
Dynamic logic of propositional assignments:
a well-behaved variant of PDL

Philippe Balbiani
Université de Toulouse and CNRS, IRIT

Toulouse, France
Email: Philippe.Balbiani@irit.fr

Andreas Herzig
Université de Toulouse and CNRS, IRIT

Toulouse, France
Email: Andreas.Herzig@irit.fr

Nicolas Troquard
LOA-ISTC-CNR

Trento, Italy
Email: troquard@loa.istc.cnr.it

Abstract—We study a version of Propositional Dynamic Logic
(PDL) that we call Dynamic Logic of Propositional Assignments
(DL-PA). The atomic programs of DL-PA are assignments of
propositional variables to true or to false. We show that DL-PA
behaves better than PDL, having e.g. compactness and eliminabil-
ity of the Kleene star. We establish tight complexity results: both
satisfiability and model checking are EXPTIME-complete.

I. Introduction

Dynamic logics are logics to reason about imperative pro-
grams. Their language extends that of propositional logic by
modalities 〈π〉, one per program π. Programs are either atomic
or complex, the latter being built by means of sequential
and nondeterministic composition, test and iteration (‘Kleene
star’). The models of PDL are transition systems: each tran-
sition is labeled with the name of an atomic program and
indicates the possible execution of an atomic program from
one state to another. The modal formula 〈π〉ϕ is true at state s if
there is an execution of π from s leading to a state satisfying ϕ.

The basic dynamic logic is Propositional Dynamic Logic
(PDL). Its atomic programs are abstract: they are just letters
a, b, . . . from some alphabet. Thus “PDL abstracts away from
the nature of the domain of computation and studies the pure
interaction between programs and propositions” [1, p. 147].
In contrast, the atomic programs of first-order dynamic logic
are concrete, viz., assignments of object variables to terms [1,
ch. 11]. They capture assignments as used in programming
languages. We are here interested in a different kind of
assignments: assignments of propositional variables to truth
values, for short: propositional assignments. We write +p and
−p for such assignments, where p is a propositional variable.

Only few authors studied such propositional assignments.
The first were Meyer and Winklmann, who considered both
assignments of object variables and assignments of propo-
sitional variables [2]. Tiomkin and Makowsky focused on
propositional assignments [3]. They augmented the language
of PDL with two kinds of propositional assignments: local
and global. Local assignments modify the truth value of a
propositional variable at the actual state of a Kripke model
and leave its value unchanged elsewhere. Global assignments
modify the value of a propositional variable everywhere in a
Kripke model. Besides these two distinct kinds of assignments,
their logic still contains abstract atomic programs a, b, . . .

They establish that the logic embeds first-order dynamic
logic [3]. It is perhaps due to the ensuing undecidability
result that dynamic logics with propositional assignments did
not gain much traction, despite their putative usefulness for
modelling concrete properties of computational systems. A
notable exception is Wilm’s decidable Propositional Program
Logic PPL [4]. PPL is a dynamic logic with deterministic
atomic programs (alias ‘Strict PDL’), plus nondeterministic
composition “∪”, plus Tiomkin and Makowsky’s global propo-
sitional assignments. (So PPL has abstract atomic programs
just as Tiomkin and Makowsky’s logic.) Wilm showed that
the Kleene star operator can be simulated in PPL.

More recently, dynamic logics with assignments but with-
out abstract programs were investigated, chiefly in logics
of agents, as variants of dynamic epistemic logics (DEL).
The basic version of DEL is Public Announcement Logic
(PAL). PAL extends multi-agent epistemic logic with dynamic
operators whose arguments are truthful public announcements
of propositions. Epistemic riddles and cryptographic protocols
were successfully modelled in PAL (see e.g. [5]). It was
extended by public assignments in [6]–[8], which model how
agents’ knowledge changes when some propositional variable
is publicly assigned to true or to false. None of these papers
explored the program operators of PDL. Again, the designated
culprit is an issue of computability: Miller and Moss showed
that the addition of the PDL program connectives to PAL yields
an undecidable logic [9].

In this paper we revisit the logic of propositional assign-
ments. Contrarily to Tiomkin and Makowsky, our language
has no abstract programs; Contrarily to the approaches in
the PAL tradition, it does not have epistemic operators. We
call our logic Dynamic Logic of Propositional Assignments,
abbreviated DL-PA. We present it in Section II. We briefly
compare it to PDL in Section III, showing that it can be viewed
as an instantiation of PDL with assignment programs.

The star-free version of DL-PA was previously studied by
van Eijck [10] and recently put to use in [11]. Van Eijck
gave an axiomatisation of star-free DL-PA and stated that the
addition of the Kleene star does not increase the expressivity
because “an arbitrary [program] π∗ only affects a finite number
of atomic propositions”. He however observes that “[f]inding
an efficient method for translating π∗ [programs] into ∗-free
form is another matter”. In Section IV we show that the Kleene

star can be constructively eliminated in DL-PA, providing thus
a procedure reducing DL-PA to its star-free fragment. From
this, decidability of the satisfiability problem follows. Our re-
sult contrasts with both Miller and Moss’s undecidability result
for the extension of PAL by the PDL program connectives and
with Tiomkin and Makowsky’s undecidability result for the
extension of PDL by local assignments.

But the decidability of DL-PA is not to be doubted given the
nature of its models: its semantics does not require a transition
system, given that there is no need for an accessibility relation
interpreting abstract actions. Models are in fact made up
of a single state, i.e., a valuation of classical propositional
logic. Propositional assignments then update these valuations
in the obvious way. Being able to do PDL-style reasoning
whilst relying on such ‘degenerate’, succinctly specified mod-
els, has an immediate practical advantage when modelling a
computational system. Indeed, it is folklore that modelling
a distributed system is typically achieved by a transition
system of size exponential in the number of variables. The
applicability of verification via model checking is then imme-
diately compromised: a system designer cannot realistically
be expected to even represent the model, let alone verify it.
Instead, the modelling of a system in view of verification with
DL-PA is confined to the initial state of affairs. Naturally,
quite some modelling effort is shifted to the query, which
needs to represent the dynamic constraints of the relevant
variables. But it happens that it often does not impact much
the size of the whole input to a model checking procedure.
We exemplify this by efficiently mapping the instances of a
variant of a decision problem concerning the game Peek [12]
into instances of the DL-PA model checking. Stockmeyer
and Chandra showed that deciding the former is provably
difficult. Thus, unfortunately, it also means that there is a
price to pay for this comparatively effortless modelling task:
the computational complexity of model checking with DL-PA
is EXPTIME-complete. In contrast, the complexity of model
checking a transition system with PDL is PTIME-complete. As
we shall show, the complexity of DL-PA satisfiability checking
remains EXPTIME-complete, which is also the complexity of
PDL.1 Under a commonly accepted conjecture in complexity
theory, this indicates that van Eijck’s problem does not have a
full solution: there is probably no efficient method to eliminate
the Kleene star from DL-PA. We introduce Peek in Section V,
and provide the lower bounds for the model checking and
satisfiability checking problems. Section VI addresses the
upper bounds.

In Section VII we discuss the extensions of DL-PA with
assignments of any formula as atomic programs (and not
just true and false) and with converse as a new program
construct. In Section VIII we investigate the tight relationship
of DL-PA with Coalition Logic of Propositional Control and
Delegation (DCL-PC) [13], correcting a mistake in [13] about
the complexity of DCL-PC.

1This corrects an error in the published version of [11] that was already
signaled by an erratum of a few lines on the IJCAI website.

II. DL-PA: dynamic logic of propositional assignments

In this section we define syntax and semantics of dynamic
logic of propositional assignments DL-PA.

A. Language

Throughout the paper, P = {p, q, . . .} denotes a (fixed)
countable set of propositional variables. The language of
DL-PA is defined by the following grammar:

π F +p | −p | π; π | π ∪ π | π∗ | ϕ?
ϕ F p | > | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

where p ranges over P. So atomic programs are of the
form +p or −p. In a few places we will use the expression
±p to talk economically about +p and −p. The operators
of sequential composition (“;”), nondeterministic composition
(“∪”), unbounded iteration (“∗”, the Kleene star), and test (“?”)
are familiar from PDL.

The program skip abbreviates >? (“nothing happens”). We
use the abbreviation πn with the obvious meaning. We also
use bounded iteration “π≤n”, i.e., iteration up to integer n, as
a macro for

⋃
k≤n π

k. A program is said to be sequential if it
is built up from atomic programs and tests by means of the
operator “;”.

We abbreviate the logical connectives ∧, → and ↔ in the
usual way. Aside the dynamic operator 〈π〉, we also use its
dual: [π]ϕ abbreviates ¬〈π〉¬ϕ.

The length of a formula ϕ, noted |ϕ|, is the number of sym-
bols used to write down ϕ in the primitive language, without
〈, 〉, and parentheses. For example, |q ∧ r| = |¬(¬q ∨ ¬r)| = 6.
The length of a program π, noted |π|, is defined in the same
way. For example, |−p; p?| = 5. Also |〈+q〉(q ∧ r)| = 2+6 = 8.

We define Pϕ to be the set of variables from P occurring in
formula ϕ, and we define Pπ to be the set of variables from P
occurring in program π. For example, P−p∪+q = {p, q} = P〈−p〉q.

B. Semantics

Models of DL-PA are nothing but models of classical
propositional logic.

Definition 1. A valuation is a subset of the set of propositional
variables P. The size of a valuation v is the cardinality of v.

DL-PA programs are interpreted by means of a (unique)
relation between valuations: atomic programs +p and −p
update valuations in the obvious way, and complex programs
are interpreted just as in PDL by mutual recursion. Table I
gives the interpretation of the DL-PA connectives.

Definition 2. A formula ϕ is DL-PA valid if ||ϕ|| = 2P, and ϕ
is DL-PA satisfiable if ||ϕ|| , ∅.

DL-PA validity and DL-PA satisfiability are defined as usual.
For example, the formulas 〈+p〉> and 〈+p〉ϕ↔ ¬〈+p〉¬ϕ are
DL-PA valid. Other examples of DL-PA validities are 〈+p〉p
and 〈−p〉¬p. Observe that if p does not occur in ϕ then both
ϕ → 〈+p〉ϕ and ϕ → 〈−p〉ϕ are valid. This is due to the
following semantical property that we will use a few times in
this paper.

||+p|| =
{
(v, v′) : v′ = v ∪ {p}

}
||−p|| =

{
(v, v′) : v′ = v \ {p}

}
||π; π′ || = ||π|| ◦ ||π′ ||
||π ∪ π′ || = ||π|| ∪ ||π′ ||

||π∗ || =
⋃

k∈N0

(||π||)k

||ϕ?|| = {(v, v) : v ∈ ||ϕ||}

||p|| = {v : p ∈ v}

||>|| = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||
||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||〈π〉ϕ|| = {v : there is v′ s.t. (v, v′) ∈ ||π|| and v′ ∈ ||ϕ||}

TABLE I
Interpretation of the DL-PA connectives

Proposition 1. Suppose p < Pϕ, i.e., p does not occur in ϕ.
Then v ∪ {p} ∈ ||ϕ|| iff v \ {p} ∈ ||ϕ||.

The next proposition shows that the model checking prob-
lem can be reduced in logarithmic space to the satisfiability
problem.

Proposition 2. For every valuation v and formula ϕ, v ∈
||ϕ|| iff the formula

ϕ ∧

 ∧
p∈Pϕ∩v

p

 ∧
 ∧

p∈Pϕ\v

¬p

is DL-PA satisfiable.

Definition 3. Two formulas ϕ and ϕ′ are formula-equivalent
(or logically equivalent) if ||ϕ|| = ||ϕ′||, i.e., if ϕ ↔ ϕ′ is
DL-PA valid. Two programs π and π′ are program-equivalent,
in symbols π ≡ π′, if ||π|| = ||π′||.

C. Example: the n-bit counter

Here is a DL-PA program implementing an n bit counter. We
need n propositional variables q0, . . . , qn−1. The conjunction
time(0) = ¬qn−1∧· · ·∧¬q1∧¬q0 encodes that the counter has
value zero; time(1) = ¬qn−1∧· · ·∧¬q1∧q0 encodes value one;
time(2n − 1) = qn−1 ∧ · · · ∧ q1 ∧ q0 encodes 2n−1. Let time(N)
encode that the counter has value N.

Here is a program incrn incrementing the n bit counter until
2n−1 is attained and then fails:

incrn = ¬(qn−1 ∧ · · · ∧ q0)?; ⋃
0≤k≤n−1

(¬qk ∧ qk−1 · · · ∧ q0?; +qk;−qk−1; · · · ;−q0)

Observe that the length of incrn is quadratic in n. Observe

moreover that the formula

time(0)→ [incrn
∗]

∧
N<2n−1

(
time(N)→ (〈incrn〉> ∧ [incrn]time(N+1))

)

and the formula

[incrn
∗]
(
time(2n−1)→ [incrn]⊥)

)
are both DL-PA valid. The reader may check that the counter
indeed runs from zero to 2n−1 and then fails: the formula

¬qn−1 · · · ∧ ¬q0 → 〈incrn
∗〉
(
qn−1 · · · ∧ q0 ∧ [incrn]⊥

)
is DL-PA valid.

III. Relation with PDL

Let us briefly recall PDL. Its grammar has exactly the
same form as that of our DL-PA, except that PDL has a
countable set Π0 of abstract atomic programs instead of the
DL-PA assignments +p and −p. The models of PDL are
triples M = (W,R,V) where W is a nonempty set of states,
R : Π0 −→ 2W×W associates with every atomic program
π0 ∈ Π0 an accessibility relation R(π0) on W, and V : W −→ 2P

associates with every state a subset of P. We write M,w ϕ
when the PDL formula ϕ is true at state w of model M.

For the sake of comparison, suppose the set of atomic
programs Π0 contains {+p : p ∈ P}∪ {−p : p ∈ P}. Then the
set of DL-PA validities obviously contains the set of PDL va-
lidities. To see this, build the Kripke model MDL-PA = (W,R,V)
such that W = 2P, V is the identity function, and such that if π0
is of the form +p or −p then (v1, v2) ∈ R(π0) iff (v1, v2) ∈ ||π0||;
we can prove that for every valuation v and DL-PA formula
ϕ we have v ∈ ||ϕ|| iff MDL-PA, v ϕ. So when ϕ ↔ ϕ′ is
PDL valid then ϕ and ϕ′ are formula-equivalent in DL-PA.
The converse does not hold: for instance, 〈+p〉> ↔ > is valid
in DL-PA, but not in PDL.

As to program equivalence, let us say that programs π and
π′ are program-equivalent in PDL if for every model M =

(W,R,V) we have R(π) = R(π′). Clearly, when π and π′ are
program-equivalent in PDL then π and π′ are also program-
equivalent in DL-PA. Again, the converse does not hold; to
witness, +p; +q and +q; +p are program equivalent in DL-PA,
but not in PDL.

We are going to show in Sections V and VI that both the
model checking and the satisfiability problem of DL-PA have
the same complexity as the satisfiability problem of PDL. The
proof involves a polynomial embedding of DL-PA into PDL
(Section VI, Proposition 16).

IV. Constructive eliminability of the Kleene star

In this section we show how dynamic operators can be
eliminated from formulas. The key step is the elimination of
the star operator. This allows us to establish decidability of
satisfiability (Section IV-C) and compactness (Section IV-D).

A. Some remarkable properties

We now state some properties of DL-PA that already hold
for PDL. We say that a program is star-free if it does not
contain the Kleene star “∗”. We recall that in star-free PDL, the
program operators can be entirely eliminated from formulas.

Proposition 3. The following formula equivalences are DL-PA
valid.

〈π; π′〉ϕ↔ 〈π〉〈π′〉ϕ
〈π ∪ π′〉ϕ↔ 〈π〉ϕ ∨ 〈π′〉ϕ

〈ψ?〉ϕ↔ ψ ∧ ϕ

〈π≤0〉ϕ↔ ϕ

〈π≤n+1〉ϕ↔ ϕ ∨ 〈π〉〈π≤n〉ϕ

Program equivalence is a congruence relation w.r.t. ‘;’ and
‘∪’: if π1 ≡ π′1 and π2 ≡ π′2 then both π1; π2 ≡ π′1; π′2 and
π1 ∪ π2 ≡ π

′
1 ∪ π

′
2.

Proposition 4. The following program equivalences are
DL-PA valid.

π ; (π′; π′′) ≡ (π; π′) ; π′′ (1)
π ; (π′ ∪ π′′) ≡ (π; π′) ∪ (π; π′′) (2)
(π ∪ π′) ; π′′ ≡ (π; π′′) ∪ (π′; π′′) (3)

ϕ? ; ψ? ≡ ϕ ∧ ψ? (4)
skip; π ≡ π (5)
π ; ϕ? ≡ 〈π〉ϕ? ; π if π is sequential (6)

(ϕ?; π) ∪ π ≡ π (7)
ϕ? ∪ ¬ϕ? ≡ skip (8)

π≤0 ≡ skip (9)

π≤n+1 ≡ skip ∪ π; π≤n (10)

Proposition 5. In DL-PA, if ϕ and ϕ′ are formula-equivalent
then ϕ? and ϕ′? are program-equivalent.

Proposition 6. In DL-PA, if π and π′ are program-equivalent
then 〈π〉ϕ and 〈π′〉ϕ are formula-equivalent.

Proposition 7. Let ε be an expression (either a formula or
a program). Let π be a program occurring in ε. Let ε′ be
obtained from ε by replacing some occurrence of π by π′. If
π and π′ are program-equivalent then ε and ε′ are (program
or formula) equivalent.

Proof: The proof is a routine induction on the length of
the expression ε. For the case ε = ϕ? we use Proposition 5,
and for the case ε = 〈π〉ϕ we use Proposition 6.

We call a program a conditioned sequence of assignments
if it is of the form

ϕ?; π1; · · · ; πn, for n ≥ 0

where every πk is an atomic program. When n = 0 we identify
the sequence with ϕ?.

Proposition 8. In DL-PA, every star-free program π is
program-equivalent to the nondeterministic composition of
conditioned sequences of assignments.

Proof: We start by distributing “;” over ‘∪’, applying the
program equivalences (2) and (3) of Proposition 4. The result
is a nondeterministic composition of sequential programs. In
each of these sequences we shift tests to the left and then

group together test sequences into a single test, applying the
program equivalences (6) and (4) of Proposition 4. The result
is a nondeterministic composition of conditioned assignment
sequences of the form

(ϕ1?; π1) ∪ · · · ∪ (ϕn?; πn)
where each πk is a (possibly empty) sequence of atomic
programs.

The next proposition is pivotal: it states a sufficient condi-
tion for the eliminability of the Kleene star.

Proposition 9. Let π be a program of the form ϕ1?; π1 ∪ · · · ∪

ϕn?; πn such that for every k,m ≤ n we have πk; πm ≡ πm. Then
π∗ ≡ π≤n.

Proof: It suffices to prove that π≤n+1 ≡ π≤n. Consider any
sequence of length n+1; such a sequence necessarily contains
a repetition of some ϕk?; πk. Take for example the following
sequence σ of length n + 1 wherein ϕ1?; π1 occurs twice:

σ = ϕ1?; π1;ϕ2?; π2;ϕ3?; π3; · · · ;ϕn?; πn;ϕ1?; π1.
We show that σ is subsumed by π≤n, in the sense that σ∪π≤n ≡

π≤n. Our proof makes extensive use of Proposition 7.
We first use the program equivalence π1;ϕ2? ≡ 〈π1〉ϕ2? ; π1

(which is an instance of program equivalence (6) of Proposi-
tion 4) to push the second test to the left: we rewrite σ to

ϕ1?; 〈π1〉ϕ2? ; π1; π2;ϕ3?; π3; · · · ;ϕn?; πn;ϕ1?; π1.
Pushing the third test leftwards we obtain:

ϕ1?; 〈π1〉ϕ2?; 〈π1; π2〉ϕ3? ; π1; π2; π3; · · · ;ϕn?; πn;ϕ1?; π1.
Pushing all the tests leftwards in this way, we obtain a
sequence of tests that is followed by π1; · · · ; πn; π1, namely:
ϕ1?; 〈π1〉ϕ2?; · · · ; 〈π1; · · · ; πn−1〉ϕn?; 〈π1; · · · ; πn〉ϕ1? ; π1; · · · ; πn; π1.

By hypothesis, π1; · · · ; πn; π1 ≡ π1. Therefore our program σ
is equivalent to

ϕ1?; 〈π1〉ϕ2?; · · · ; 〈π1; · · · ; πn〉ϕ1? ; π1.
Proposition 4(4) allows us to group all the tests from the
second test on into a single test:

ϕ1? ; (〈π1〉ϕ2 ∧ · · · ∧ 〈π1; · · · ; πn〉ϕ1)? ; π1.
Let us abbreviate 〈π1〉ϕ2 ∧ · · · ∧ 〈π1; · · · ; πn〉ϕ1 by χ. Proposi-
tion 5 and Proposition 4(4) allow us to permute the two tests
ϕ1? and χ1?:

ϕ1?; χ?; π1
is program equivalent to

χ?;ϕ1?; π1.
Finally, the latter is subsumed by the program ϕ1? ; π1, in the
sense that

(χ?;ϕ1?; π1) ∪ (ϕ1?; π1)
is program-equivalent to ϕ1? ; π1 by Proposition 4(7) .

Proposition 10. The following program equivalences are
DL-PA valid:

p?; +p ≡ p?
¬p?;−p ≡ ¬p?
±p; +p ≡ +p

±p;−p ≡ −p

±p; +q ≡ +q;±p if p , q

±p;−q ≡ −q;±p if p , q

The next proposition contains a sufficient condition for the
applicability of Proposition 9.

Proposition 11. Suppose the assignment sequences π and π′

have exactly the same variables, i.e., Pπ = Pπ′ . Then π; π′ is
program-equivalent to π′.

Proof: This follows by iterated application of the program
equivalences for assignments of Proposition 10.

The next proposition tells us how we can add ‘dummy’
assignments in order to ensure that two assignment sequences
are about the same variables.

Proposition 12. Every program π is program-equivalent to

(p?; +p; π) ∪ (¬p?;−p; π).

Proof: By Proposition 4(5), π is equivalent to skip; π.
By Proposition 4(8), the latter is equivalent to

(p? ∪ ¬p?); π.
By distribution of “;” over “∪” (Proposition 4(3)) this is
equivalent to

(p?; π) ∪ (¬p?; π).
Finally, the above is program-equivalent to

(p?; +p; π) ∪ (¬p?;−p; π)
due to the first two program equivalences of Proposition 10.

Note that each of the above steps is correct thanks to
Proposition 7.

Proposition 13 ([10]). The following formula equivalences
are DL-PA valid.

〈±p〉> ↔ >

〈±p〉⊥ ↔ ⊥

〈±p〉¬ϕ↔ ¬〈±p〉ϕ

〈±p〉(ϕ1 ∨ ϕ2)↔ 〈±p〉ϕ1 ∨ 〈±p〉ϕ2

〈+p〉q↔

> if q = p
q otherwise

〈−p〉q↔

⊥ if q = p
q otherwise

B. Elimination of the Kleene star

We now give a procedure eliminating the Kleene star
from formulas. This contrasts with PDL where elimination is
impossible. Our procedure has three steps.

1) Take some innermost star-operator, i.e., some π∗ such
that π is star-free. Transform π into the nondeterministic
composition of conditioned sequences of assignments

π′ = (ϕ1?; π1) ∪ · · · ∪ (ϕn?; πn)

where every πk is a sequence of assignments.
2) Make all the assignment sequences πk assign exactly the

same variables: replace πk by (p?; +p; πk)∪(¬p?;−p; πk)
whenever p < Pπk and p ∈ Pπl for some l ≤ n, and
put the result again in the form of a nondeterministic

composition of conditioned assignment sequences. We
obtain therefore a program of the form

π′′ = (ϕ′′1 ?; π′′1) ∪ · · · ∪ (ϕ′′m?; π′′m)

with Pπ′′1 = · · · = Pπ′′m .
3) Replace (π′′)∗ by (π′′)≤m.
The first step preserves program equivalence by Proposi-

tion 8. The second step does so because of Proposition 12
(to be applied at most n times per assignment sequence).
The third step is guaranteed by Proposition 9, which applies
because of Proposition 11: when the assignment sequences
π and π′ have exactly the same variables then π; π′ ≡ π′.
All three steps preserve formula equivalence: the formulas
resulting from replacement of the program equivalences are
formula-equivalent thanks to Proposition 7.

Summing up, in the first three steps we have succeeded in
eliminating an innermost star-operator. By iterating these three
steps we eliminate star operators entirely from formulas.

Theorem 1. For every DL-PA formula ϕ there exists a formula
ϕ′ without the Kleene star such that ϕ and ϕ′ are formula
equivalent in DL-PA.

C. Deciding satisfiability

Definition 4. The problem of satisfiability checking SAT has
the following input and output.
• Input: a formula ϕ;
• Output:

– true, when ||ϕ|| , ∅;
– false, otherwise.

The decision procedure is as follows:
1) Eliminate the Kleene star from ϕ.
2) Eliminate the sequential and the nondeterministic com-

position operators as well as the test operators.
3) Eliminate all the dynamic operators with assignments.
The first step uses Theorem 1. The second step uses the stan-

dard PDL equivalences of Proposition 3 that we have recalled
in the beginning of Section IV-A. We therefore end up with
formulas having only atomic programs, i.e., assignments. We
can then distribute these dynamic operators over the boolean
operators (using in particular the equivalence for negation
of Proposition 13) and finally eliminate them by the DL-PA
equivalences for assignments of Proposition 13. The resulting
formula has no more dynamic operators, it is equivalent to
the original formula, and its validity or satisfiability may
be checked by means of any theorem prover for classical
propositional logic.

Theorem 2. For every DL-PA formula ϕ there is a proposi-
tional formula ϕ′ such that ϕ↔ ϕ′ is DL-PA valid.

Corollary 1. The problem of satisfiability of a DL-PA formula
is decidable.

Observe that the only principles beyond those of star-free
PDL that we have used in our decision procedure are propo-
sitions 5 and 6 (that allow us to prove Proposition 7 and that

can be viewed as inference rules), the formula equivalences
of Proposition 13 (though the one for disjunctions is already
provable in star-free PDL), and the program equivalences of
Proposition 4. The latter axiom schemes are a bit unusual:
they do not have the form of formulas but that of program
equivalences. Together, these principles provide a complete
but somewhat non-standard axiomatisation of DL-PA.

D. Compactness and interpolation

In PDL, there are two ways to define the consequence
relation |= between a set of formulas Γ and a formula ϕ. In
contrast, in DL-PA there is only one way to do so: ϕ is a
consequence of Γ iff

⋂
ψ∈Γ ||ψ|| ⊆ ||ϕ||. In other words, for

every valuation v, if v ∈ ||ψ|| for every ψ ∈ Γ then v ∈ ||ϕ||.
Compactness of the DL-PA consequence relation immediately
follows from Theorem 2.

Theorem 2 also helps us to prove the interpolation property
for DL-PA. We actually need a slightly stronger version
guaranteeing that the propositional formula that is equivalent
to ϕ has the same propositional variables as ϕ.

Theorem 3. For every DL-PA formula ϕ there is a proposi-
tional formula ϕ′ such that Pϕ′ = Pϕ, and ϕ ↔ ϕ′ is DL-PA
valid.

Proof: All the rewriting rules of the procedure underlying
Theorem 2 preserve the variables, except those for subformulas
of the form 〈±p〉>, 〈±p〉⊥, 〈+p〉q, and 〈−p〉q. The equivalences
for the latter eliminate propositional variables. Fortunately they
have variants that preserve variables and that are also valid:

〈±p〉> ↔ p ∨ ¬p

〈±p〉⊥ ↔ p ∧ ¬p

〈+p〉q↔

p ∨ ¬p if q = p
q ∧ (p ∨ ¬p) otherwise

〈−p〉q↔

p ∧ ¬p if q = p
q ∧ (p ∨ ¬p) otherwise

Now an interpolant of ψ |= ϕ can be obtained by rewriting
ϕ and ψ to propositional ϕ′ and ψ′ in a way such that
their respective languages are preserved. By the interpolation
property for propositional logic, there exists an interpolant χ
of ψ′ |= ϕ′. As the new equivalences are language-preserving,
χ is also an interpolant of ψ |= ϕ.

V. Complexity of decision problems: lower bounds

We now give complexity results for our logic DL-PA. We
have already defined the problem SAT in Section IV-C; it
remains to define model checking.

Definition 5. The problem of model checking MC has the
following input and output.
• Input: a model v and a formula ϕ such that v ⊆ Pϕ;
• Output:

– true, when v ∈ ||ϕ||;
– false, otherwise.

Note that the constraint v ⊆ Pϕ implies that v is finite. We
are now going to provide lower bounds for both problems.

Theorem 4. The problems of DL-PA model checking and
DL-PA satisfiability are both EXPTIME-hard.

Proof: The result is established for model checking in
Section V-A, and for satisfiability checking in Section V-B.

A. Lower bound for model checking: encoding PEEK

We prove that model checking with DL-PA is EXPTIME-
hard by means of a logarithmic-space reduction of the problem
PEEK-G5 [12] into the problem MC.

PEEK-G5 is in terms of two players E (‘Eloise’, the
existential player) and A (‘Abelard’, the universal player).

Definition 6. An instance of Peek is a tuple PE =

(XE , XA,Φ, v0, τ) where
• XE and XA are finite sets of propositional variables such

that XE∩XA = ∅, where the idea is that Player E controls
the variables in XE and Player A controls the variables
in XA;

• Φ is a propositional formula over XE ∪ XA;
• v0 ⊆ XE∪XA indicates which variables are currently true;
• τ is either A or E, indicating which player makes the next

move.

Informally, each instance PE = (XE , XA,Φ, v0, τ) of Peek
is played as follows. Agents’ turns strictly alternate. At their
respective turn, Player E (resp. A) moves by changing the truth
value of at most one variable of XE (resp. XA) in the current
valuation, either adding or withdrawing it from the valuation.
The game ends when Φ first becomes true. We are considering
PEEK-G5, where Player A cannot move from a situation where
Φ is true, and Player E wins the game if Φ ever becomes
true. We say that Player E has a winning strategy in PE if
she can make a sequence of moves at her turns and ensure to
win whatever the moves made by Player A at his turn. Let us
make this more precise.

The game tree associated with PE is a tree labeled by
valuations such that the root is labeled v0, starting with the
agent τ at the root, all nodes are obtained by E and A
alternatively performing all possible moves. A node is an E
node if it is Eloise’s turn to move, and it is an A node if it is
Abelard’s turn.

A (memoryless) strategy of Eloise is a function from
valuations to actions of E. A branch (n0, n1, n2, . . .) of the game
tree is compatible with Eloise’s strategy sE if and only if for
every E-node nk, the valuation vk+1 labeling nk+1 is obtained
by applying E’s action sE(nk) to the valuation vk.

Eloise has a winning strategy if and only if there is a
strategy sE such that every branch (n0, n1, n2, . . .) of the game
tree that is compatible with sE has a node nk such that
vk ∈ ||Φ||.

Definition 7. The decision problem PEEK-G5 is the following:
• Input: an instance PE = (XE , XA,Φ, v0, τ) of Peek;
• Output:

– true, when Player E has a winning strategy in PE;
– false, otherwise.

Theorem 5 ([12]). PEEK-G5 is EXPTIME-complete.

We prove that deciding the model checking problem MC for
DL-PA is EXPTIME-hard by reducing PEEK-G5 to it. Beyond
the variables of XE∪XA, we use the propositional variables elo
and nowin. The intended meaning of elo is that it is Player E’s
turn to play, whereas the intended meaning of nowin is that
Player E has no winning strategy. Let PE = (XE , XA,Φ, v0, τ)
be an instance of the Peek problem. We associate with it
an instance (v, ϕ) of the MC problem as follows. First, the
valuation v is defined by: if τ = A then v = v0 ∪ {nowin} else
v = v0 ∪ {nowin, elo}. Second, in order to define the formula
ϕ, we need to introduce the following abbreviations:

moveE def
= elo?;

⋃
x∈XE

(−x ∪ +x);−elo

moveA def
= ¬elo?;∪y∈XA (−y ∪ +y); +elo

move def
= (moveE ∪moveA) ; ((Φ?;−nowin) ∪ ¬Φ?)

Now, we define

ϕ
def
= [move∗]

(
nowin→ (¬Φ∧(elo→ [move]nowin)∧

(¬elo→ 〈move〉nowin))
)

Obviously, given PE, the computation of (v, ϕ) can be done
in logarithmic space. Moreover,

Lemma 1. PEEK-G5(PE) returns false iff MC(v, ϕ) returns
true.

Informally, the idea is that PEEK-G5(PE) returns false iff
when we assume that Eloise does not have a winning strategy
(by putting nowin in v along with the the initial situation of
PE described by v0), then we can verify that the following is
an invariant in the game-tree starting at v:

“if Eloise has no winning strategy, then (1) at
Eloise’s turn, she has no winning strategy after any
move, (2) at Abelard’s turn, there is a successor node
where Eloise has no winning strategy.”

Proof: Suppose PEEK-G5(PE) returns false: Eloise does
not have a winning strategy in PE. Therefore the nodes of the
game tree associated with PE can be further labeled by nowin
in the following way:
• The root is labeled nowin;
• For E-nodes labeled nowin, each of E’s moves leads to

a node that it labeled nowin;
• For A-nodes labeled nowin, some move of A’s moves

leads to a node that it labeled nowin;
• A node whose valuation satisfies Φ cannot be labeled

nowin.
The root is therefore now labeled by v0∪{nowin} if τ = A and
by v0 ∪ {nowin, elo} if τ = E. Then

[move∗]
(
nowin→ (¬Φ∧(elo→ [move]nowin)∧

(¬elo→ 〈move〉nowin)))
)

is true at v because move correctly encodes the moves.
Therefore

MC
(
v, [move∗](nowin→ (¬Φ∧(elo→ [move]nowin)∧

(¬elo→ 〈move〉nowin)))
)

returns true.
The other way round, suppose

MC
(
v, [move∗](nowin→ (¬Φ∧(elo→ [move]nowin)∧

(¬elo→ 〈move〉nowin)))
)

returns true. Consider the PDL model MDL-PA that we have
built in Section III and focus on the relation R(move). The
alternating application of the actions of E and A that it gives us
directly provides a winning strategy for Abelard at v. Therefore
Eloise cannot have a winning strategy.

Proposition 14. The DL-PA model checking problem is
EXPTIME-hard.

Proof: This follows directly from Lemma 1.

B. Lower bound for satisfiability checking: encoding MC

We finally establish that the problem of satisfiability check-
ing is EXPTIME-hard. Since we have proved in Section
V-A that the model checking problem MC is EXPTIME-hard
(Proposition 14), it suffices to reduce MC to the problem of
satisfiability checking.

Proposition 15. The problem of DL-PA satisfiability checking
is EXPTIME-hard.

Proof: This follows directly from propositions 2 and 14.

We already know that star-free DL-PA is PSPACE-
complete [11]. We can then state the following:

Corollary 2. A logarithmic-space reduction from the DL-PA
satisfiability problem to the satisfiability problem of its star-
free fragment exists iff PSPACE = EXPTIME.

So van Eijck’s problem of finding an efficient method for
translating DL-PA programs into star-free programs has a
positive answer if and only if PSPACE = EXPTIME.

VI. Complexity of decision problems: upper bounds

We are now going to provide upper bounds for the problems
MC and SAT. This establishes that the lower-bounds of Sec-
tion V are tight. While our rewriting procedure of Section IV-C
could be turned into decision procedures for both problems, it
would however lead to upper bounds far beyond those we are
going to establish now.

Theorem 6. The problems of DL-PA model checking and
DL-PA satisfiability are both in EXPTIME.

The proof uses a satisfiability preserving polynomial trans-
formation trPDL(.) from the formulas and programs of DL-PA
to the formulas and programs of PDL. Our translation replaces

each assignment ±p by an abstract program a±p. Precisely it
is defined by recursion as follows:

trPDL(p) def
= p if p ∈ P

trPDL(+p) def
= a+p

trPDL(−p) def
= a−p

and homomorphic for the other formula and program con-
nectives. Observe that the length of every translated formula
trPDL(ϕ) is linear in the length of ϕ.

The abstract programs a±p that occur in a formula ϕ should
behave in the same way as the original assignment ±p. We
achieve this by means of the following set of formulas.

Γϕ = {[a+p]p : p ∈ Pϕ} ∪

{[a−p]¬p : p ∈ Pϕ} ∪

{〈a±p〉> : p ∈ Pϕ} ∪

{q→ [a±p]q : p, q ∈ Pϕ, p , q} ∪

{¬q→ [a±p]¬q : p, q ∈ Pϕ, p , q}

Observe that for every ϕ, the set Γϕ is finite; its cardinality
is quadratic in the length of ϕ. Each element of Γϕ having
constant length, the length of

∧
Γϕ is quadratic in the length

of ϕ.
Let Uϕ be the program

(⋃
p∈Pϕ (a+p ∪ a−p)

)∗
. The modal

operator [Uϕ] plays the role of a master modality in our proof:
given a valuation v, the program Uϕ relates v to every valuation
that is examined during the evaluation of ϕ at v.

Proposition 16. For every DL-PA formula ϕ, ϕ is DL-PA
satisfiable if and only if

trPDL(ϕ) ∧ [Uϕ]
(∧

Γϕ
)

is PDL satisfiable.

Proof: From the left to the right, let v0 be a DL-PA
valuation such that v0 ∈ ||ϕ||. Define Mϕ = (W,Rϕ,V) where
W = 2P is the set of all valuations, V is the identity function
(i.e., V(v) = v for every v ∈ W), and where the accessibility
relation is as follows for the relevant atomic programs a±p such
that p ∈ Pϕ:

Rϕ(a+p) =
{
(v, v′) : v′ = v ∪ {p}

}
Rϕ(a−p) =

{
(v, v′) : v′ = v \ {p}

}
Furthermore, we set Rϕ(π0) = ∅ for all atomic programs π0 for
which there is no p ∈ Pϕ with π0 = a+p or π0 = a−p. Observe
that Mϕ is indeed a model of PDL as defined in Section III.
We are going to prove that

Mϕ, v0 trPDL(ϕ) ∧ [Uϕ]
(∧

Γϕ
)

First, by construction of Mϕ we have Mϕ, v
∧

Γϕ for
every v ∈ W. (In particular, each of the accessibility relations
Rϕ(a±p) is serial.) Therefore Mϕ, v0 [Uϕ]

(∧
Γϕ

)
.

It remains to establish that Mϕ, v0 trPDL(ϕ). We prove
by simultaneous induction on the form of subformula ψ and
program π occurring in ϕ that

1) v ∈ ||ψ|| iff Mϕ, v trPDL(ψ) and
2) (v, v′) ∈ ||π|| iff (v, v′) ∈ Rϕ(trPDL(π)).

for all valuations v and v′. When the subformula ψ of ϕ is
atomic then

v ∈ ||p|| iff p ∈ v
iff Mϕ, v p.

When the program π occurring in ϕ is of the form +p then

(v, v′) ∈ ||+p|| iff v′ = v ∪ {p}
iff (v, v′) ∈ Rϕ(a+p);

and similarly for −p. For the induction step, the only interest-
ing case is that of the modal operator. We have:

v ∈ ||〈π〉ψ|| iff there is v′ such that (v, v′) ∈ ||π||
and v′ ∈ ||ψ||

iff there is v′ such that (v, v′) ∈ Rϕ(trPDL(π))
and Mϕ, v′ trPDL(ψ)

(by I.H., twice)
iff Mϕ, v 〈trPDL(π)〉trPDL(ψ)
iff Mϕ, v trPDL(〈π〉ψ)

From the right to the left, let M = (W,R,V) be a PDL model
and let w0 be a state in M such that

M,w0 trPDL(ϕ) ∧ [Uϕ]
(∧

Γϕ
)
.

First, observe that M,w [Uϕ]
(∧

Γϕ
)

for every w such that
(w0,w) ∈ R(Uϕ). We therefore have:
• if (w,w′) ∈ R(a+p) then V(w′) ∩ Pϕ =

(
V(w) ∪ {p}

)
∩ Pϕ

• if (w,w′) ∈ R(a−p) then V(w′) ∩ Pϕ =
(
V(w) \ {p}

)
∩ Pϕ.

for every p ∈ Pϕ and every w such that (w0,w) ∈ R(Uϕ). This
allows us to prove by induction on the form of subformula ψ
and program π occurring in ϕ that

1) M,w trPDL(ψ) iff V(w) ∈ ||ψ|| and
2) (w,w′) ∈ R(trPDL(π)) iff (V(w),V(w′)) ∈ ||π||

for every w such that (w0,w) ∈ R(Uϕ) and for every w′. For
the three base cases: when the subformula ψ of ϕ is atomic
then

M,w trPDL(p) iff p ∈ V(w)
iff V(w) ∈ ||p||;

when the program π occurring in ϕ is of the form +p then

(w,w′) ∈ R(a+p) iff V(w′) = V(w) ∪ {p}
iff (V(w),V(w′)) ∈ ||+p||;

and similarly for −p. For the induction step the only interesting
case is that of the modal operator. We have:

M,w trPDL(〈π〉ψ) iff M,w 〈trPDL(π)〉trPDL(ψ)
iff there is w′ s.t. (w,w′) ∈ R(trPDL(π))

and M,w′ trPDL(ψ)
iff there is w′ s.t. (V(w),V(w′)) ∈ ||π||

and V(w′) ∈ ||ψ|| (by I.H.)
iff V(w′) ∈ ||〈π〉ψ||

This ends the proof of Proposition 16.
To conclude, Theorem 6 follows from Proposition 16, the

fact that trPDL(.) is a satisfiability preserving polynomial
transformation, and Proposition 2.

VII. Extensions

We now discuss some extensions of our basic logic DL-PA.

A. More general assignments

Our assignments are more restricted than those of [6]–[8].
There, assignments take the form p←ϕ: to p the truth value
of ϕ is assigned, where ϕ is any formula (and not just > or
⊥ as in our DL-PA).

Programs p←ϕ can be simulated in our language by
(ϕ?; +p)∪(¬ϕ?;−p). This may result in an exponential increase
of formula size. However, an inspection of our proofs shows
that all our complexity results also hold for the richer language
with assignments p←ϕ. It remains to find out whether the
language with general assignments is more succinct.

B. Other program connectives

Our logic can be extended as well by other program
connectives that are familiar from PDL. We briefly discuss
the properties of DL-PA extended with the converse operator
“−”. Its interpretation is ||π−|| = (||π||)−1, where (||π||)−1 is the
inverse of the relation ||π||.

Consider an innermost occurrence π−. Thanks to the pro-
gram equivalences of Section IV, we may suppose that π is
star-free. The converse operator distributes over sequential and
nondeterministic composition in the usual way:

(π1; π2)− ≡ π−2 ; π−1
(π1 ∪ π2)− ≡ π−1 ∪ π

−
2

and when it meets a test or an atomic program it can be
eliminated by means of the following equivalences:

(ψ?)− ≡ ψ?
(+p)− ≡ p? ∪ (p?;−p)
(−p)− ≡ ¬p? ∪ (¬p?; +p)

Converse DL-PA can therefore still be reduced to propositional
logic.

As to complexity, the extension of DL-PA by the converse
operator can be mapped into PDL with converse by extending
the polynomial transformation of Section III in a straightfor-
ward way. Converse PDL being still in EXPTIME [14], it
follows that the satisfiability problem of converse DL-PA is
EXPTIME-complete, too.

VIII. Relationship with the logics of propositional control

It was shown in [11] that star-free DL-PA embeds the logics
based on the idea of propositional control that were recently
studied in the multi-agent literature ([15], [16]). We give their
embedding in Section VIII-A (adapting the presentation to our
notation) and extend it in Section VIII-B in order to show how
full DL-PA relates to Coalition Logic of Propositional Control
and Delegation [13].

A. Coalition logic of propositional control

Models of Coalition Logic of Propositional Control
(CL-PC) have a twofold interpretation of propositional vari-
ables: besides the valuation function v mapping propositional
variables to truth values, there is a control function ξ mapping
each propositional variable to some agent in a finite set of
agents A. Saying that the agent ξ(p) controls p, we mean
that i can set p to true and can set p to false. As ξ is a
function, control is exclusive: for every p there is at most one i
controlling p. As the function ξ is total, control is also assumed
exhaustive: for every p there is at least one i controlling p.

With CL-PC one can model the capabilities of agents and
groups of agents to achieve a state of affairs: in the model
(v, ξ), agent i is capable to achieve ϕ if there exists a valuation
v′ that differs from v only in the interpretation of the variables
that are under i’s control, and is such that ϕ is true in (v′, ξ).
Formally:

||^iϕ|| = { (v, ξ) : there is v′ such that (v′, ξ) ∈ ||ϕ|| and
for every p, if ξ(p) , i then v(p) = v′(p) }

The interpretation of the coalition operator ^J straightfor-
wardly generalises this truth condition.

In star-free DL-PA we can encode agent i’s control over p by
means of a special propositional variable ci,p. Then exclusivity
and exhaustivity of control over a set of variables P ⊆ P are
expressed by:

Exc(P) def=
∧
p∈P

∧
i, j∈A,i, j

¬(ci,p ∧ c j,p)

Exh(P) def=
∧
p∈P

∨
i∈A

ci,p

Finally, we set a translation tr such that:

tr(p) def
= p if p ∈ P

tr(^iϕ) def
= 〈skip ∪ (ci,p1 ?; +p1) ∪ (ci,p1 ?;−p1)〉 · · ·
〈skip ∪ (ci,pn ?; +pn) ∪ (ci,pn ?;−pn)〉 tr(ϕ)

if Pϕ = {p1, . . . , pn}

and homomorphic for the boolean operators.
The following result corresponds to Theorem 4 in [11].

Proposition 17. A CL-PC formula ϕ is CL-PC satisfiable iff
Exc(Pϕ) ∧ Exh(Pϕ) ∧ tr(ϕ) is (star-free) DL-PA satisfiable.

It is also clear that the lengths of Exc(Pϕ), Exh(Pϕ), and
tr(ϕ) are all polynomial in the length of ϕ. Our translation
therefore provides a polynomial embedding of CL-PC into
DL-PA.

B. Coalition logic of propositional control and delegation

Coalition logic of propositional control and delegation
(DCL-PC) extends CL-PC by dynamic operators of transfer
of control over a propositional variable. They were called
delegation programs in [13], [17], but the term control transfer
program appears to be more appropriate. Atomic control
transfer programs are of the form i{p j and are read “i

transfers his control over p to j”. The intuition is that i{p j
is applicable when i controls p and that it changes the control
function ξ such that j gets control over p (and i looses it,
control being exclusive). Complex delegation programs are
defined by means of the standard PDL operators.

The interpretation of a delegation program is a binary
relation on the set of models of propositional control. For
atomic programs we have:

||i{p j|| =
{
((v, ξ), (v, ξ′)) : ξ(p) = i, ξ′(p) = j, and

ξ(q) = ξ′(q) for q , p
}

The interpretation of complex programs and of formulas is as
usual. The interpretation of 〈π〉ϕ is:

||〈π〉ϕ|| =
{
(v, ξ) : there is (v′, ξ′) such that

((v, ξ), (v′, ξ′)) ∈ ||π|| and (v′, ξ′) ∈ ||ϕ||
}

We extend tr to provide a translation from the richer
language of DCL-PC into the one of DL-PA. The key clauses
are:

tr(〈π〉ϕ) def
= 〈tr(π)〉tr(ϕ)

tr(ϕ?) def
= tr(ϕ)?

tr(i{q j) def
= ci,p? ; −ci,p ; +c j,p

Theorem 7. A DCL-PC formula ϕ is DCL-PC satisfiable iff
Exc(Pϕ) ∧ Exh(Pϕ) ∧ tr(ϕ) is DL-PA satisfiable.

The other way round, DL-PA can also be translated into
DCL-PC if the set of agents contains at least two agents. Let
us call these agents t and f . We then encode truth of p as t con-
trolling p and falsity of p as f controlling p. Then the atomic
assignment +p corresponds to the control transfer program
t{pt ∪ f {pt and −p corresponds to f {p f ∪ t{p f . The
other program connectives and boolean operators of DL-PA
are mapped homomorphically. It is then routine to prove that a
DL-PA formula is DL-PA satisfiable if and only if its translation
into the language of DCL-PC is DCL-PC satisfiable.

It follows that both the model checking problem and the sat-
isfiability problem of DCL-PC are EXPTIME-hard. Provided
that PSPACE , EXPTIME, this contradicts the claim in [13]
that both are PSPACE-complete.2

IX. Conclusion

Our logic DL-PA is an interesting alternative to PDL. On
the one hand, we can basically reason about the same kind of
phenomena as in PDL: programs changing the truths of the
world. This is demonstrated by the example of the counter
of Section II-C and also by our encoding of the PEEK
problem in Section V-A; this is also demonstrated by the

2The model checking algorithm in [13] is claimed to work in nondeter-
ministic space (NPSPACE, which is the same complexity class as PSPACE).
The algorithm consists in two mutually recursive procedures calling each
other that decompose formulas according to the truth conditions: a procedure
deciding whether (v, ξ) ∈ ||ϕ|| [13, Fig. 8] and a procedure deciding whether
(ξ, ξ′) ∈ ||π|| [13, Fig. 7]. However, that algorithm in fact requires alternating
space (APSPACE).

embeddings of Coalition Logic of Propositional Control that
we have mentioned in Section VIII. On the other hand, the
mathematical properties of DL-PA are better than those of
PDL: DL-PA is compact, has the interpolation property, and
the Kleene star can be eliminated.

Acknowledgment

We are grateful to a reviewer whose detailed comments
helped improve the presentation. First and second authors
acknowledge the support of the ANR 11 BS02 011 03 grant
(project DynRes), while the third author acknowledges the
support of the program Marie Curie People Action Trentino
(project LASTS).

References
[1] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT Press, 2000.
[2] A. R. Meyer and K. Winklmann, “On the expressive power of dynamic

logic (preliminary report),” in STOC, M. J. Fischer, R. A. DeMillo, N. A.
Lynch, W. A. Burkhard, and A. V. Aho, Eds. ACM, 1979, pp. 167–175.

[3] M. L. Tiomkin and J. A. Makowsky, “Propositional dynamic logic with
local assignments,” Theor. Comput. Sci., vol. 36, pp. 71–87, 1985.

[4] A. Wilm, “Determinism and non-determinism in PDL,” Theor. Comput.
Sci., vol. 87, no. 1, pp. 189–202, 1991.

[5] H. v. Ditmarsch, “The Russian cards problem,” Studia Logica, vol. 75,
no. 1, pp. 31–62, 2004.

[6] H. P. v. Ditmarsch, W. v. d. Hoek, and B. Kooi, “Dynamic epistemic
logic with assignment,” in Proc. AAMAS’05, 2005, pp. 141–148.

[7] B. Kooi, “Expressivity and completeness for public update logic via
reduction axioms,” Journal of Applied Non-Classical Logics, vol. 17,
no. 2, pp. 231–253, 2007.

[8] H. P. v. Ditmarsch, A. Herzig, and T. d. Lima, “From Situation Calculus
to Dynamic Logic,” Journal of Logic and Computation, vol. 21, no. 2,
pp. 179–204, 2011.

[9] J. S. Miller and L. S. Moss, “The undecidability of iterated modal
relativization,” Studia Logica, vol. 79, no. 3, pp. 373–407, 2005.

[10] J. v. Eijck, “Making things happen,” Studia Logica, vol. 66, no. 1, pp.
41–58, 2000.

[11] A. Herzig, E. Lorini, F. Moisan, and N. Troquard, “A dynamic logic
of normative systems,” in International Joint Conference on Artificial
Intelligence (IJCAI), T. Walsh, Ed. Barcelona: IJCAI/AAAI, 2011, pp.
228–233, erratum at http://www.irit.fr/∼Andreas.Herzig/P/Ijcai11.html.

[12] L. J. Stockmeyer and A. K. Chandra, “Provably difficult combinatorial
games,” SIAM J. Comput., vol. 8, no. 2, pp. 151–174, 1979.

[13] W. v. d. Hoek, D. Walther, and M. Wooldridge, “On the logic of
cooperation and the transfer of control,” J. of AI Research (JAIR), vol. 37,
pp. 437–477, 2010.

[14] G. De Giacomo and F. Massacci, “Combining deduction and model
checking into tableaux and algorithms for converse-PDL,” Information
and Computation, vol. 162, no. 1–2, pp. 117–137, 2000.

[15] W. v. d. Hoek and M. Wooldridge, “On the logic of cooperation and
propositional control,” Artif. Intell., vol. 164, no. 1-2, pp. 81–119, 2005.

[16] J. Gerbrandy, “Logics of propositional control,” in 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2006), H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, Eds.
ACM, 2006, pp. 193–200.

[17] W. v. d. Hoek and M. Wooldridge, “On the dynamics of delegation,
cooperation and control: a logical account,” in Proc. AAMAS’05, 2005.

