quantitative extension of Fisman et al.’s rational
synthesis [11], as a model of multi-agent systems in which agents are interacting in a graph arena
in a turn-based fashion. There is one common resource, and each action may decrease or increase
the resource. Each agent has a temporal qualitative objective and wants to maintain the value of the
resource positive. One must find a Nash equilibrium. This problem is decidable.

In more practical settings, the verification of the critical properties of multi-agent systems calls
for models with many resources. Indeed, agents and robots consume and produce more than one type
of resource: electric energy, fuel, raw material, manufactured goods, etc. We thus explore the prob-
lem of careful rational synthesis with several resources. We show that the problem is undecidable.
We then propose a variant with bounded resources, motivated by the observation that in practical
settings, the storage of resources is limited. We show that the problem becomes decidable, and is no
harder than controller synthesis with Linear-time Temporal Logic objectives.

1 Introduction

The presence of autonomous agents in modern societies has become commonplace. We interact with
them every day, and they may be of different levels of autonomy, e.g., self-checkout, chatbots, robot
vacuum cleaners, or virtual assistants. A current tendency is that agents are intruding on the physical
world, and robots are expanding their territory beyond their confined industrial environment.

The access to the resources necessary for an agent to accomplish his tasks could have been simply
assumed in many application domains before: direct wire to an electricity source, a human operator pro-
viding raw material, etc. Nowadays, typical agents must be more autonomous than before in managing
the multiple resources they need. They must carefully consume them, and in presence of competitors,
they must also be careful in how they produce them.

Linear-time Temporal Logic (LTL) [16] has been a very popular logic for specifying temporal prop-
erties of systems. Planning with objectives expressed in some temporal logic has been well stud-
ied [3, 9, 4, 6]. Some logics have also been proposed to explicitly verify the properties of multiagent
systems in presence of resource constraints [5, 15, 2]. When agents roam more freely the physical world,
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they are more likely to compete with other agents, human or artificial, which may have conflicting goals.
When planning in such environments an agent needs to adapt his behaviour to the capabilities and goals
of others. A solution to a multiagent planning problem in this setting is a non-cooperative strategic equi-
librium: a vector of strategies, one for each agent, such that no individual agent can be better off by
unilaterally changing their strategy. This is what has come to be known as a Nash equilibrium [14].

This paper aims to contribute to the line of research interested in the formal verification of the exis-
tence of Nash equilibria in a multiagent system [18, 11, 8, 1]. When there is a solution Nash equilibrium,
the techniques used can actually return a multiagent plan that satisfies the requisites. The paper has
a special focus to consider agents that must be autonomous in an environment with multiple common
resources, to bring the theory closer to the reality that engineers are working with.

In [7], the problem of careful rational synthesis is defined as a quantitative variant of rational synthe-
sis [11]. Agents interact in a graph arena in a turn-based fashion. Each state is controlled by one and only
one agent who decides which edge to follow. Each agent has a temporal objective that he tries to achieve.
There is one integer common resource, and each action may decrease or increase the resource. The ra-
tional synthesis problem consists in computing a Nash equilibrium that satisfies a system objective. It
is shown that in presence of one common resource, deciding the existence of a strategic equilibrium for
careful autonomous agents (with parity objectives, a canonical representation of temporal properties on
infinite traces [10]) can be solved in polynomial space. With LTL objectives, the problem can be solved
in doubly exponential space.

But in real-case scenarios, physical agents are operating in a world where there is more than one
resource. In this paper, we explore the problem of careful rational synthesis with several common re-
sources.
Example 1. Consider the game with 2 resources illustrated on Figure 1. Players 1, 2 and 3 control the
states a, b, and c respectively. The other states are controlled by Player 1 (but note that the agent who
controls them is irrelevant). Player 1 wants to reach a state with ⃝, Player 2 wants the reach a state
with □, Player 3 wants to reach a state with ♢. All of them want to keep the resources in check: they
would be dissatisfied if any of the resources were to go below zero. The objective of the system is ⃝.
A solution to the synthesis problem is thus a Nash equilibrium that reaches the state (⃝,□), and never
depletes the resources.

One starts with the resources being (0,0). Player 1 must pump thrice on a, which brings the resources
to (6,3). (Only he can increase resource two, and at least an amount of 3 is necessary to reach his
objective and the objective of the system.) Player 1 can then go to b, which brings the resources to (6,2).

At that point, Player 2 could go down. This would be the outcome of a Nash equilibrium, but it would
not be a solution to our synthesis problem since we are seeking an equilibrium satisfying the system’s
objective. Instead, let Player 2 go to c; this brings the resources vector to (4,1).

At that point, Player 3 can go down. Once again this is the outcome of a Nash equilibrium, but
this would not be solution. Instead, Player 3 could go right, and the run so obtained would satisfy the
objective of the system and keep the resources in check. However this is not the outcome of a Nash
equilibrium since Player 3 can deviate and increase his payoff by going down.

In fact, there is no solution to the synthesis problem.
It is unfortunately a negative result that we must report in Section 3. Deciding the existence of a

strategic equilibrium for careful autonomous agents in environments with multiple common resources is
indeed undecidable.

We then propose in Section 4 a variant with bounded resources. In this setting, every resource has a
maximum capacity.
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Figure 1: A 2-resource 3-player game.

Example 2. Suppose now that both resources are bounded with bounds (3,3).
As before, Player 1 must pump thrice on a, with the resources values being successively (2,1), (3,2),

and (3,3). As before, Player 2 could win in b by going down, and again this would be the outcome of a
Nash equilibrium but would not be a solution. Instead, let Player 2 go to c, which brings the resources
to (1,2).

To achieve his goal, in c, Player 3 must go down. To keep the first resource above zero, he must pump
on c twice, thus bringing the value of the first resource to 3. But doing so he would deplete the second
resource. If Player 3 instead carefully moves to the right, Player 1 and Player 2 meet their objectives,
and so does the system. Hence this outcome results in a Nash equilibrium, that is, a solution.

To summarize, when the resources are bounded with bounds (3,3), the strategies of Player 1 taking
the self-loop thrice, then going to b, Player 2 going to c, and Player 3 going to (⃝,□), form a Nash
equilibrium which is a solution to the synthesis problem.

This variant with bounded resource storage capacity is of interest for the practical engineering of
autonomous multiagent systems for two reasons. The first reason is conceptual. In many real-case
scenarios, resources are bounded: e.g., in a community, a shared tank of water can only contain a prede-
termined amount of water, a shared microgrid powerpack can only contain a predetermined amount of
energy, etc. The second reason is algorithmic. We will show that unlike in the setting with unbounded
resources, the problem of rational synthesis in this bounded setting becomes decidable. Even better,
with objectives expressed in LTL, it is not harder than the plain reactive synthesis problem, which is
2EXPTIME-complete [17].

2 Games on finite graphs

For any set Q we denote by Q∗ the set of finite sequences of elements in Q and Qω the set of infinite
sequences of elements of Q. Let w ∈ Q∗ ∪Qω , and i ≥ 1, we denote by w[i] the i-th element in w; we
denote by w[..i] the prefix of w of size i and w[i..] the suffix that starts at the i-th letter. For an element
q ∈ Q∗, lst(q) is the last element in the sequence q.

2.1 Arenas, strategies and profiles

Multi-player arenas A multi-player arena is a tuple G = ⟨S,(S1 ⊎ . . .⊎Sn),s0,P,E,AP, ℓ⟩, where S
is a finite set of states, (S1 ⊎ . . .⊎Sn) is a partition of S, s0 is an initial state, P = {1, . . . ,n} is the set of
players, E is an edge relation in S×S, AP is the set of labels (atomic propositions), and ℓ : S→ 2AP is
the labeling function. For every edge e = (s, t),Src(e) is s and Trgt(e) is t.
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Plays and strategies For an arena G , we denote the plays of this game by Plys(G ) that is the set of
elements s0s1s2 . . . in Sω such that for all i ≥ 0, (si,si+1) is in E. The set Hst(G ) is the set of prefixes of
elements in Plys(G ). Moreover Hsti(G ) for i in P is the set of elements in Hst(G ) whose last element is
in Si:

Hsti(G ) = {h ∈ Hst(G ) | lst(h) ∈ Si}

A strategy for player i is a function
σi : Hsti(G )→ S

mapping a history whose last element is s to a state s′ such that (s,s′) ∈ E. For a strategy σi for player i,
we define the set ⟨σi⟩ as the set of plays that are compatible with σi i.e.,

⟨σi⟩= {π ∈ Plys(G ) | ∀ j ≥ 0, π[.. j] ∈ Hsti(G ) =⇒ σi(π[.. j]) = π[ j+1]}

Profile of strategies Once a strategy σi for each player i is chosen, we obtain a strategy profile σ =
⟨σ1, . . . ,σn⟩. Note that a strategy profile has a unique play in its outcome. σ -i is the corresponding partial
profile without the strategy for player i. For a strategy σ ′

i for a player i, we write ⟨σ -i,σ
′
i ⟩ the profile

⟨σ1, . . . ,σ
′
i , . . . ,σn⟩. We denote by ⟨σ⟩ the unique outcome of the strategy profile σ .

2.2 Objectives and payoffs

An objective Obj is a subset of Plys(G ). We write Obji to specify that it is the objective of player i. We
define the payoff Payoff i(σ) of player i wrt. the profile σ as follows:

Payoff i(σ) =

{
1 if ⟨σ⟩ ∈ Obji
0 otherwise

LTL objective We describe specifications using the Linear-time Temporal Logic (LTL). An LTL spec-
ification is a formula φ defined using the following grammar:

φ ::= α | ¬φ | φ ∨φ | X φ | φ U φ .

where α is in AP. As usual we denote with ♢ the “finally” operator, defined as ♢φ = true U φ .
LTL formulas are evaluated over plays as follows:

ρ |= α iff α ∈ ℓ(ρ[0]) ρ |= ¬φ iff ρ ̸|= φ ρ |= φ ∨ψ iff ρ |= φ or ρ |= ψ ,

ρ |= X φ iff ρ[1..] |= φ ρ |= φ U ψ iff ∃i ≥ 0, ρ[i..] |= ψ and ∀0 ≤ j < i, ρ[ j..] |= φ ,

where ρ ∈ Sω ,α ∈ AP,φ ∈ LTL, and ψ ∈ LTL.
For an LTL formula φ , we define the set ⟨φ⟩ as the set of plays satisfying φ , i.e.,

⟨φ⟩= {ρ ∈ Sω | ρ |= φ}

When the objectives are described as LTL formulas, a play ρ satisfies the objective of player i if ρ ∈
⟨Obji⟩. Similarly we will sometimes write Obji to denote the set ⟨Obji⟩.

In the sequel, we will use the temporal modality ♢φ as a shortcut for the formula (True U φ).
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Energy objectives Let cost : E → Z be a cost function. To lighten the notation, we write cost(s, t)
instead of cost((s, t)). Let h = s0s1 . . .sn be a history in Hst(G ); we abusively write cost(h) to mean the
extension of cost to histories that is

cost(h) =
n−1

∑
i=0

cost(si,si+1)

The energy objective for a game G equipped with a cost function cost is given by the set Energy described
as follows:

Energy(G ) = {π ∈ Plys(G ) | ∀i ≥ 0, cost(π[..i])≥ 0}

Throughout the paper, values of cost are encoded in binary.

Multi-energy objectives Let cost : E→ Zd be a multi dimensional cost function. We extend cost as
expected to histories.

The multi-energy objective for a game G equipped with a multi dimensional cost function cost is
given by the set MultiEnergy described as follows:

MultiEnergy(G ) = {π ∈ Plys(G ) | ∀i ≥ 0, cost(π[..i])≥ (0, . . . ,0)}

We will denote by costi the function obtained by projecting cost over the i-th dimension.

2.3 Solution concept

We define in our setting the notion of equilibrium introduced by Nash. A Nash equilibrium is a profile
of strategies in which no player could do better by unilaterally changing his strategy, provided that the
other players keep their strategies unchanged. The set of all the Nash equilibria in a game is denoted NE.

Nash equilibria For a multi-player game G = ⟨S,(S1 ⊎ . . .⊎Sn),s0,P,E,AP, ℓ⟩ with objectives Obj1,
. . . ,Objn for each player, a profile σ = ⟨σ1, . . . ,σn⟩ is a Nash equilibrium (NE) if for every player i and
every strategy σ ′

i for i the following holds true:

Payoff i(σ)≥ Payoff i(⟨σ -i,σ
′
i ⟩)

Equivalently for each player i and for each strategy σ ′
i , if ⟨σ -i,σ

′
i ⟩ ∈ Obji then ⟨σ⟩ ∈ Obji.

2.4 Rational synthesis in the commons

Careful cooperative rational synthesis Let G = ⟨S,(S1⊎. . .⊎Sn),s0,P,E,AP, ℓ⟩ be a game, cost : E→
Zd be a multi dimensional cost function, objectives Obj1, . . . ,Objn, Obj a global specification and let σ

be a strategy profile. Then σ is a solution to the careful cooperative rational synthesis problem if:

⟨σ⟩ ∈MultiEnergy(G )∩Obj,and ∀σ
′
i a strategy for player i,

⟨σ−i,σ
′
i ⟩ ∈ Obji ∩MultiEnergy(G ) =⇒ ⟨σ⟩ ∈ Obji
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3 Undecidability

We present multi-counter automata and the problem of reachability which is undecidable. We reduce it
to the problem of careful cooperative rational synthesis.

3.1 Multi-counter automata

A n-counter automaton Γ is a tuple (L,δ , l0) where L is a finite set of locations, δ is a set of transitions,
and l0 ∈ L is the initial location. A transition in δ is a tuple (l, w⃗, g⃗, l′) where l and l′ are locations in L,
w⃗ ∈ Zn represents the weights of the transition, and g⃗ ∈ (N× (N∪{ω}))n represents the guards of the
transitions. Given a transition δ , we note gi[lo] the lower-bound for counter i and gi[up] the upper-bound.

A finite run in a n-counter automaton is a triple (k,µ1,µ2), where µ1 : {0, . . . ,k} → L and µ2 :
{0, . . . ,k}→ Zn, and such that:

• µ1(0) = l0 and µ2(0) = (0, . . . ,0)

• for every i < k, if µ1(i) = l and µ2(i) = (c1, . . . ,cn), and µ1(i+1) = l′ and µ2(i+1) = (c′1, . . . ,c
′
n),

then there is (l, w⃗, g⃗, l′)∈ δ , such that for all 0 ≤ i≤ n, we have gi[lo]≤ ci ≤ gi[up] and c′i = ci+wi.

The reachability problem (Γ, t) in n-counter automata asks, given a n-counter automaton Γ=(L,δ , l0)
and a location t ∈ L, whether there is a finite run (k,µ1,µ2) such that µ1(k) = t, and µ2(k) = (0, . . . ,0).

The following lemma can be easily proved using a reduction from 2-counter machines [13].

Lemma 3. The reachability problem in 2-counter automata is undecidable.

3.2 Undecidability of multi-resources careful cooperative rational synthesis

We reduce the reachability problem in 2-counter automata into the problem of careful cooperative ratio-
nal synthesis with two resources and two players.

From a 2-counter automaton Γ = (L,δ , l0) and a target location t, we are going to build a game
GΓ,t = ⟨SΓ,t ,(S1

⊎
S2),sΓ,t ,{1,2},EΓ,t ,APΓ,t , ℓΓ,t⟩ with costs costΓ,t and objectives Obj1,Obj2, Obj =

Obj1, in such a way that a solution to the reachability problem exists iff a solution to the careful cooper-
ative rational synthesis exists.

Construction We are going to use two players in this construction. Player 1’s role will be to build a
solution, choosing the transitions to follow. Player 2’s role will be to “check” that the transitions are
legitimate, making Player 1 fail in his tasks if a transition that does not respect the guards is taken.

In GΓ,t , we first add the three states: W1 representing the winning state of Player 1, and W2, and W ′
2

representing the winning states of Player 2. They will be sink states, and it does not matter who controls
them.

Each location in Γ is also a state in GΓ,t , controlled by Player 1.
For each transition τ =(l, w⃗, g⃗, l′) in δ we introduce two states τ< and τ>, both controlled by Player 2,

and a few transitions. Intuitively, the state τ> will serve as a state in which Player 2 will “check” that
the upper-guard is satisfied. (Player 2 will have the opportunity to win if it does not.) The state τ< will
serve for the system to “check” that the lower guard is satisfied. (The value of one of the resources will
go below zero if it is not the case.) There are four cases to consider; They are illustrated on Figure 2:
(2a) g1[up] ̸= ω and g2[up] ̸= ω; (2b) g1[up] ̸= ω and g2[up] = ω; (2c) g1[up] = ω and g2[up] ̸= ω;
(2d) g1[up] = ω and g2[up] = ω .
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l τ>

W2 W ′
2

τ<

l′

0,0 −d1,−d3

−(d2 +1),0 0,−(d4 +1) d1 +w1,d3 +w2

0,0 0,0

(a) Case transition with counter 1 up-bounded and
counter 2 up-bounded: g1[up] ̸= ω and g2[up] ̸= ω .
Let g1[lo] = d1, g1[up] = d2, g2[lo] = d3, g2[up] =
d4.

l τ>

W2

τ<

l′

0,0 −d1,−d3

−(d2 +1),0 d1 +w1,d3 +w2

0,0

(b) Case transition with counter 1 up-bounded and
counter 2 non-bounded: g1[up] ̸= ω and g2[up] =
ω . Let g1[lo] = d1, g1[up] = d2, g2[lo] = d3.

l τ>

W ′
2

τ<

l′

0,0 −d1,−d3

0,−(d4 +1) d1 +w1,d3 +w2

0,0

(c) Case transition with counter 1 non-bounded and
counter 2 up-bounded: g1[up] = ω and g2[up] ̸= ω .
Let g1[lo] = d1, g2[lo] = d3, g2[up] = d4.

l τ> τ<

l′

0,0 −d1,−d3

d1 +w1,d3 +w2

(d) Case transition with counter 1 non-bounded and
counter 2 non-bounded: g1[up] = ω and g2[up] =
ω . Let g1[lo] = d1, g2[lo] = d3.

Figure 2: Gadgets to encode the transitions.

t t?

W2 W ′
2

W1

0,0 0,0

−1,0 0,−1

0,0

0,0 0,0

Figure 3: Gadget to encode the target location t with counter values (0,0).

We also need a gadget to “check” that solutions are runs that reach the target location with the values
of the counters being zero. We introduce a state t? in GΓ,t , controlled by Player 2. See Figure 3.

The five gadgets also completely specify the cost function costΓ,t .
The game GΓ,t does not contain any other state or transition.
The initial state is sΓ,t . The set of propositions APΓ,t is SΓ,t , and the labeling function ℓΓ,t is the

identity.

In the game so obtained, the objective of Player 1 is to reach the state W1 and the objective of Player 2
is to reach state W2 or W ′

2.

We now prove that the construction above can serve as a reduction from the reachability problem in
2-counter automata into the problem of careful rational synthesis (with two common resources).

Proposition 4. Let Γ = (L,δ , l0) be a 2-counter automaton and let t be a location in L. The reachability
problem (Γ, t) has a positive answer iff there is a solution to the careful cooperative rational synthesis in
the game GΓ,t = ⟨SΓ,t ,(S1

⊎
S2),sΓ,t ,{1,2},EΓ,t ,APΓ,t , ℓΓ,t⟩.

Proof. Left to right. Suppose there is a solution to the reachability problem. There is a run (k,µ1,µ2)
such that µ1(k) = t, and µ2(k) = (0,0). For every i, let τ i = (li,(wi

1,w
i
2),(g

i
1,g

i
2), l

′i) be the transition
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between µ1(i) and µ1(i+ 1). By definition of the reachability problem, we know that the guards of
all of them are satisfied. Since it reaches t at step k, the following sequence is a run in GΓ,t : πρ :=
µ1(0) ·τ0

> ·τ0
< ·µ1(1) ·τ1

> ·τ1
< · · ·µ1(k) ·t? ·(W1)

ω . We argue that πρ satisfies the objective, it never depletes
the common resources, it is the play of a Nash equilibrium.

• Since the play πρ enters W1, it is in Obj.

• Since (k,µ1,µ2) is a solution to the reachability problem, by construction of GΓ,t , the values of the
counters along the play πρ never go below 0.

• Along the play πρ , in every τ i
<, Player 2 chooses to go τ i

>. Since the guards are respected along
the run (k,µ1,µ2) in Γ, by construction of GΓ,t , Player 2 never has an opportunity in any state τ i

>

to deviate carefully (and profitably) to W2 or W ′
2.

In state t?, Player 2 chooses to go to W1. Since µ2(k) = (0,0), the play πρ enters the state t? with
both counters being 0. Thus, Player 2 cannot deviate carefully (and profitably) to W2 or W ′

2.
Since the play πρ enters W1, it is winning for Player 1, who has no incentive to deviate.
Hence, πρ is the outcome of a Nash equilibrium.

So there is a solution to the careful cooperative rational synthesis.
Right to left. Suppose there is a solution to the problem of careful cooperative rational synthesis.

By definition of the problem of careful cooperative rational synthesis, there is a strategy profile σ

such that:

1. The profile σ is a Nash equilibrium.

2. The value of each resource never goes below 0.

3. The play ⟨σ⟩ reaches the state W1.

We argue that the play ⟨σ⟩ of GΓ,t reaches t with the value of the resources being (0,0).

4. Since ⟨σ⟩ reaches the state W1, by construction of the game, ⟨σ⟩ is losing for Player 2. By con-
struction also, ⟨σ⟩ goes through the state t?. Since σ is a Nash equilibrium, it must be that the value
of the resources when it goes through the state t? are (0,0), otherwise, Player 2 would profitably
choose to go to W2 or W ′

2 instead of W1. Suppose ⟨σ⟩ reaches t at index kt . I.e., ⟨σ⟩[kt ] = t, and
cost(⟨σ⟩[..kt ]) = (0,0).

Let ρσ = (kt ,µ1,µ2) be the finite run in Γ that is the projection of ⟨σ⟩[..kt ] onto L. We argue that ρσ

is a solution to the reachability problem (Γ, t).

• From item 4, ⟨σ⟩ reaches t at index kt with resource values (0,0). So ρσ reaches the state (t,(0,0)).

• We argue that the upper guards are always respected along ρσ . By item 3 and by construction, we
know that ⟨σ⟩ is not winning for Player 2. But since σ is a Nash equilibrium (item 1), Player 2
never has an opportunity to carefully (and profitably) deviate to W2 or W ′

2. So when going through
a transition τ = (l, w⃗, g⃗, l′), say at step j along ρσ , if µ2( j) = (c1,c2) then c1 ≤ g1[up] and c2 ≤
g2[up].

• By construction, it follows from item 2 that the lower guards are always respected along ρσ .

The next result follows at once.

Theorem 5. The problem of careful cooperative rational synthesis is undecidable, even with two players
and two resources, and reachability objectives.
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4 Bounded resources and decidability

In this section we consider the so-called bounded setting. Here each counter will be bounded from above
by some bound B and cannot store more that B. Intuitively, one can continue to charge a battery, but the
energy exceeding the capacity will be lost in heat; just like one can continue to fill up a tank of water but
it will spill over when the capacity is reached.

The main result of this section will be the decidability of the synthesis problem in this case.
Given a game G = ⟨S,(S1 ⊎ . . .⊎Sn),s0,P,E,AP, ℓ⟩, and multidimensional cost function cost : E→

Zd , we fix a vector in Nd representing the maximal capacity of each counter. We use cost(s,s′)[i] to
denote the i-th component of the tuple cost(s,s′). Along a run when a counter is at capacity its value
cannot increase. Formally, Assume that the capacity is given by the following vector B⃗ = (B1, . . . ,Bd).
We define the operator ⊕B⃗ over vectors in Zd as follows:

(c1, . . . ,cd)⊕B⃗ (c
′
1, . . . ,c

′
d) = (x1, . . . ,xd) where ∀1 ≤ i ≤ d, xi = min(ci + cost(s,s′)[i],Bi)

We can now define the cost vector along a history h = s0 s1 . . . sn inductively as follows

cost(h) = cost(s0 s1 . . . sn−1)⊕B⃗ cost(s j,s j+1)

The decidability result is obtained through an unfolding of the arena. This unfolding constructs a
multiplayer game without costs Ĝ where the set of states is Ŝ= S×{0, . . . ,B1}× . . .×{0, . . . ,Bd}∪{⊥}.
The set of edges is Ê in (Ŝ× Ŝ)∪ (Ŝ×{⊥})∪{(⊥,⊥)} and is defined as follows:

((s,c1, . . . ,cd),(s′,c′1, . . . ,c
′
d)) ∈ Ê

if
• (s,s′) in E

• (c1, . . . ,cd)⊕B⃗ cost(s,s
′) = (c′1, . . . ,c

′
d)

• (c′1, . . . ,c
′
d)≥ (0, . . . ,0)

and

((s,c1, . . . ,cd),⊥) ∈ Ê

if
• there exists s such that (s,s′) in E

• for some counter value ci we have ci + costi(s,s′)< 0.
Also (⊥,⊥) ∈ Ê.

In this new game a state (s,c1, . . . ,cd) belongs to player i if s belongs to player i. Player 1 controls
also the fresh state ⊥. The objective of each player is the same and the global specification in Ĝ is
Obj∧¬♢⊥. Plays in this unfolding are infinite sequences of Ŝ. In order to relate plays in G with plays
in Ĝ we use the following projection π defined over the set of histories as follows: first,

π(s0) = (s0,0, . . . ,0)

and for a history h = s0 s1 . . . sl in G :

π(s0 s1 . . . sl) = π(s0 s1 . . . sl−1)(s,cost(s0 s1 . . . sl))

We extend π over the plays as expected and denote by π−1 the inverse mapping.
For a play ρ̂ , we say that ρ̂ satisfies the objective of player i if π−1(ρ̂) satisfies Obji. We will say that

a play ρ̂ satisfies Obj∧¬♢⊥ if π(ρ̂) satisfies Obj and ρ̂ satisfies ¬♢⊥.
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Proposition 6. There exists a solution to the careful synthesis if and only if there exists a Nash equilib-
rium in the unfolding whose outcome satisfies Obj∧¬♢⊥.

Proof. Let σ be a solution in G , we construct σ̂ as follows:

σ̂ = (σ̂i, . . . , σ̂n)

such that each σ̂i is defined as follows:

σ̂i(ĥ) = σi(π(ĥ))

where ĥ is a history of Ĝ , and σi is the strategy of player i in the profile σ . We argue that σ̂ is also a
solution thanks to the following fact:

• σ̂ is a Nash equilibrium since each σ̂i ensures the same payoff as σi.

• σ is solution, hence it ensures that the energy along its outcome never drops bellow 0 for all the
counters, hence by construction ⊥ is never visited.

Let σ̂ be a solution of Ĝ , then we construct σ as follows:

σ = (σ1, . . . ,σn)

where for each history h,

σi = σ̂i(π(h))

We argue that σ is also a solution thanks to the following fact:

• σ is a Nash equilibrium since each σi ensures the same payoff as σ̂i.

• σ̂ is solution, hence it ensures that ⊥ is never visited, therefore by construction the energy along
the outcome of σ never drops below 0 for all the counters,

By Proposition 6, we know that we can solve careful synthesis in the original arena by reducing
it to plain rational synthesis in the unfolding. It is readily seen that the size of the unfolding of the
arena defined above is exponential in the size of the original arena. On the other hand, solving the
cooperative rational synthesis with LTL objectives is in 2EXPTIME in the size of the objectives formulas,
and polynomial in the size of the arena [11, 12]. It follows that our problem is 2EXPTIME when the
counters are bounded.

Theorem 7. The careful cooperative rational synthesis is 2EXPTIME-complete when the counters are
bounded.

5 Conclusion

As agents and robots are always more likely to roam the physical world, the formal tools to engineer
them need to take into account the resource-sensitiveness of their activities.

We presented a model for autonomous and rational agents interacting in environments with multiple
resources. We focused on a problem of rational planning, rational synthesis, that consists in finding a
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non-cooperative equilibrium (a Nash equilibrium) that satisfies a system objective, and never depletes
the resources. We showed that this problem is undecidable.

We then proposed a variant where the storage capacity is bounded for all resources. We claim that
this is promising for the applicability to real-world settings. The storage of resources is indeed generally
limited (energy power capacity of a battery, volume of a water tank, etc). Moreover, we proved that the
problem of rational synthesis with LTL objectives becomes decidable in double-exponential time, which
is no harder than plain controller synthesis for LTL specifications.

In the future, we are interested in the study of problems to elaborate tools that better equip the
engineers of agents and robots in resource-sensitive environments. In particular, we will investigate
problems of parameterized synthesis allowing an engineer to partially model a system, leaving some
quantities unspecified (for example, we can leave unspecified some weights of transitions or the bounds
of the resources), and with the aim of automatically completing the system in a way that it admits a
solution to the synthesis problem.
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