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Abstract

We propose two alternatives to Xu’s axiomatization of Chellas’s STIT.
The first one simplifies its presentation, and also provides an alternative
axiomatization of the deliberative STIT. The second one starts from the
idea that the historic necessity operator can be defined as an abbreviation
of operators of agency, and can thus be eliminated from the logic of Chel-
las’s STIT. The second axiomatization also allows us to establish that the
problem of deciding the satisfiability of a STIT formula without temporal
operators is NP-complete in the single-agent case, and is NEXPTIME-
complete in the multiagent case, both for the deliberative and Chellas’s
STIT.

1 Introduction

STIT theory is one of the most prominent accounts of agency in philosophy of
action. It is the logic of constructions of the form ‘agent i sees to it that ϕ holds’.
While STIT has played an important role in philosophical logic since the 80ies,
its mathematical aspects have not been developed to the same extent. Most
probably the reason is that STIT’s models of agency are much more complex
than those existing for other modal concepts such as say necessity, belief, or
knowledge: first, the ‘seeing-to-it-that’ modalities interact (or perhaps better:
must be guaranteed not to interact) because the agents’ choices are supposed
to be independent; second there is another kind of modality involved, viz. the
‘master modality’ of historic necessity. There are also temporal modalities,
but just as most of the other proof-theoretic approaches to STIT, we do not
investigate these here.

As a consequence, proof systems for STIT are rather complex, too. To our
knowledge the following have been proposed in the literature.

• Xu provides Hilbert-style axiomatizations in terms of the historic necessity
operator and Chellas’s STIT operator ([Xu98] or [BPX01, Chap. 17]), with-
out considering temporal operators. As the deliberative STIT-operator can
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be expressed in terms of Chellas’ (together with the historic necessity op-
erator), the axiomatization transfers to the deliberative STIT. Xu proves
completeness by means of canonical models, and proves decidability by
means of filtration. Besides, Xu also gives a complete axiomatization of
the one-agent achievement STIT [BPX01, Chap. 16].

• Wölfl builds an axiomatics of STIT with instants in terms of historic neces-
sity, Chellas’s STIT and tense operators [Wöl02]. However, completeness
is obtained via the introduction of extra modal operators for ‘truth in all
histories at the instant at hand’ and ‘truth in all histories (passing through
the moment at hand) distinct from the history at hand’. Moreover, the
more complex achievement STIT operator can be locally defined.

• Wansing provides a tableau proof system for the deliberative STIT [Wan06].
The system is complete, but does not guarantee termination, and thus “is
not tailored for defining tableau algorithms” [Wan06].

• Dégremont gives a dialogical proof procedure for the deliberative STIT
[Dég06]. Again, the system is complete, but does not guarantee termina-
tion, and can therefore only be used to build proofs by hand.

In this note, we focus on the so-called Chellas’s STIT named after his pro-
ponent [Che69, Che92]. The original operator defined by Chellas is nevertheless
notably different since it does not come with the principle of independence of
agents that plays a central role in STIT theory. Following its presentation in
[HB95], we use the term CSTIT to refer to the logic of that modal operator.
We show that Xu’s axiomatics of the logic of Chellas’s STIT can be greatly
simplified.

The paper is organized as follows. After recalling Xu’s axiomatics (Section
2) we propose an alternative one and prove its completeness (Section 3). Based
on the latter we show that in presence of at least two agents, the modal operator
of historic necessity can be defined as an abbreviation (Section 4). This leads
to a simplified semantics (Section 5), and to characterizations of the complexity
of satisfiability (Section 6).

2 Xu’s axioms for the CSTIT

In [BPX01, Chap. 17], Ming Xu presents Ldm, an axiomatization for the deliber-
ative STIT logic without temporal operators. As pointed out there, deliberative
STIT logic and Chellas’s STIT logic are interdefinable and just differ in the
choice of primitive operators. Following Xu we refer to these two logics as the
deliberative STIT theories. We here mainly focus on Ldm with Chellas’s STIT
operator as primitive.
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2.1 Language

The language of Chellas’s STIT logic is built from a countably infinite set of
atomic propositions ATM and a countable set of agents AGT . To simplify
notation we suppose that AGT is an initial subset {0, 1, . . .} of the set of natural
numbers N (possibly N itself).

Formulas are built by means of the boolean connectives together with modal
operators of historic necessity and of agency in the standard way. Usually these
modal constructions are noted Sett : ϕ (‘ϕ is settled’) and [i cstit : ϕ] (‘i sees
to it that ϕ’), where i ∈ AGT . For reasons of conciseness we here prefer to use
¤ϕ instead of Sett : ϕ, and [i]ϕ instead of [i cstit : ϕ]. The language LAGT

CSTIT of
Chellas’s STIT is therefore defined by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [i]ϕ | ¤ϕ

where p ranges over ATM and i ranges over AGT . This provides a standard no-
tation for the dual constructions ♦ϕ and 〈i〉ϕ, respectively abbreviating ¬¤¬ϕ
and ¬[i]¬ϕ.

The language LAGT
DSTIT of the deliberative STIT is defined by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [i dstit : ϕ] | ¤ϕ

Note that neither LAGT
CSTIT nor LAGT

DSTIT contain temporal operators.
The following function will be useful to compute the number of symbols that

are necessary to write down ϕ.

Definition 1. We define recursively a mapping ||.|| from formulas of LAGT
CSTIT∪

LAGT
DSTIT to N : ||p|| = 1, ||¬ϕ|| = 1+ ||ϕ||, ||(ϕ∧ψ)|| = 3+ ||ϕ||+ ||ψ||, ||¤ϕ|| = 1+ ||ϕ||,
||[i]ϕ|| = 3 + ||ϕ||, and ||[i dstit : ϕ]|| = 5 + ||ϕ||.

2.2 Semantics

The semantics of the CSTIT is extensively studied in Belnap et al. [BPX01]. It
consists of a branching-time structure (BT) augmented by the set of agents and
a choice function (AC). Here, we refer to BT + AC models as STIT-models.

A BT structure is of the form 〈W,<〉, whereW is a nonempty set of moments,
and < is a tree-like ordering of these moments: for any w1, w2 and w3 in W , if
w1 < w3 and w2 < w3, then either w1 = w2 or w1 < w2 or w2 < w1.

A maximal set of linearly ordered moments from W is a history. When
w ∈ h we say that moment w is on the history h. Hist is the set of all histories.
Hw = {h|h ∈ Hist, w ∈ h} denotes the set of histories passing through w. An
index is a pair w/h, consisting of a moment w and a history h from Hw (i.e., a
history and a moment in that history).

A BT+AC model is a tuple M = 〈W,<,Choice, V 〉, where:

• 〈W,<〉 is a BT structure;
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• Choice : AGT ×W → 22Hist

is a function mapping each agent and each
moment w into a partition of Hw. The equivalence classes belonging to
every Choicewi can be thought of as possible choices that are available to
agent i at w. It is assumed that:

– Choicewi 6= ∅;
– Q 6= ∅ for every Q ∈ Choicewi ;

– for all w and all mappings sw : AGT −→ 2Hw such that sw(i) ∈
Choicewi , we have

⋂
i∈AGT sw(i) 6= ∅.

• V is valuation function V : ATM → 2W×Hist.

Given a history h ∈ Hw, Choicewi (h) represents the particular choice from
Choicewi containing h, or in other words, the particular action performed by i
at the index w/h. We call the constraint of nonempty intersection of all possi-
ble simultaneous choices of agents at w (or: strategy profile) the independence
constraint.

A formula is evaluated with respect to a model and an index.

M, w/h |= p iff w/h ∈ V (p), p ∈ ATM
M, w/h |= ¬ϕ iff M, w/h 6|= ϕ
M, w/h |= ϕ ∧ ψ iff M, w/h |= ϕ and M, w/h |= ψ
M, w/h |= ¤ϕ iff M, w/h′ |= ϕ for all h′ ∈ Hw

M, w/h |= [i]ϕ iff M, w/h′ |= ϕ for all h′ ∈ Choicewi (h)
M, w/h |= [i dstit : ϕ] iff M, w/h′ |= ϕ for all h′ ∈ Choicewi (h),

and there is h′′ ∈ Hw, M, w/h′′ |= ¬ϕ
Hence historical necessity (or inevitability) at a moment w in a history is

truth in all histories passing through w. According to Chellas, an agent i sees
to it that ϕ in a moment-history pair w/h if ϕ holds on all histories that agree
with i’s current choice.

Validity in BT+AC structures is defined as truth at every moment-history
pair of every BT+AC-model. A formula ϕ is satisfiable in BT+AC structures
if ¬ϕ is not valid in BT+AC structures.

The following valid equivalences justify the interdefinability of our STIT-
operators:

[i dstit : ϕ] ↔ [i]ϕ ∧ ¬¤ϕ
[i]ϕ ↔ [i dstit : ϕ] ∨¤ϕ

It has been observed by several authors that the implication [i][j]ϕ→ ¤ϕ is
valid if i 6= j. This follows from the independence constraint. Our axiomatiza-
tion in Section 3 will be start from the observation that it is also sufficient to
characterize the independence constraint in the case of 2 agents.

2.3 Axiomatics

Xu gave the following axiomatics of Chellas’s STIT:
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S5(¤) the axiom schemas of S5 for ¤

S5(i) the axiom schemas of S5 for every [i]

(¤→i) ¤ϕ→ [i]ϕ

(AIAk) (♦[0]ϕ0 ∧ . . . ∧ ♦[k]ϕk) → ♦([0]ϕ0 ∧ . . . ∧ [k]ϕk)

The last item is a family of axiom schemes for independence of agents that is
parameterized by the integer k.1

Remark. As (AIAk+1) implies (AIAk), the family of schemas can be replaced
by the single (AIACard(AGT)−1) when AGT is finite.

Xu’s system has the standard inference rules of modus ponens and necessi-
tation for ¤. From the latter necessitation rules for every [i] follow by axiom
(¤→i).
Theorem 1 ([BPX01, Chapter 17]). A formula ϕ of LAGT

CSTIT is valid in
BT+AC structures iff ϕ is provable from the schemas S5(¤), S5(i), (¤→i),
and (AIAk) by the rules of modus ponens and ¤-necessitation.

Xu’s decidability proof proceeds by building a canonical model followed by
filtration [BPX01, Theorems 17-18]. Although he does not mention complexity
issues, when decidability is proved by canonical model construction from which
a finite model is obtained by filtration, then “a NEXPTIME algorithm is usually
being employed” [BdRV01, Appendix C, p. 515]. Therefore it can be expected
that the problem of deciding the satisfiability of a given formula of LAGT

CSTIT is in
NEXPTIME. We shall go beyond this, and will characterize complexity precisely
in Section 6.

1Xu’s original formulation of (AIAk) is

(diff (i0, . . . , ik) ∧ ♦[i0]ϕ0 ∧ . . . ∧ ♦[ik]ϕk) → ♦([i0]ϕ0 ∧ . . . ∧ [ik]ϕk)

for 1 ≤ k. The difference predicates diff (i0, . . . , ik) express that i0, . . . , ik are all distinct.
They are defined from an equality predicate = whose domain is AGT . Formally we have to
add the axioms: diff (i0) ↔ >, and

diff (i0, . . . , ik+1) ↔ diff (i0, . . . , ik) ∧ i1 6= ik+1 ∧ . . . ∧ ik 6= ik+1.
In consequence Xu’s axiomatics has to contain axioms for equality. We here preferred not to
introduce equality in order to stay with the same logical language throughout.

Clearly, each of our (AIAk) can be proved from Xu’s original (AIAk). The other way round,
given k and pairwise different i0, . . . , ik, suppose w.l.o.g. that im ≥ in for n ≤ m. Then one
can prove Xu’s (AIAk)

(♦[i0]ϕi0 ∧ . . . ∧ ♦[ik]ϕik
) → ♦([i0]ϕi0 ∧ . . . ∧ [ik]ϕik

)
from our (AIAik

)
(♦[0]ϕ0 ∧ . . . ∧ ♦[ik]ϕik

) → ♦([0]ϕ0 ∧ . . . ∧ [ik]ϕik
)

by appropriately choosing ϕn to be > for all those n < ik that are not among i0, . . . , ik: as
[n]ϕn ↔ > and ♦[n]ϕn ↔ > hold, these conjuncts can be dropped from our (AIAik

).
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3 An alternative axiomatics

We now prove that (AIAk) can be replaced by the family of axiom schemes

(AAIAk) ♦ϕ→ 〈k〉∧0≤i<k〈i〉ϕ for k ≥ 1

We call (AAIAk) the alternative axiom schema for independence of agents. Just
as Xu’s (AIAk), our (AAIAk) involves k + 1 agents.

Lemma 1 (validity of (AAIAk)). For each k ≥ 1, ♦ϕ → 〈k〉∧0≤i<k〈i〉ϕ is
valid in BT+AC structures.2

Proof. See Annex. ¥

To warm up, we first prove that our (AAIA1) implies Xu’s (AIA1).

Lemma 2. The schema (AIA1) is provable from S5(¤), S5(i), (¤→i) and:

(AAIA1) ♦ϕ→ 〈1〉〈0〉ϕ
by modus ponens and ¤-necessitation.

Proof. We establish the following deduction:

1. ♦[0]ϕ0 → 〈1〉〈0〉[0]ϕ0 from axiom (AAIA1), substituting [0]ϕ0 for ϕ

2. ♦[0]ϕ0 → 〈1〉[0]ϕ0 from previous line by S5(0)

3. ♦[0]ϕ0 ∧ [1]ϕ1 → 〈1〉[0]ϕ0 ∧ [1][1]ϕ1 from previous line by S5(1)

4. ♦[0]ϕ0 ∧ [1]ϕ1 → 〈1〉([0]ϕ0 ∧ [1]ϕ1) from previous line by K(1)

5. ♦(♦[0]ϕ0 ∧ [1]ϕ1) → ♦〈1〉([0]ϕ0 ∧ [1]ϕ1)
from previous line by ¤-necessitation and K(¤)

6. ♦[0]ϕ0 ∧ ♦[1]ϕ1 → ♦〈1〉([0]ϕ0 ∧ [1]ϕ1) from previous line by S5(¤)

7. ♦[0]ϕ0 ∧ ♦[1]ϕ1 → ♦([0]ϕ0 ∧ [1]ϕ1)
from previous line by (¤→i) axiom and S5(¤)

¥

We now turn to an arbitrary number of agents.

Lemma 3. Every schema (AIAk) is provable from S5(¤), S5(i), (¤→i) and
(AAIAk) by the rules of modus ponens and ¤-necessitation.

Proof. We proceed by induction on k. The base case k = 1 is settled by
Lemma 2. Now, suppose (AIAk−1) is provable:

♦[0]ϕ0 ∧ . . . ∧ ♦[k − 1]ϕk−1 → ♦([0]ϕ0 ∧ . . . ∧ [k − 1]ϕk−1).

We prove (AIAk) with the following steps.
2As Xu’s axiomatics is complete there should also be a syntactic proof, but we were unable

to find one.
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1.
∧
i<k ♦[i]ϕi → ♦

∧
i<k[i]ϕi by induction hypothesis (AIAk−1)

2.
∧
i<k ♦[i]ϕi → 〈k〉(∧j<k〈j〉

∧
i<k[i]ϕi) from previous line by (AAIAk)

3.
∧
i<k ♦[i]ϕi → 〈k〉∧j<k〈j〉[j]ϕj from previous line by K(j)

4.
∧
i<k ♦[i]ϕi ∧ [k]ϕk → 〈k〉(∧j<k[j]ϕj) ∧ [k]ϕk

from previous line by S5(i)

5.
∧
i<k ♦[i]ϕi ∧ [k]ϕk → 〈k〉∧j≤k[j]ϕj from previous line by S5(k)

6. ♦(
∧
i<k ♦[i]ϕi ∧ [k]ϕk) → ♦〈k〉∧j≤k[j]ϕj

from previous line by ¤-necessitation and K(¤)

7. ♦(
∧
i<k ♦[i]ϕi ∧ [k]ϕk) → ♦

∧
j≤k[j]ϕj

from previous line by (¤→i) axiom and S5(¤)

8.
∧
i≤k ♦[i]ϕi → ♦

∧
j≤k[j]ϕj from previous line by S5(¤)

¥

Theorem 2. A formula of LAGT
CSTIT is valid in BT+AC structures iff it is provable

from the axiom schemas S5(¤), S5(i), (¤→ i) and (AAIAk) by the rules of
modus ponens and ¤-necessitation.

Proof. First, observe that Xu’s axiomatics and ours only differ by the schemas
(AIAk) and (AAIAk).

Soundness follows from:

1. the validity of our schemas (AAIAk) (see Lemma 1),

2. the validity of the rest of the axioms, and

3. the fact that modus ponens and ¤-necessitation preserve validity.

The last two points are warranted by the soundness of Xu’s axioms (Theorem 1).
Completeness follows from provability of Xu’s (AIAk) from our (AAIAk)

(see Lemma 3). As observed above, the rest of Xu’s axioms is directly part of
our axiomatics. ¥

An alternative axiomatics of the deliberative STIT is obtained viewing [i]ϕ
as an abbreviation of [i dstit : ϕ] ∨¤ϕ.
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4 Historic necessity is superfluous in presence
of two agents or more

In this section, we suppose that Card(AGT ) ≥ 2, i.e. there are at least agents
0 and 1.

The equivalence ♦ϕ↔ 〈1〉〈0〉ϕ is provable from (AAIA1), (¤→i) and S5(¤).
This suggests that ¤ϕ can be viewed as an abbreviation of [1][0]ϕ. Let us take
this as an axiom schema.

Def(¤) ¤ϕ↔ [1][0]ϕ

Pushing this further we can prove that under Def(¤), axiom (AAIAk) can
be replaced by the family of axiom schemas of general permutation:

(GPermk) 〈l〉〈m〉ϕ→ 〈n〉∧i≤k,i 6=n〈i〉ϕ for k ≥ 0

Note that similar to Xu’s axiomatization, if AGT is finite then the single schema
(GPermCard(AGT)−1) is sufficient.

The next lemma establishes soundness.

Lemma 4. (GPermk) is valid in BT+AC structures.

Proof. See Annex. ¥

Now we prove that the principles of the preceding section can be derived.

Lemma 5. The axiom schemas of S5(¤), and the schemas (¤→i) and (AAIAk)
are provable from Def(¤), S5(i) and (GPermk) by the rules of modus ponens
and [i]-necessitation, and ¤-necessitation is derivable.

Proof. First let us prove that the logic of ¤ is S5. Clearly the K-axiom
¤(ϕ→ ψ) → (¤ϕ→ ¤ψ) is provable using standard modal principles, and the
T-axiom ¤ϕ→ ϕ follows from S5(0) and S5(1). It remains to prove the 5-axiom
♦ϕ→ ¤♦ϕ:

1. 〈1〉〈0〉ϕ→ [1]〈1〉〈0〉ϕ by S5(1);

2. [1]〈1〉〈0〉ϕ→ [1]〈0〉〈1〉ϕ by (GPerm1) and K(1);

3. [1]〈0〉〈1〉ϕ→ [1][0]〈0〉〈1〉ϕ by S5(0) and K(1);

4. [1][0]〈0〉〈1〉ϕ→ [1][0]〈1〉〈0〉ϕ by (GPerm1);

5. 〈1〉〈0〉ϕ→ [1][0]〈1〉〈0〉ϕ from lines 1-4.

Finally, ¤-necessitation is derivable by applying first [0]-necessitation and then
[1]-necessitation.

Concerning (AAIAk) it is easy to see that under Def(¤) it is an instance
of (GPermk), for all k ≥ 1. It remains to prove (¤→ i). Let us show that
〈i〉ϕ→ 〈1〉〈0〉ϕ:
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1. 〈i〉ϕ→ 〈i〉〈j〉ϕ by S5(i);

2. 〈i〉〈j〉ϕ→ 〈1〉〈0〉ϕ by (GPerm1);

3. 〈i〉ϕ→ 〈1〉〈0〉ϕ from lines 1-2.

¥

Theorem 3. Suppose Card(AGT ) ≥ 2. Then a formula of LAGT
CSTIT is valid in

BT+AC structures iff it is provable from S5(i), Def(¤), and (GPermk) by the
rules of modus ponens and [i]-necessitation.

Remark. If AGT = {0, 1} then the validities of LAGT
CSTIT are axiomatized by

Def(¤), S5(0), S5(1), and 〈1〉〈0〉ϕ↔ 〈0〉〈1〉ϕ. Moreover, the Church-Rosser ax-
iom 〈0〉[1]ϕ→ [1]〈0〉ϕ can be proved from S5(0), S5(1) and (GPerm1). Therefore
STIT logic with two agents is a so-called product logic, alias a two-dimensional
modal logic [Mar99, GKWZ03]. Such product logics are characterized by the
permutation axiom 〈0〉〈1〉ϕ↔ 〈1〉〈0〉ϕ together with the Church-Rosser axiom.
Hence the logic of the two-agent STIT is nothing but the product S52 = S5⊗S5.

5 A simpler semantics

All axiom schemes are in the Sahlqvist class [BdRV01], and therefore have a
standard possible worlds semantics.

Kripke models are of the form M = 〈W,R, V 〉, where W is a nonempty set
of possible worlds, R is a mapping associating to every i ∈ AGT an equivalence
relation Ri on W , and V is a mapping from ATM to the set of subsets of W .
We impose that R satisfies the following property:

Definition 2 (general permutation property). We say that R satisfies the
general permutation property iff for all w, v ∈W and for all l,m, n ∈ AGT, if
〈w, v〉 ∈ Rl ◦ Rm then there is u ∈ W such that: 〈w, u〉 ∈ Rn and 〈u, v〉 ∈ Ri
for every i ∈ AGT \ {n}.

We have the usual truth condition:

M,w |= [i]ϕ iff M,u |= ϕ for every u such that 〈w, u〉 ∈ Ri
and the usual definitions of validity and satisfiability.

We use the following notations for convenience in the manipulation of rela-
tions.

Definition 3. We define:

• ⋃
i∈AGT Ri = {〈w,w′〉 | there is i ∈ AGT, 〈w,w′〉 ∈ Ri}
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• R∗ = {〈w,w′〉 | there is an integer N and {w0, . . . , wN} ⊆W such that w0 =
w,w′ = wN , and 〈wn−1, wn〉 ∈ R for every 1 ≤ n ≤ N}

Lemma 6. For every M = 〈W,R, V 〉, and every i, j ∈ AGT, R satisfies the
following properties:

1. If i 6= j then Ri ◦Rj = R1 ◦R0.

2. Ri ◦Rj is an equivalence relation for every i, j ∈ AGT.

3. (
⋃
i∈AGT Ri)∗ = R0 ◦R1 = R1 ◦R0.

Proof. (1) follows from the validity of 〈i〉〈j〉ϕ → 〈1〉〈0〉ϕ (due to (GPerm0)),
and the validity of 〈1〉〈0〉ϕ→ 〈i〉〈j〉ϕ (due to (GPermj), given that i 6= j).

(2) follows from (1) and the fact that the S5-axioms are valid for ¤ (see
Lemma 5).

In (3), the right-to-left inclusion R0 ◦ R1 ⊆ (
⋃
i∈AGT Ri)∗ follows from the

inclusion R0 ◦R1 ⊆ (R0 ∪R1)∗. For the left-to-right inclusion suppose 〈w, v〉 ∈
(
⋃
i∈AGT Ri)∗. Hence there are i0, . . . , ik such that 〈w, v〉 ∈ Ri0 ◦ . . . ◦ Rik . As

all the Ril are equivalence relations we may suppose w.l.o.g. that il 6= il+1.

• If k is odd then Ri0 ◦ . . . ◦ Rik = (R0 ◦ R1)k/2 by (1). The latter is equal
to R0 ◦R1 by (2).

• If k is even then Ri0 ◦ . . . ◦Rik = (R0 ◦R1)(k−1)/2 ◦Rik = (R0 ◦R1) ◦Rik
by (1) and (2). The latter is equal to R0 ◦ R1 ◦ R0 again by (1), and to
R0 ◦R0 ◦R1 by (2), which is equal to R0 ◦R1 because R0 is an equivalence
relation.

It follows that (
⋃
i∈AGT Ri)∗ ⊆ R0 ◦R1.

¥

Theorem 4. A formula of LAGT
CSTIT is valid in Kripke models satisfying the gen-

eral permutation property iff it is provable from

S5(i) the axiom schemas of S5 for every [i]

Def(¤) ¤ϕ↔ [1][0]ϕ

(GPermk) 〈l〉〈m〉ϕ→ 〈n〉∧i≤k,i 6=n〈i〉ϕ for k ≥ 0

by the rules of modus ponens and [i]-necessitation.

Proof. If AGT is finite then Sahlqvist’s Theorem warrants that our axiomatics
of Section 4 is sound and complete w.r.t. Kripke models satisfying the general
permutation property. We show in the annex that this can be extended to the
infinite case. ¥
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6 Complexity

The axiom system of the preceding section allows us to characterize the complex-
ity of satisfiability of STIT formulas. We study separately the cases of Chellas’s
STIT and of the deliberative STIT.

6.1 Complexity of Chellas’s STIT

First, satisfiability of CSTIT-formulas can be decided in nondeterministic expo-
nential time.

Lemma 7. The problem of deciding satisfiability of a formula of LAGT
CSTIT is in

NEXPTIME.

Proof. This can be proved by the standard filtration construction, which
establishes that in order to know whether a formula ϕ is satisfiable in the Kripke
models of Section 5 it suffices to consider models having at most 2||ϕ|| possible
worlds. See the annex for details. ¥

In the rest of the section we show that the upper bound is tight if there are
at least two agents. As usual we start with the two-agents case.

Lemma 8. If Card(AGT ) = 2 then the problem of deciding satisfiability of a
formula of LAGT

CSTIT is NEXPTIME-hard.

Proof. Remember our observation at the end of Section 4: when Card(AGT ) =
2 then CSTITAGT is nothing but the product logic S5⊗S5. We can then apply a
result of Marx in [Mar99], who proved that the problem of deciding membership
of ϕ in S5⊗S5 is NEXPTIME-hard. (Actually Marx also proved membership
in NEXPTIME.) ¥

Hence two-agent CSTIT logic is NEXPTIME-complete. Now we state NEXPTIME-
completeness for any number of agents greater than 2.

Theorem 5. If Card(AGT ) ≥ 2 then the problem of deciding satisfiability of a
formula of LAGT

CSTIT is NEXPTIME-complete.

Proof. See Annex. ¥

It remains to establish the complexity of single-agent CSTIT. It turns out
that it has the same complexity as S5.

Theorem 6. If Card(AGT ) = 1 then the problem of deciding satisfiability of a
formula of LAGT

CSTIT is NP-complete.

Proof. This can be proved by establishing an upper bound on the size of the
models that is quadratic in the length of the formula under concern. ¥
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Remark. Intriguingly, while one-agent STIT has the same complexity as S5,
and two-agent STIT has the same complexity as S52, 3-agent STIT does not
have the same complexity as S53: while Xu’s proof establishes decidability of
LAGT

CSTIT-formulas for any number of agents, it was proved by Maddux that S53

is undecidable [MM01].

Thus we have characterized the complexity of satisfiability of CSTIT formulas
for all cases.

6.2 Complexity of the deliberative STIT

The complexity results for Chellas’s STIT do not immediately transfer to DSTIT.
Indeed, the definition of the deliberative STIT from the CSTIT through [i dstit :
ϕ] = [i]ϕ] ∧ ¬¤ϕ does not directly provide a lower bound for the deliberative
STIT because this is not a polynomial transformation. We now establish these
results by giving polynomial translations from CSTIT to DSTITand vice versa.
These translations use renaming of subformulas.

Let ϕ0 be any formula of LAGT
DSTIT, and let sf (ϕ0) be the set of subformulas of

ϕ0. Let {pψ : ψ ∈ sf (ϕ0)} be a set of (pairwise distinct) atoms none of which
occurs in ϕ0. Every pψ abbreviates the subformula ψ of ϕ0. We recursively
define equivalences (‘biimplications’) that capture the logical relation between
pψ and ψ.

Definition 4. We define:

Bq = (pq ↔ q)
B¬ϕ = (p¬ϕ ↔ ¬pϕ)
Bϕ∧ψ = (pϕ∧ψ ↔ pϕ ∧ pψ)
B¤ϕ = (p¤ϕ ↔ ¤pϕ)
B[i dstit:ϕ] = (p[i dstit:ϕ] ↔ [i]pϕ ∧ ¬¤pϕ)

Definition 5. We define the translation tr from DSTIT formulas to CSTIT
formulas as: tr(ϕ0) = pϕ0 ∧

∧
ψ∈sf (ϕ0)

¤Bψ.

Theorem 7. tr is a polynomial translation from LAGT
DSTIT to LAGT

CSTIT, and for
every formula ϕ0 of LAGT

DSTIT, ϕ0 is satisfiable iff tr(ϕ0) is satisfiable.

Proof. See Annex. ¥

It follows that the problem of deciding whether a formula of LAGT
DSTIT is satis-

fiable is in NEXPTIME. We now prove that this bound is tight.

Definition 6. We define equivalences B′ϕ such that

B′[i]ϕ = (p[i]ϕ ↔ [i dstit : ϕ] ∨¤pϕ)

and B′ϕ = Bϕ if ϕ is an atomic formula or if its main logical connector is
boolean.
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Definition 7. We define the translation tr′ from LAGT
CSTIT to LAGT

DSTIT as: tr′(ϕ0) =
pϕ0 ∧

∧
ψ∈sf (ϕ0)

¤B′ψ.

Theorem 8. tr′ is a polynomial translation from LAGT
CSTIT to LAGT

DSTIT, and for
every formula ϕ0 of LAGT

CSTIT, ϕ0 is satisfiable iff tr(ϕ0) is satisfiable.

Proof. The proof is analogous to that of Theorem 7. ¥

Together, Theorems 5, 6, 7 and 8 entail:

Corollary 1. The problem of deciding whether a formula of LAGT
DSTIT is satis-

fiable is NEXPTIME-complete if Card(AGT ) ≥ 2, and it is NP-complete if
Card(AGT ) = 1.

7 Conclusion

In this note we have established NEXPTIME-completeness of the satisfiability
problem of formulas of Chellas’s STIT and of the deliberative STIT for the case
of two or more agents. All our complexity results appear to be new.

Our new axiom system for STIT of Section 3 is an interesting alternative to
Xu’s. It highlights the central role of the well-known equivalences [i][j]ϕ↔ ¤ϕ
and [i dstit : [j dstit : ϕ]] ↔ ⊥, for i 6= j in theories of agency: as we have shown,
they allow to capture independence of agents just as Xu’s schema (AIAk) does.3

For the case of more than two agents, Section 4 provides a quite simple
axiom system that is made up of very basic modal principles, and moreover,
does without historic necessity.

As we have pointed out in Section 3, an alternative axiomatics for the delib-
erative STIT follows straightforwardly. We do not know whether the redundancy
of historic necessity that we have established for the CSTIT in Section 4 transfers
to the deliberative STIT.

This work is part of a larger research agenda consisting in studying formal
frameworks of agency and their relevance in computer science and social choice.
(Earlier work in this direction is presented in [Tro07].) In particular, we here
only considered individual agency. The semantics of STIT can be extended to
group agency by stipulating that

ChoicewJ =
⋂

i∈J
Choicewi

where J is a subset of the set of agents AGT . It allows to define operators of
the form [J ]ϕ reading “the group of agents J sees to it that ϕ”. In [BHT07]
we have given axioms for group agency. The logic is extended with a temporal
‘next’ operator and can be seen as a normal version of Coalition Logic ([Pau02]).
In [BGH+] we have studied the complexity of this logic which is a conservative
extension of CSTIT. By applying the results of the present note we showed it
remains NEXPTIME-complete.

3The equivalence is already mentioned as Theorem (T-7) of Wölfl’s axiomatization [Wöl02].
Nevertheless, Wölfl keeps Xu’s axiom schemes for the independence of agents.
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Annex: Proofs

A.1: Proof of Lemma 1

In order to prove the validity of every schema

(AAIAk) ♦ϕ→ 〈k〉∧0≤i<k〈i〉ϕ for k ≥ 1

in BT+AC structures, we show that for every w ∈W , h, h′ ∈ Hw and k ∈ AGT
there is hk ∈ Choicewk (h) such that h′ ∈ Choicewi (hk) for every i ∈ AGT \ {k}.

Consider the selection function sw such that sw(k) = Choicewk (h), and
sw(i) = Choicewi (h′) for every i 6= k. By the independence constraint there
is some hk such that hk ∈

⋂
i∈AGT sw(i). Hence hk ∈ Choicewk (h), and h′ ∈

Choicewi (hk) for i 6= k.

A.2: Proof of Lemma 4

We have to prove the validity of every schema

(GPermk) 〈l〉〈m〉ϕ→ 〈n〉∧i≤k,i 6=n〈i〉ϕ for k ≥ 0

in BT+AC structures.
A look at the proof of Lemma 1 shows that ♦ϕ→ 〈n〉∧i≤k,i 6=n〈i〉ϕ is valid in

BT+AC structures. It therefore suffices to show the validity of 〈l〉〈m〉ϕ→ ♦ϕ.
The latter is the case because (1) 〈l〉〈m〉ϕ → ♦♦ϕ is valid (due to validity of
axiom (¤→i)), and (2) ♦♦ϕ→ ♦ϕ is valid (due to validity of S5(¤)).
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A.3: Proof of Theorem 4

We prove the theorem for the infinite case, i.e. Card(AGT ) = N. In this case the
general permutation property is no longer a first-order property, and Sahlqvist’s
result does not apply, i.e. the canonical model does not necessarily satisfy the
general permutation property.

Let ϕ be a formula that is consistent w.r.t. the axiomatic system of Section
4. Let M = 〈W,R, V 〉 be the canonical model associated to this system. By
arguments following the lines of those in the proof of Lemma 6 we have:

• for all i ∈ AGT , Ri is an equivalence relation;

• for all i, j ∈ AGT such that i 6= j, Ri ◦Rj = R1 ◦R0;

• (
⋃
i∈AGT Ri)∗ = R0 ◦R1 = R1 ◦R0.

By the truth lemma we may suppose that M is generated via R1 ◦ R0 from
a possible world w ∈ W such that M,w |= ϕ. Let M ′ = 〈W ′, R′, V ′〉 be the
filtration ofM w.r.t. sf (ϕ) (just as done in Annex A.4). Note that R′i = W ′×W ′

for all i ∈ AGT not occurring in ϕ. This allows us to show that M ′ satisfies the
general permutation property. From this completeness follows (via the filtration
lemma).

A.4: Proof of Lemma 7

Let M = 〈W,R, V 〉 be a Kripke model such that every Ri is an equivalence
relation and R satisfies the general permutation property. Let u be a world
and ϕ a formula of LAGT

CSTIT such that M,u |= ϕ. Suppose that M is generated
from w through R1 ◦R0. (This can be supposed w.l.o.g. because of Lemma 6 of
Section 5.) The set sf (ϕ) being the set of all subformulas of ϕ, we say w and
v are sf (ϕ)-equivalent iff for all ψ ∈ sf (ϕ), (M,w |= ψ iff M,v |= ψ), and note
w ≡sf (ϕ) v. Let |w|≡sf (ϕ) denote the equivalence class of w modulo ≡sf (ϕ).

We construct M ′ = 〈W ′, R′, V ′〉 such that:

• W ′ = W |≡sf (ϕ) = {|w|≡sf (ϕ) : w ∈W}
• 〈|w|, |v|〉 ∈ R′i iff for all [i]ψ ∈ sf (ϕ), (M,w |= [i]ψ iff M, v |= [i]ψ)

• V ′(p) = {|w| : w ∈ V (p)} for all p ∈ sf (ϕ)

Remark that for all i ∈ AGT , if i does not occur in ϕ then R′i = W ′ ×W ′.
We must check that every R′i is an equivalence relation, that M ′ verifies the

general permutation property, that for all ψ ∈ sf (ϕ) and w ∈ W , M,w |= ψ iff
M ′, |w| |= ψ, and that Card(W ′) is exponential in the length of ϕ:

1. Every R′i is an equivalence relation, and M ′ satisfies the general permu-
tation property.

This follows from the definition of R′i.
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2. for all ψ ∈ sf (ϕ) and for all w ∈W, (M,w |= ψ iff M ′, |w| |= ψ).

This follows from the filtration lemma (see [BdRV01] for details).

3. Card(W ′) ≤ 2||ϕ||

Note that members of W ′ are subsets of states of W satisfying exactly
the same formulas of sf (ϕ). Thus Card(W ′) ≤ 2Card(sf (ϕ)) corresponding
to the set of subsets of sf (ϕ). We can show by induction on ψ that
Card(sf (ψ)) ≤ ||ψ|| and then conclude.

Hence for all ϕ ∈ LAGT
CSTIT, if ϕ is satisfiable then there is M = 〈W,R, V 〉

such that Card(W ) ≤ 2||ϕ||, and there is w ∈ W such that M,w |= ϕ. It allows
us to propose a decision procedure with input ϕ ∈ LAGT

CSTIT, and which works
as follows: guess an integer N ≤ 2||ϕ|| and a model M = 〈W,R, V 〉 such that
Card(W ) ≤ N ; then check whether there is a w ∈W such that M,w |= ϕ.

A.5: Proof of Theorem 5

The upper bound is given by Lemma 7.
To establish the lower bound consider the set of formulas where only the

agent symbols 0 and 1 occur. We show that deciding satisfiability of any formula
of that fragment is NEXPTIME-hard, for any AGT such that Card(AGT ) ≥ 2.
If AGT is just {0, 1} this holds by Lemma 8. Else we prove that if {0, 1} ⊂ AGT
then the logic of Kripke models for AGT is a conservative extension of that for
{0, 1}.

Let ϕ be any formula containing only 0 and 1.
For the left-to-right direction, suppose ϕ is valid in all Kripke models for

the set of agents {0, 1}. By Theorem 3, ϕ can then be proved from axioms
(GPerm1), (Perm01), S5(0) and S5(1) with the rules of modus ponens, [0]- and
[1]-necessitation. Therefore ϕ is also provable from the ‘bigger’ axiomatics for
AGT .

For the right-to-left direction, suppose there is a Kripke modelM = 〈W,R, V 〉
for the set of agents {0, 1} and a w ∈ W such that M,w |= ϕ, where R :
{0, 1} −→ P(W ×W ) associates to every i ∈ {0, 1} an equivalence relation Ri
onW . We are going to build a Kripke modelM ′ for the bigger set of agents AGT
such that M ′, w |= ϕ. Let M ′ = 〈W,R′, V 〉 such that R′ : AGT −→ P(W ×W )
with R′0 = R0, R′1 = R1 and R′i = R0 ◦ R1 for i ≥ 2. Clearly M ′, w |= ϕ, too.
It remains to show that M ′ is indeed a Kripke model as required in Section 5.
By item 2 of Lemma 6 every R′i is an equivalence relation, so we only have to
show that the general permutation property holds in M ′: if 〈w, v〉 ∈ R′l ◦ R′m
then there is un ∈ W such that: 〈w, un〉 ∈ R′n and 〈un, v〉 ∈ R′i for every
i ∈ AGT \ {n} (cf. Lemma 4). First we show that for every l and m we have
R′l ◦R′m = R0 ◦R1.

• If i = 0 and j = 1 then trivially R′l ◦R′m = R0 ◦R1.

• If l = 1 and m = 0 then R′l ◦R′m = R1 ◦R0 = R0 ◦R1
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• If l = 0 and m ≥ 2 then R′l ◦R′m = R0 ◦R0 ◦R1 = R0 ◦R1

• If l = 1 and m ≥ 2 then R′l ◦R′m = R1 ◦R0 ◦R1 = R0 ◦R1 ◦R1 = R0 ◦R1

• If l ≥ 2 and m = 0 then R′l ◦R′m = R0 ◦R1 ◦R0 = R0 ◦R0 ◦R1 = R0 ◦R1

• If l ≥ 2 and m = 1 then R′l ◦R′m = R0 ◦R1 ◦R1 = R0 ◦R1

• if l ≥ 2 and m ≥ 2 then R′l ◦R′m = R0 ◦R1 ◦R0 ◦R1 = R0 ◦R0 ◦R1 ◦R1 =
R0 ◦R1

(The identities in all these items hold because R0 and R1 permute by item 1
of Lemma 6, and because R0 and R1 are equivalence relations.) Thus 〈w, v〉 ∈
R′l ◦ R′m implies 〈w, v〉 ∈ R0 ◦ R1. We have to show that for every n ≥ 1 there
is un ∈W such that: 〈w, un〉 ∈ R′n and 〈un, v〉 ∈ R′i, for every i ∈ AGT .

• For n = 1, 〈w, v〉 ∈ R0 ◦ R1 implies that 〈w, v〉 ∈ R1 ◦ R0 by item 1 of
Lemma 6, and the latter implies that 〈w, v〉 ∈ R′1 ◦R′0. Therefore there is
a u1 such that 〈w, u1〉 ∈ R′1 and 〈u1, v〉 ∈ R′0.

• For n ≥ 2, take un = v: 〈w, v〉 ∈ R0 ◦ R1 implies that 〈w, v〉 ∈ R′n by
definition of R′n, and we have 〈v, v〉 ∈ R′i because every R′i is an equivalence
relation (for i ≥ 2 this is the case by item 2 of Lemma 6).

A.5: Proof of Theorem 7

The proof is done via the following lemmas.

Lemma 9. For all formulas ϕ0 in the language of DSTIT, if ϕ0 is satisfiable
then tr(ϕ0) is satisfiable.

Proof. Suppose there is M = 〈W,R¤, R, V 〉 such that M,w |= ϕ0. We build a
model M ′ = 〈W,R¤, R, V ′〉 such that M ′, w |= tr(ϕ0) by setting V ′(q) = V (q)
for all atoms q appearing in ϕ0, and V ′(pψ) = {w ∈ W : M,w |= ψ} for all
ψ ∈ sf (ϕ0).

By induction on the structure of ψ we show that M, v |= Bψ for all v ∈ W
and all ψ ∈ sf (ϕ0). (Details are left to the reader.)

Hence M ′ |= ∧
ψ∈sf (ϕ0)

Bψ, and also M ′ |= ∧
ψ∈sf (ϕ0)

¤Bψ. Since M,w |=
ϕ0, we haveM ′, w |= pϕ0 by construction of V ′. ThusM ′, w |= pϕ0∧

∧
ψ∈sf (ϕ0)

¤Bψ,
in other words M ′, w |= tr(ϕ0). ¥

Lemma 10. For all formulas ϕ0 in the language of DSTIT, if tr(ϕ0) is satisfi-
able then ϕ0 is satisfiable.

Proof. Suppose there is M = 〈W,R¤, R, V 〉 such that M,w |= tr(ϕ0). Thus
M,w |= pϕ0 ∧

∧
ψ∈sf (ϕ0)

¤Bψ. By induction on the structure of ψ we show that
M, v |= pψ ↔ ψ for all v ∈ W and all ψ ∈ sf (ϕ0). (Details are left to the
reader.)

Thus M,w |= pϕ0 , and M,w |= pϕ0 ↔ ϕ0. Hence M,w |= ϕ0. ¥
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Lemma 11. tr is a polynomial transformation.

Proof. We easily show that ||Bψ|| ≤ 12 and that ||∧ψ∈sf (ϕ0)
¤Bψ|| ≤ ||ϕ0|| ×

(2 + ||Bψ||). Then, ||∧ψ∈sf (ϕ0)
¤Bψ|| ≤ 14× ||ϕ0||. We conclude that ||tr(ϕ0)|| ≤

1 + 14× ||ϕ0||. Remark that Card(sf (ϕ0)) ≤ ||ϕ0||. Moreover, for every formula
ϕ in the language of CSTIT, ||Bϕ|| = O(||ϕ||). As a result, ||tr(ϕ0)|| = O(||ϕ0||2).

¥
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