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abstract. We show that Pauly’s Coalition Logic can be embedded
into a richer normal modal logic that we call Normal Simulation of
Coalition Logic (NCL). We establish that the latter is strictly more
expressive than the former by proving that it is NEXPTIME complete
in the case of at least two agents.

1 Introduction
Recently Shahid Rahman, together with Cédric Dégremont [Dég06], has
proposed a dialogical proof system for the deliberative STIT theories [BPX01].

At the same time, two of us were investigating the properties of these
theories, as well as its relationship with Coalition Logic, Alternating-time
Temporal Logic (ATL) and epistemic extensions of these [BHT06a, HT06,
BHT07]. (See also [Tro07].) The work of Cédric Dégremont shed new light
on a subject that was studied only very rarely up to now viz. the proof-
theory of deliberative STIT-theories (a notable exception being [Wan06]).
Their contribution was one of the triggers of our interest in proof systems
for logics of agency, paving the way for decidability and complexity results.
The present paper provides such results for a fragment of the logic of the
Chellas STIT, viz. Coalition Logic.

Coalition Logic (CL) was proposed by Pauly in [Pau01] as a logic for rea-
soning about social procedures characterized by complex strategic interac-
tions between agents, individuals or groups. Examples of such procedures
are fair-division algorithms or voting processes. CL facilitates reasoning
about abilities of coalitions in games by extending classical logic with op-
erators 〈[J ]〉ϕ for groups of agents J , reading: “the coalition J has a joint
strategy to ensure that ϕ”.1

1Note that we use 〈[J ]〉ϕ as an alternative notation for Pauly’s non-normal operator
[J ]ϕ. We introduce this alternative syntax for two reasons: (1) the new syntax fits better
with the quantifier combination ∃ − ∀ underlying the semantics, and (2) we use Pauly’s
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In [BHT06b], we have shown that CL can be embedded into the logic of
the Chellas STIT. STIT theory is the most prominent account of agency in
philosophy of action. It is the logic of constructions of the form “agent i sees
to it that ϕ holds”. In the present paper we go beyond that and provide a
proof-theoretic analysis of the embedded fragment. In order to do that, we
extend Xu’s logic of the Chellas’s STIT-logic with a ‘next’ operator, resulting
in a logic we call NCL. We provide a complete and elegant axiomatization
and prove that Xu’s logic of the Chellas’s STIT-logic and CL are embedded.

As designed by Pauly, semantics of Coalition Logic is in terms of neighbor-
hood models, that is, models providing a neighborhood function, associating
a world to a set of neighborhoods, or clusters. (See [Che80, Chap. 7] for
details about those models.) Here, we present the normal logic NCL whose
semantics is the well known relational or Kripke semantics. Our embedding
is in itself an interesting result since it shows that Coalition Logic can be
evaluated with respect to relational models.

Moreover, NCL extends CL with capabilities of reasoning about what a
coalition is actually doing or about to do, as opposed to what it could do.
We finally establish decidability and complexity results.

The remaining of this paper is along the following outline. Section 2 and
3 present respectively Coalition Logic and its normal simulation NCL. In
Section 4, we check that NCL inherits all the principles of a version of the
deliberative STIT theories without tense operators. Analogously, Section 5
provides a translation from Coalition Logic to NCL. Section 6 is devoted to
the studies of decidability and complexity. In Section 7, we devise about
NCL expressiveness. In particular, we enlighten that NCL is more expressive
than Coalition Logic, and informally discuss a possible application of the
logic to the notion of ‘power over’ of agents and group of agents. We finally
conclude in Section 8.

2 Coalition Logic CL
2.1 Syntax of CL
Let AGT be a nonempty finite set of agents and Prop an infinite countable
set of atomic formulas. The language LCL (all formulas of Coalition Logic)
is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈[J ]〉ϕ
where p ranges over Prop and J ranges over subsets of AGT . The other
Boolean operators are defined as usual.

original syntax [J ]ϕ to denote Chellas’s STIT operator, thereby emphasizing that this is
a normal modal necessity operator.
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2.2 Coalition model semantics

DEFINITION 1 (effectivity function). Given a nonempty set of states S,
an effectivity function is a function E : 2AGT → 22S

. An effectivity function
is said to be:

• J-maximal iff for all X ⊆ S, if S \ X �∈ E(AGT \ J) then X ∈ E(J);

• outcome monotonic iff for all X,X ′ ⊆ S and for all J ⊆ AGT , if
X ∈ E(J) and X ⊆ X ′ then X ′ ∈ E(J);

• superadditive iff for all J1, J2, if J1 ∩ J2 = ∅ then for all X1,X2 ⊆ S,
if X1 ∈ E(J1) and X2 ∈ E(J2) then X1 ∩ X2 ∈ E(J1 ∪ J2).

The function E intuitively associates every coalition J to a set of subsets
of S (or set of outcomes) for which J is effective. That is, J can force the
world to be in some state of X, for each X ∈ E(J).

DEFINITION 2 (playable effectivity function). Given a nonempty set of
states S, an effectivity function E : 2AGT → 22S

is said to be playable iff
the following conditions hold:

1. for all J , ∅ �∈ E(J) (Liveness)

2. for all J , S ∈ E(J) (Termination)

3. E is AGT -maximal

4. E is outcome-monotonic

5. E is superadditive

A coalition model is a pair ((S,E), V ) where:

• S is a nonempty set of states;

• E : S → (2AGT → 22S

) associates every state s with a playable
effectivity function E(s).

• V : S → 2Prop is a valuation function.

We will write Es(J) instead of E(s)(J) to denote the effectivity of J at the
state s.

Truth conditions are standard for Boolean operators. We evaluate the
coalitional operators against a coalition model M and a state s as follows:

M, s |= 〈[J ]〉ϕ iff {t | M, t |= ϕ} ∈ Es(J)
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2.3 Game semantics
In [Pau02], Pauly investigates the link between coalition models and strate-
gic games.

DEFINITION 3. A strategic game is a tuple G = (S, {Σi|i ∈ AGT}, o)
where S is a nonempty set, Σi is a nonempty set of choices for every agent
i ∈ AGT , o :

∏
i∈AGT Σi → S is an outcome function which associates

an outcome state in S with every combination of choice of agents (choice
profile).

It appears that there is a strong link between a coalition model (whose
effectivity structure is playable by definition) and a strategic game.

DEFINITION 4. Given a strategic game G = (S, {Σi|i ∈ AGT}, o), the
effectivity function EG : 2AGT → 22S

of G is defined as follows: for all
J , let EG(J) be the set of all subsets X of S such that there exists a
Card(J)-tuple σ in

∏
i∈J Σi such that for all Card(AGT \ J)-tuples σ′ in∏

i∈AGT\J Σi, o(σ, σ′) is in X.

Pauly then gives the following characterization:

THEOREM 5 ([Pau02]). An effectivity function E is playable iff it is the
effectivity function of some strategic game.

DEFINITION 6. Let ((S,E), V ) be a coalition model. Let s be a state of
S. A set Y ⊆ S is called a minimal effectivity outcome at s for J iff (1)
Y ∈ Es(J) and (2) for all Y ′ ∈ Es(J), if Y ′ ⊆ Y then Y ′ = Y .

DEFINITION 7. The non-monotonic core of E is the mapping µE : 2AGT×
S → 22S

such that µE(J, s) = {Y | Y is a minimal effectivity outcome at s
for J}.

The outcome of a strategic game is completely determined when every
agent has made its choice.

PROPOSITION 8. Let (S,E, V ) be a coalition model. For all states s ∈ S,
µE(AGT , s) is a nonempty set of singletons.

Proof. This is a corollary of Theorem 5. �

2.4 Axiomatization of CL
The set of formulas that are valid in coalition models is completely axiom-
atized by the following principles [Pau02].

(ProTau) enough tautologies of propositional calculus

(⊥) ¬〈[J ]〉⊥
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(�) 〈[J ]〉�
(N) ¬〈[∅]〉¬ϕ → 〈[AGT ]〉ϕ
(M) 〈[J ]〉(ϕ ∧ ψ) → 〈[J ]〉ϕ ∧ 〈[J ]〉ψ
(S) 〈[J1]〉ϕ ∧ 〈[J2]〉ψ → 〈[J1 ∪ J2]〉(ϕ ∧ ψ) if J1 ∩ J2 = ∅
(MP ) from ϕ and from ϕ → ψ infer ψ

(RE) from ϕ ↔ ψ infer 〈[J ]〉ϕ ↔ 〈[J ]〉ψ

Note that the (N) axiom corresponds to the determinism of choice profiles
(actions constituted by concurrent choices for every agent in the system):
when every agent opts for a choice, the next state is fully determined, thus,
if a formula is not settled true, the coalition of all agents (AGT ) can al-
ways work together to make its negation true. The axiom (S) says that
two disjoint coalitions can combine their efforts to ensure a conjunction of
properties. Note that from (RE), (S) and (⊥) it follows that if J1 and J2

are disjoint then 〈[J1]〉ϕ∧ 〈[J2]〉¬ϕ is inconsistent. So, two disjoint coalitions
cannot consistently ensure opposed facts.

3 Normal simulation of Coalition Logic NCL
3.1 Syntax of NCL
Let AGT be a nonempty finite set of agents and Prop an infinite countable
set of atomic formulas. Without loss of generality, we assume that AGT =
{0, . . . , n− 1} where n = Card(AGT ). The language LNCL of NCL has the
following syntax, where p ranges over elements of Prop and J ranges over
subsets of AGT :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | [J ]ϕ

The other Boolean operators are obtained as usual, and 〈J〉ϕ =def ¬[J ]¬ϕ.

3.2 Semantics of NCL
The models of NCL are tuples M = (W,R,FX , π) where:

• W is a nonempty set of worlds (alias contexts);

• R is a collection of equivalence relations RJ (one for every coalition
J ⊆ AGT ) such that:

– RJ1∪J2 ⊆ RJ1 ∩ RJ2

– R∅ ⊆ RJ ◦ RAGT\J

– RAGT = Id
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• FX : W → W is a total function;

• π : W → 2Prop is a valuation function.

The truth conditions of the operators are given by:

• M, w |= Xϕ iff M, FX(w) |= ϕ

• M, w |= [J ]ϕ iff ∀u ∈ RJ(w), M, u |= ϕ

3.3 Axiomatization of NCL
We give the following axiom schemas for NCL.

(ProTau) enough tautologies of propositional calculus

S5([J ]) all S5-theorems, for every [J ]

(Mon) [J1]ϕ ∨ [J2]ϕ → [J1 ∪ J2]ϕ

Elim(∅) 〈∅〉ϕ → 〈J〉〈AGT \ J〉ϕ
Triv(AGT ) ϕ → [AGT ]ϕ

K(X) all K-theorems for X

D(X) Xϕ → ¬X¬ϕ

Det(X) ¬X¬ϕ → Xϕ

We admit the standard inference rules of modus ponens and necessitation
for [∅] and X. From the former, necessitation for every [J ] follows by the
inclusion axiom (Mon). A formula ϕ is a theorem of NCL, in symbols
�NCL ϕ, iff it can be derived from the above axioms and inference rules
within a finite number of steps.

LEMMA 9. �NCL 〈∅〉ϕ → 〈J1〉〈J2〉ϕ if J1 ∩ J2 = ∅.
Proof. By Elim(∅) we have �NCL 〈∅〉ϕ → 〈J1〉〈AGT \ J1〉ϕ. Now by
hypothesis J1∩J2 = ∅, or equivalently J2 ⊆ AGT \J1. Thus by (Mon) �NCL
〈AGT \ J1〉ϕ → 〈J2〉ϕ. We obtain �NCL 〈J1〉〈AGT \ J1〉ϕ → 〈J1〉〈J2〉ϕ by
[J1]-necessitation and K([J1]). We conlude that �NCL 〈∅〉ϕ → 〈J1〉〈J2〉ϕ. �

THEOREM 10. Our axiomatization of NCL is both sound and complete
with respect to the class of all models of NCL, i.e., �NCL ϕ iff for all models
M = (W,R,FX , π) of NCL and for all worlds w ∈ W , M, w |= ϕ.

Proof. Soundness is obtained by a routine argument while completeness
is immediate from Sahlqvist’s theorem. Cf. [BdRV01]. �
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4 Translating Chellas’s STIT logic into NCL
We call here Chellas’s STIT logic a possible presentation of the so-called
deliberative STIT theories [HB95] without tense operators. An axiomatics
was provided by Xu and named Ldm in [BPX01, Chap. 17]. It is the
logic of the Chellas’s STIT operators for individual agents plus an operator
for historical necessity �. Recently in [BHT08], three of us have shown
that Ldm axiomatics could be simplified and in particular that historical
necessity was superfluous in presence of at least two agents. This work
resulted in an alternative axiomatics of Ldm noted ALdm.

Via ALdm, we show that Chellas’s STIT logic embeds in NCL.

4.1 Syntax of ALdm

Let AGT be a nonempty finite set of agents and Prop an infinite countable
set of atomic formulas. Without loss of generality, we assume that AGT =
{0, . . . , k} where k is a non-negative integer. The language LALdm of ALdm
has the following syntax, where p ranges over elements of Prop and i ranges
elements of AGT :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [i]ϕ | �ϕ

The other classical connectives are obtained as usual. Let 〈i〉ϕ =def

¬[i]¬ϕ and ♦ϕ =def ¬�¬ϕ.

4.2 Semantics for ALdm

DEFINITION 11. An ALdm-model is a tuple M = (W,R, V ) where:

• W is a nonempty set of contexts;

• R is a collection of equivalence relations Ri (one for every agent i ∈
AGT ) such that for all w, v ∈ W and for all l,m, n ∈ AGT , if (w, v) ∈
Rl ◦ Rm, then ∃u ∈ W, (w, u) ∈ Rn and (u, v) ∈ ⋂

i∈AGT\{n} Ri;

• V : W → 2Prop is a valuation function.

Truth conditions are as follows:

• M,w |= [i]ϕ iff for all u ∈ Ri(w), M, u |= ϕ

• M,w |= �ϕ iff for all u ∈ (R1 ◦ R0)(w), M, u |= ϕ

and as usual for Boolean operators.
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4.3 ALdm axiomatics
Axiom schemas for ALdm are given as follows:

S5(i) all S5-theorems, for every [i]

Def(�) �ϕ ↔ [1][0]ϕ

(GPermk) 〈l〉〈m〉ϕ → 〈n〉∧
i∈AGT\{n}〈i〉ϕ

In the axiom (GPermk), note that l,m, n ∈ AGT . As proved in [BHT08],
from (GPermk) we can derive Xu’s “axiom scheme for independence of
agents” (AIAk) [BPX01, Chap. 17]. For instance, (AIA1) corresponds to:2

♦[0]ϕ0 ∧ ♦[1]ϕ1 → ♦([0]ϕ0 ∧ [1]ϕ1)

(AIAk) is central in STIT since it captures the notion of independence of
agents. We show later in Lemma 15 that a group version of (AIA1) is a
theorem of NCL too.

THEOREM 12 ([BHT08]). Our axiomatization of ALdm is both sound and
complete with respect to the class of all ALdm-models.

4.4 Embedding ALdm in NCL
NCL is easily proved to be a conservative extension of ALdm. To illustrate
that, we give the following translation from formulas of ALdm to formulas
of NCL.

tr0(p) = p
tr0(�ϕ) = [∅]ϕ
tr0([i]ϕ) = [{i}]tr0(ϕ)

and homomorphic for the Boolean operators.

LEMMA 13. The translation of (GPermk) by tr0 is a theorem of NCL.

Proof. By applying (Mon) to 〈{l}〉 and 〈{m}〉 in the right part of the tau-
tology 〈{l}〉〈{m}〉ϕ → 〈{l}〉〈{m}〉ϕ and next S5([∅]) we have
�NCL 〈{l}〉〈{m}〉ϕ → 〈∅〉ϕ. Then by Elim(∅) we obtain �NCL 〈{l}〉〈{m}〉ϕ →
〈{n}〉〈AGT \ {n}〉ϕ.

Now, by classical principles on instances of (Mon) 〈AGT \ {n}〉ϕ →
〈{i}〉ϕ for every i ∈ AGT \ {n}, we have �NCL 〈AGT \ {n}〉ϕ →∧

i∈AGT\{n}〈{i}〉ϕ. We conclude that �NCL 〈{l}〉〈{m}〉ϕ →
〈{n}〉∧

i∈AGT\{m}〈{i}〉ϕ. �

We prove that NCL is a conservative extension of ALdm in presence of
at least two agents.

2(AIA1) corresponds to the case of two agents 0 and 1.
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THEOREM 14. ϕ is a theorem of ALdm iff tr0(ϕ) is a theorem of NCL.

Proof.
⇒ Remind that besides (GPermk), the only other axioms of ALdm are

S5 axioms for [i]. From S5([J ]) and Lemma 13, we have that every trans-
lated axiom of ALdm is a theorem of NCL. Moreover, translated inference
rules preserve validity.

⇐ Let M = 〈W,R, V 〉 be an ALdm-model, x ∈ W be a world and ϕ a
ALdm-formula.

Assume M,x |= ϕ. We transform M into an NCL-model M = (W ′, R′, F ′
X , π)

as follows:

• W ′ = W ;

• R′
∅ = R1 ◦ R0;

• R′
AGT = id;

• R′
J =

⋂
j∈J Rj , if J �= ∅ and J �= AGT ;

• F ′
X = id;

• π(w) = V (w), for every w ∈ W ′.

It is easy to check that the constructed model M satisfies every constraint
on NCL-models and M, x |= tr0(ϕ).

�

5 Translating Coalition Logic into NCL
First, we show a theorem in NCL which generalizes (AIA1) from individuals
to coalitions, and that will be instrumental later in the proof of superaddi-
tivity in Theorem 16.

LEMMA 15. �NCL 〈∅〉[J0]ϕ0∧〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0∧ [J1]ϕ1) for J0∩J1 =
∅.
Proof. Suppose J0 ∩ J1 = ∅. We establish the following deduction:

1. 〈∅〉[J0]ϕ0 → 〈J1〉〈J0〉[J0]ϕ0 by Lemma 9

2. 〈∅〉[J0]ϕ0 → 〈J1〉[J0]ϕ0 from previous line by S5([J0])

3. 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉[J0]ϕ0 ∧ [J1][J1]ϕ1 from previous line by
S5([J1])

4. 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉([J0]ϕ0 ∧ [J1]ϕ1) from previous line by
S5([J1])
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5. 〈∅〉(〈∅〉[J0]ϕ0 ∧ [J1]ϕ1) → 〈∅〉〈J1〉([J0]ϕ0 ∧ [J1]ϕ1)

from previous line by [∅]-necessitation and K([∅])

6. 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉〈J1〉([J0]ϕ0 ∧ [J1]ϕ1)

from previous line by S5([∅])

7. 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0 ∧ [J1]ϕ1)

from previous line by (Mon) and S5([∅])

�

Now we give the following translation from Coalition Logic to NCL.

tr(p) = p
tr(〈[J ]〉ϕ) = 〈∅〉[J ]Xtr(ϕ)

and homomorphic for the Boolean operators.

THEOREM 16. If ϕ is a theorem of CL then tr(ϕ) is a theorem of NCL.

Proof. First, the translations of the CL axiom schemas are valid:

• tr(¬〈[J ]〉⊥) = ¬〈∅〉[J ]X⊥
By D(X), �NCL X⊥ ↔ ⊥. By S5([J ]), �NCL [J ]⊥ ↔ ⊥. It remains to
prove that �NCL ¬〈∅〉⊥, which follows from S5([∅]).

• tr(〈[J ]〉�) = 〈∅〉[J ]X�
By K(X), �NCL X� ↔ �. By S5([J ]), �NCL [J ]� ↔ �. Finally, by
S5([∅]), �NCL 〈∅〉�.

• tr(¬〈[∅]〉¬ϕ → 〈[AGT ]〉ϕ) = ¬〈∅〉[∅]X¬tr(ϕ) → 〈∅〉[AGT ]Xtr(ϕ).

As �NCL [AGT ]ψ ↔ ψ by Triv(AGT ), and as �NCL 〈∅〉[∅]ψ ↔ [∅]ψ
by S5([∅]), the translation of (N) is equivalent to ¬[∅]X¬tr(ϕ) →
〈∅〉Xtr(ϕ). This is again equivalent to 〈∅〉¬X¬tr(ϕ) → 〈∅〉Xtr(ϕ)
which is proved a theorem from Det(X).

• tr(〈[J ]〉(ϕ∧ψ) → 〈[ϕ]〉∧〈[J ]〉ψ) = 〈∅〉[J ]X(tr(ϕ)∧tr(ψ)) → 〈∅〉[J ]Xtr(ϕ)∧
〈∅〉[J ]Xtr(ψ)

First, �NCL X(tr(ϕ) ∧ tr(ψ)) → Xtr(ϕ) ∧ Xtr(ψ) by K(X). We have
�NCL [J ]X(tr(ϕ)∧tr(ψ)) → [J ]Xtr(ϕ)∧[J ]Xtr(ψ) by [J ]-necessitation
and we conclude by [∅]-necessitation.
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• tr(〈[J1]〉ϕ∧〈[J2]〉ψ → 〈[J1∪J2]〉(ϕ∧ψ)) = 〈∅〉[J1]Xtr(ϕ)∧〈∅〉[J2]Xtr(ψ) →
〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))

Assume J1∩J2 = ∅. The proof that �NCL 〈∅〉[J1]Xtr(ϕ)∧〈∅〉[J2]Xtr(ψ) →
〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ)) is done by the following steps:

1. 〈∅〉[J1]Xtr(ϕ)∧〈∅〉[J2]Xtr(ψ) → 〈∅〉([J1]Xtr(ϕ)∧ [J2]Xtr(ψ)) by
Lemma 15

2. [J1]Xtr(ϕ)∧ [J2]Xtr(ψ) → [J1 ∪ J2]Xtr(ϕ)∧ [J1 ∪ J2]Xtr(ψ) by
(Mon)

3. 〈∅〉([J1]Xtr(ϕ) ∧ [J2]Xtr(ψ)) → 〈∅〉([J1 ∪ J2](Xtr(ϕ) ∧ Xtr(ψ))
from previous line and [∅]-necessitation

4. 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) → 〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))
from line 1 and 3 by standard modal principles

Clearly the translation of modus ponens preserves validity. To prove
that the translation of CL’s (RE) preserves validity suppose tr(ϕ ↔ ψ) =
tr(ϕ) ↔ tr(ψ) is a theorem of NCL. We have to prove that tr(〈[J ]〉ϕ ↔
〈[J ]〉ψ) = 〈∅〉[J ]Xtr(ϕ) ↔ 〈∅〉[J ]Xtr(ψ) is a theorem of NCL. This follows
from the theoremhood of tr(ϕ) ↔ tr(ψ) by standard modal principles. �

LEMMA 17. Let M = ((S,E), V ) be a coalition model. let selec be a func-
tion associating to each state s in S a choice profile selec(s) in µE(AGT , s).3
Let the tuple (W,R,FX , π) be constructed as follows:

• W = {〈s, Y 〉 | s ∈ S, Y ∈ µE(AGT , s)}
• RJ = {(〈s, Y 〉, 〈s, Y ′〉) | there is Z ∈ µE(J, s) such that Y ∪ Y ′ ⊆ Z}
• FX(〈s, Y 〉) = 〈s′, Z〉, where Y = {s′} and Z = selec(s′)

• π(〈s,X〉) = V (s)

Then (W,R,FX , π) is a model of NCL.

Proof. The proof consists in checking that the constructed model satisfies
every constraint on NCL models. Note that we are permitted to define FX

this way because of Proposition 8. �

THEOREM 18. If ϕ is CL-satisfiable then tr(ϕ) is satisfiable in NCL.

Proof. Given a coalition model M = ((S,E), V ) we construct a model
MNCL = (W,R,FX , π) of NCL as in Lemma 17. We prove by structural

3Such a function exists by the axiom of choice.
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induction that M, s |= ϕ iff ∃Y ∈ µE(AGT , s) such that MNCL, 〈s, Y 〉 |=
tr(ϕ).

The cases of atoms and classical connectives are straightforward. We just
consider the case of ϕ = 〈[J ]〉ψ.

1. Suppose, M, s |= 〈[J ]〉ψ. Then, there is Z ′ ∈ Es(J) such that for all
t ∈ Z ′,M, t |= ψ. Thus, there is Z ∈ µE(J, s) such that for all t ∈ Z,
M, t |= ψ. By induction hypothesis, for all t ∈ Z, MNCL, 〈t, selec(t)〉 |=
tr(ψ).

2. By construction, for all t ∈ Z,∀Y ∈ µE(AGT , s) such that Y ⊆
Z,FX(〈s, Y 〉) = 〈t, selec(t)〉.

3. By (1) and (2) it follows that ∀Y ∈ µE(AGT , s) such that Y ⊆ Z,
MNCL, 〈s, Y 〉 |= Xtr(ψ), and thus, since Z ∈ µE(J, s), it follows that
∃Y ⊆ Z such that MNCL, 〈s, Y 〉 |= [J ]Xtr(ψ).

4. And then, there is Y ′ ∈ µE(AGT , s) such that MNCL, 〈s, Y ′〉 |=
〈∅〉[J ]Xtr(ψ).

The other direction of the induction step is verified by reverse arguments.
�

COROLLARY 19. ϕ is a theorem of CL iff tr(ϕ) is a theorem of NCL.

Proof. The left-to-right direction is Theorem 16. The right-to-left di-
rection follows from Pauly’s completeness result for Coalition Logic and
Theorem 18. �

6 Decidability and complexity of NCL
In this section, we study the satisfiability problem of an NCL-formula.4 We
first study the fragment of NCL without time.

6.1 NCL without time
In the remaining, we call NCLwt(n) the particular instance of NCL with n
agents and without the temporal operator X. NCLwt(n) is the fragment of
NCL(n) defined by the BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [J ]ϕ

where J ranges over the set of subsets of {0, ..., n − 1}.
DEFINITION 20. A NCLwt-model is a tuple M = (W,R, π) where:

4It was the subject of [Sch07] (in French).
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• W is a set of contexts;

• R is a collection of equivalence relations RJ (one for every coalition
J ⊆ AGT ) such that:

– RJ1∪J2 ⊆ RJ1 ∩ RJ2

– R∅ ⊆ RJ ◦ RAGT\J

– RAGT = Id

• π : W → 2Prop is a valuation function.

PROPOSITION 21. NCLwt(n) is both sound and complete w.r.t. to the
class of NCLwt-models where R∅ is the universal relation.

Proof. Soundness is obtained by a routine argument while completeness
is immediate from Sahlqvist’s theorem. �

We now define filtration.

DEFINITION 22. Let SF (Φ) be the set of all subformulas of an NCLwt-
formula Φ.

The set of formulas we use to filter is defined as follows:

DEFINITION 23. Given an NCLwt-formula Φ, let Cl(Φ) be the set SF (Φ)∪
{[J ]ϕ | J ⊆ AGT,ϕ ∈ SF (Φ)}.
PROPOSITION 24. card(Cl(Φ)) ≤ 2card(AGT )×|Φ|, where |Φ| is the length
of the formula Φ.

The filtered model is defined as follows:

DEFINITION 25. Let M = (W, {RJ , J ⊆ AGT}, π) be an NCLwt-model.
We define the equivalence relation �Cl(Φ) on W as follows:

∀x, y ∈ W,x �Cl(Φ) y iff (∀ϕ ∈ Cl(Φ),M, x |= ϕ ⇔ M,y |= ϕ)

DEFINITION 26. Given M = (W, {RJ , J ⊆ AGT}, π) an NCLwt-model
and Φ an NCLwt-formula, we define the filtered model M ′ = (W ′, {R′

J , J ⊆
AGT}, π′) as follows:

• The worlds in W ′ are the equivalence classes of worlds in W under
the relation �Cl(Φ);

• For all J ⊆ AGT , we define R′
J as |x|R′

J |y| iff ∀ϕ ∈ SF (Φ),∀J ′ ⊆
J,M, x |= [J ′]ϕ iff M,y |= [J ′]ϕ;
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• For all |x|� ∈ W ′ and for all atomic formulas p in SF (Φ), p ∈
π′(|x|�) iff p ∈ π(x).

We now study the properties of the filtered model.

PROPOSITION 27. M ′ contains at most 22card(AGT )×|Φ| worlds.

Proof. We use Proposition 24 and the fact that

W ′ → 2Cl(Φ)

|x|� �→ {ϕ ∈ Cl(Φ) | M,x |= ϕ}
is a well-defined injective application. �

PROPOSITION 28. If M is an NCLwt-model such that R∅ = W × W and
Φ any formula, then the model M ′ filtered by Φ is an NCLwt-model.

PROPOSITION 29. Given a formula Φ, for all ϕ in SF (Φ) and for all
x ∈ W , we have M ′, |x|� |= ϕ ⇔ M,x |= ϕ.

Proof. By induction on ϕ. �

THEOREM 30. An NCLwt(n)-formula Φ is satisfiable iff it is satisfiable in
a model with 22card(AGT )×|Φ| worlds.

Proof. By Propositions 21, 27, 28 and 29. �

THEOREM 31. The problem of deciding satisfiability of an NCLwt(1)-formula
is NP-complete.

Proof. NCLwt(1) is nothing but S5 because:

• 〈∅〉 is S5-operator;

• 〈AGT 〉 is a trivial operator since 〈AGT 〉ϕ ↔ ϕ, and can thus be
eliminated.

�

PROPOSITION 32. If n ≥ 2 then the problem of deciding satisfiability of
an NCLwt(n)-formula is is in NEXPTIME.

Proof. According to Theorem 30, we can test the satisfiability of a formula
by examining all models with 22card(AGT )×|ϕ| worlds. �

We are going to compare NCLwt(n) and [S5;S5] defined as follows:

DEFINITION 33. [S5;S5] is the modal logic defined by:
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• a language with two modal operators 〈1〉 and 〈2〉;
• an axiomatics with S5(〈1〉), S5(〈2〉) and the axiom of permutation

[1][2]ϕ ↔ [2][1]ϕ.

Note that the Church-Rosser axiom 〈1〉[2]ϕ → [2]〈1〉ϕ is a [S5;S5]-theorem.

PROPOSITION 34. [S5;S5] is characterized by the class of frames F =
(W,R1, R2) such that:

• R1 and R2 are equivalence relations ;

• R1 ◦ R2 = R2 ◦ R1 = W × W .

THEOREM 35 ([GKWZ03]). The problem of deciding satisfiability of an
[S5;S5]-formula is NEXPTIME-hard.

PROPOSITION 36. If n ≥ 2 then NCLwt(n) is a conservative extension of
[S5;S5].

Proof. We define tr : LS52 → LNCLwt which replaces the two operators
〈1〉 and 〈2〉 of [S5;S5] by 〈{1}〉 and 〈{2}〉 respectively.

First, the reader may easily verify that �[S5;S5] ϕ implies �NCLwt tr(ϕ).
Second, if ϕ is a satisfiable [S5;S5] formula, there is a [S5;S5]-model (M,x),
where we suppose that R1 ◦R2 = W ×W , such that M,x |= ϕ. We extend
M to an NCLwt-model M ′ by stipulating:

• If 1 ∈ J and 2 ∈ J then RJ = IdW ;

• If 1 ∈ J and 2 �∈ J then RJ = R1;

• If 1 �∈ J and 2 ∈ J then RJ = R2;

• If 1 �∈ J and 2 �∈ J then RJ = W × W .

It is straightforward to check that M ′ is an NCLwt-model and that M ′, x |=
tr(ϕ). �

COROLLARY 37. If n ≥ 2 then the problem of deciding satisfiability of an
NCLwt(n)-formula is NEXPTIME-hard.

Proof. From Theorem 35 and Proposition 36. �

THEOREM 38. If n ≥ 2 then the problem of deciding satisfiability of an
NCLwt(n)-formula is NEXPTIME-complete.

Proof. From Proposition 32 and Corollary 37. �
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function recursive NCL(n)-SAT-ND(ϕ)
if ϕ does not contain any X then

return NCLwt-SAT-ND(ϕ)
else

ϕ′ := Freeze(ϕ)
J := Xat(ϕ′)
if NCLwt-SAT-ND(ϕ′) = UNSATISFIABLE then

return UNSATISFIABLE
(M = (W, {RJ}, π), r) := NCLwt-GiveModel-ND(ϕ′)
for y ∈ W ,

ψy :=
∧

Xψ∈J/pXψ∈π(y) ψ ∧ ∧
Xψ∈J/pXψ �∈π(y) ¬ψ

if NCL(n)-SAT-ND(ψy) = UNSATISFIABLE then
return UNSATISFIABLE

endFor
return SATISFIABLE

endIf
endFunction

Figure 1. NCL(n)-SAT-ND

6.2 NCL(n)
For NCL(n), i.e. with the temporal operator X, it is difficult to apply fil-
tration directly because we cannot assume that R∅ is the universal relation
any more. First let us introduce the notion of a frozen formula.

DEFINITION 39. Let Xat(ϕ) be the set of all the subformulas of ϕ of the
form Xψ that are not proper subformulas of some other subformula Xϕ1.

DEFINITION 40. Let Freeze(ϕ) be the formula ϕ where all subformulas
Xψ ∈ Xat(ϕ) are replaced by a new atomic formula pXψ.

EXAMPLE 41. For ϕ = Xp∨〈{1}〉(p∧X(〈{2}〉p∨Xq)∧〈{2, 4}〉XXq), we
have:

• Xat(ϕ) = {Xp,X(〈{2}〉p ∨ Xq),XXq};
• Freeze(ϕ) = pXp ∨ 〈{1}〉(p ∧ pX(〈{2}〉p∨Xq) ∧ 〈{2, 4}〉pXXq).

Figure 1 shows a non-deterministic algorithm to decide the satisfiability
problem of an NCL(n)-formula ϕ. The procedure NCL(n)-SAT-ND uses two
sub-routines:

• NCLwt-SAT-ND is a non-determistic decision procedure for NCLwt-
SAT;
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• NCLwt-GiveModel-ND(ϕ′) nondeterministically chooses an NCLwt(n)-
pointed-model (M, r) such that M, r |= ϕ′.

As usual, an NCLwt(n)-pointed-model is a pair (M, r) where M is an NCLwt(n)-
model and r is a context of M .

Both NCLwt-SAT-ND and NCLwt-GiveModel-ND(ϕ′) are optimal, that
is to say:

• in the mono-agent case, they run in a polynomial space. In particular,
NCLwt-GiveModel-ND(ϕ′) returns a model of polynomial size;

• if there are more than two agents (n ≥ 2), they run in exponential
time. NCLwt-GiveModel-ND(ϕ′) returns a model with 22n×|ϕ′| worlds.

The procedure goes along the following idea: if an NCL-formula ϕ does
not contain any X symbol, then we can immediately use the first NCLwt-
SAT-ND procedure. Else we begin by treating the satisfiability of the
NCLwt-formula Freeze(ϕ). If it is satisfiable, we choose an NCLwt-model
M, r such that M, r |= Freeze(ϕ). Then we try to know if the valuation of
the propositions in Xat(ϕ) is consistent in every world y of the model M .
This is why we test whether ψy is NCL-satisfiable for every world y of the
model M by recursive calls to NCL(n)-SAT-ND.

THEOREM 42. NCL-SAT-ND terminates for all ϕ.

Proof. By induction on the modal degree w.r.t. the X operator. �

THEOREM 43. NCL-SAT-ND(ϕ) returns SATISFIABLE iff ϕ is satisfi-
able.

Proof.
The proof is done by induction.
⇒ We can construct an NCL-model for ϕ by gluing together the model

M that is built in NCLwt-GiveModel-ND with an NCL-model My for each
ψy (as exemplified in Figure 2).

⇐ If ϕ is satisfiable then there is an NCL-pointed-model (N,x) which
satisfies ϕ. Then we proceed as follows (see Figure 3).

1. We extract from (N,x) an NCLwt(n) model G for Freeze(ϕ).

2. We filter G: we obtain G′.

3. One execution of NCLwt-SAT-ND is such that M = G′. We then take
into account that any ψy is satisfiable (in (N, t) where t is a world of
N).



18 P. Balbiani, O. Gasquet, A. Herzig, F. Schwarzentruber and N. Troquard

y1

r�

� �
�

y2
y3

�

��

M

My1 My2

My3

�
��

X X
X

Figure 2. Construction of the NCL-model ( ⇒ -sense proof of Theorem 43).
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Figure 3. Picture explaining the ⇐ -sense proof of Theorem 43.
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Finally, NCL-SAT-ND(ϕ) returns SATISFIABLE.
�

We now state the complexity of NCL(1).

PROPOSITION 44. In the mono-agent setting, the problem of deciding the
satisfiability of an NCL-formula is in PSPACE.

Proof. By induction we can prove that an execution of NCL-SAT-ND uses
polynomial space. We take into account that:

• NCLwt-SAT-ND and NCLwt-GiveModel-ND run in polynomial space;

• M contains a polynomial number of worlds.

Then we use that NPSPACE = PSPACE (Savitch’s theorem). �

PROPOSITION 45. In the mono-agent setting, we have a polynomial re-
duction from the satisfiability problem of a K-formula to the satisfiability
problem of an NCL-formula by the following translation tr : LK → LNCL

defined by: tr(�ϕ) = X[∅]tr(ϕ).

COROLLARY 46. In the mono-agent setting, the problem of deciding the
satisfiability of an NCL-formula is PSPACE-hard.

THEOREM 47. In the mono-agent setting, the problem of deciding the sat-
isfiability of an NCL-formula is PSPACE-complete.

Proof. From Proposition 44 and Corollary 46. �

We finally give the complexity of the satisfiability problem of an NCL(n)-
formula for n ≥ 2.

PROPOSITION 48. The problem of deciding the satisfiability of an NCL(n)-
formula is in NEXPTIME.

Proof. By induction, we can prove that an execution of NCL-SAT-ND
uses exponential time. We take into account that:

• NCLwt-SAT-ND and NCLwt-GiveModel-ND run in exponential time;

• M contains an exponential number of worlds.

�

PROPOSITION 49. NCL is a conservative extension of NCLwt.

Proof. First, an NCLwt proof is an NCL proof. Second, if ϕ is a satisfiable
NCLwt-formula in an NCLwt-model (M,x), we extend M to M ′ by adding
FX = IdW . We have M ′, x |= ϕ. �
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COROLLARY 50. In presence of at least two agents, the problem of decid-
ing the satisfiability of an NCL-formula is NEXPTIME-hard.

Proof. From Corollary 37 and Proposition 49. �

THEOREM 51. In presence of at least two agents, the problem of deciding
the satisfiability of an NCL-formula is NEXPTIME-complete.

Proof. From Proposition 48 and Corollary 50. �

7 Discussion
Coalition Logic is basically a logic of ability, in the sense that its main
operator formalizes sentences of the form “agent i is able to ensure ϕ”.
As we have seen, NCL embeds CL and is of course suitable for such kind of
reasoning about abilities of agents and coalitions. However, the introduction
of a STIT-style operator is a move to more expressivity.

w1 w2

w3 w4

w5 w6

ϕ ϕ

¬ϕ¬ϕ

Figure 4. Representation of an NCL-model with two moments and two
agents: i chooses the columns (R{i}) and j chooses the rows (R{j}). The
grand coalition can determine a unique outcome: R{i,j} = Id, is represented
by the ‘small squares’. Nature (∅) cannot distinguish outcomes of a same
moment: R∅ = R{i} ◦R{j} is represented by the ‘big boxes’. Arrows are FX

transitions.

Authors in logics of action have often been interested in the notion of
‘making do’. It can be linked to the idea of an agent having the power over
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another agent [Cas03]. On the model of Figure 4, it is easy to check that
the formula 〈∅〉[{i}]X[{j}]ϕ is satisfied at w1 and w2. A direct reading of
this formula is “agent i sees to it that next, agent j sees to it that ϕ”.

For example, in an organizational or normative setting, it in fact reflects
adequately the agentive component of a delegation. As an illustration of
our logic, we see here how NCL can grasp tighter notions of ability than
Coalition Logic.

Chellas’s STIT logic has some annoying properties: if we try to model
influence of an agent on an other, we are inclined to state it via the formula
[i][j]ϕ. It is nevertheless equivalent to �ϕ. (Recall the historical necessity
operator in Section 4.) Hence, in this logic, an agent can force another agent
to do something if and only if this something is settled. We must admit this
is a poor notion of influence.

In previous attempts to extend straightforwardly the logic of Chellas’s
stit with a ‘next’ operator ([BHT06b]), the formula [{i}]X[{j}]ϕ → X�ϕ
was valid. It means that if i forces that next j ensures ϕ then next, ϕ is
inevitable. Inserting an X operator between the agent’s actions gives us a
refined notion of influence. Still, it is not completely satisfying, since it sug-
gests that an agent influences another agent j to do ϕ by forcing the world
to be at a moment where ϕ is settled. Since an agent at a moment sees to
everything being historically necessary (in formula: for every i, �ϕ → [i]ϕ),
it means that an agent i influences an agent to do ϕ if and only if it influ-
ences every agent to do ϕ, i included.

On the contrary, the following formula is not a theorem of NCL:

[{i}]X[{j}]ϕ → X[∅]ϕ.

In particular in the model of Figure 4, the following formulas are true at w1

and w2:

• 〈∅〉[{i}]X[{j}]ϕ
• 〈∅〉[{i}]X[{j}]¬ϕ

It somewhat grasps the fact that agent i controls the truth value of ϕ by
exerting influence on j. An interesting account of similar concepts but fo-
cused on propositional control is given by [vdHW05]. Of course, CL ‘fused’
operator is not designed for those issues, and Coalition Logic is not suitable
for modeling the notion of power over.

Even though our quick study does not permit to prove that NCL is in-
deed a good logic to reason about influence, we think that the consistency
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of 〈∅〉[{i}]X([{j}]ϕ∧〈∅〉[{j}]¬ϕ) which is at first sight a drawback, is in fact
an interesting property: an agent can force an agent j to ensure ϕ even if j
would also be able to ensure ¬ϕ. It somewhat leaves some place to indeter-
minism and unsuccessful delegations. What should constrain a delegated
agent is not physics but norms. If one wants to rule that property out, one
could simply release Det(X) and add the axiom schema Xϕ → X[∅]ϕ. The
nature of time in NCL is simply a very convenient one for embedding CL
and is amenable at will. We believe it particularly deserves a work effort in
the future.

8 Conclusion
To conclude, we have investigated the properties of a normal modal logic
version of Pauly’s Coalition Logic that we call NCL. We have shown that due
to its richer language it is strictly more complex than the latter: satisfiability
checking is NEXPTIME-complete (for more than two agents).

We think that the versatility of NCL models allows for smoothness in
modeling. The information ‘contained’ in a context, viz. the physical de-
scription of the world and the actual strategy profile of agents may permit
to capture fine-grained notions relevant for multi-agent systems via Kripke
models in the realm of normal modal logics.

We believe that the present framework opens new perspectives on a proof
theoretic investigation of logics of agency.
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