
Engineering of ontologies with Description Logics
5.2 advanced topics: concept refinements and their applications

Nicolas Troquard

Joint work with

Roberto Confalonieri
Pietro Galliani
Maria Hedblom
Oliver Kutz
Rafael Peñaloza
Daniele Porello
Guendalina Righetti

1 / 44

A bad ontology

1 RaiseWages(Switzerland)

2 TaxHighIncomes(Sweden)

3 RaiseWelfare(Switzerland)

4 RaiseWages(Sweden)

5 TaxHighIncomes(Switzerland)

6 RaiseWelfare(France)

7 RaiseWelfare ⊑ LeftPolicy

8 RaiseWelfare ⊑ ¬RaiseWages

9 TaxHighIncomes ⊑ LeftPolicy

10 LeftPolicy ⊑ RaiseWages ⊔ RaiseWelfare ⊔ TaxHighIncomes

11 RaiseWages ⊑ LeftPolicy

voting

2 / 44

Sources of inconsistency:

■ single-source error: after the addition of some axioms

■ multi-source incompatibility:
▶ during an automated construction (e.g., text mining, Yago, DBPedia, Open Street Map, ...)
▶ . . .
▶ during a collaborative process aggregating opinions (e.g., multi-issue voting)

3 / 44

Example: an inconsistent ontology

Adapted from
[Lam, Sleeman, Pan, Vasconcelos: A Fine-Grained Approach to Resolving Unsatisfiable Ontologies. 2008].

1 A(a)

2 A ≡ C ⊓ ∀R.B ⊓D

3 C ≡ ∃R.¬B ⊓B

4 C ⊑ G

5 F ⊑ A

4 / 44

Example: repair by axiom removing

Adapted from
[Lam, Sleeman, Pan, Vasconcelos: A Fine-Grained Approach to Resolving Unsatisfiable Ontologies. 2008].

Inconsistent O:
1 A(a)

2 A ⊑ C ⊓ ∀R.B ⊓D

3 C ⊓ ∀R.B ⊓D ⊑ A

4 C ⊑ ∃R.¬B ⊓B

5 ∃R.¬B ⊓B ⊑ C

6 C ⊑ G

7 F ⊑ A

Solution: remove one axiom, e.g., axiom 2, 4, or 1.

5 / 44

Example: repair by removing parts of axioms

Inconsistent O:
1 A(a)

2 A ⊑ C ⊓ ∀R.B ⊓D

3 C ⊓ ∀R.B ⊓D ⊑ A

4 C ⊑ ∃R.¬B ⊓B

5 ∃R.¬B ⊓B ⊑ C

6 C ⊑ G

7 F ⊑ A

Solution: remove parts of an axiom, e.g., conjunct C in axiom 2.

6 / 44

Example: repair by normalization and removing axioms

Solution (part 1): normalize O:

1 A(a)

2 A ⊑ C

3 A ⊑ ∀R.B

4 A ⊑ D

5 C ⊓ ∀R.B ⊓D ⊑ A

6 C ⊑ ∃R.¬B
7 C ⊑ B

8 ∃R.¬B ⊓B ⊑ C

9 C ⊑ G

10 F ⊑ A

Solution (part 2): remove, e.g., axiom 2, or 6.

7 / 44

Example: repair by axiom weakening

Inconsistent O:
1 A(a)

2 A ⊑ C ⊓ ∀R.B ⊓D

3 C ⊓ ∀R.B ⊓D ⊑ A

4 C ⊑ ∃R.¬B ⊓B

5 ∃R.¬B ⊓B ⊑ C

6 C ⊑ G

7 F ⊑ C

Solution: replace, e.g., axiom 2, into A ⊑ G ⊓ ∀R.B ⊓D; or axiom 4 into F ⊑ ∃R.¬B ⊓B; or axiom 1
into G(a).

8 / 44

Repairing Ontologies via Axiom Weakening
(Troquard, Confalonieri, Galliani, Peñaloza, Porello, Kutz — [AAAI 2018])

There is an increasing demand for methods to finely repair inconsistent ontologies.

Most existing approaches are based on coarsely removing a few axioms from the ontology to regain
consistency.

Contributions:

■ novel concept refinement operators.

■ theoretical computational complexity.

■ axiom weakening.

■ experimental evaluation of repairing by
axiom removal vs. by axiom weakening.

bctt co elig hom icd11 ofsmr ogr pe taxrank xeo

0.55

0.60

0.65

0.70

0.75

0.80

M
ea
n
IIC

Repair quality (left=random, right=MIS)
Axiom Weakening VS Axiom Removal

9 / 44

Two Approaches to Ontology Aggregation Based on Axiom Weakening
(Porello, Troquard, Peñaloza, Confalonieri, Galliani, Kutz — [IJCAI 2018])

Aggregating opinions about a domain is a traditional topic of social choice theory.

Contributions:

■ new methods of aggregation:
▶ Majority voting procedure, followed by repair
▶ Turn-based ‘dialogue between ontologies’

■ experimental evaluation vs. unanimity and axiom removal.

10 / 44

Towards even more irresistible axiom weakening
(Confalonieri, Galliani, Kutz, Porello, Righetti, Troquard — [DL 2020], [EPIA 2022])

The work of [AAAI 2018] is limited to EL and ALC ontologies. The OWL 2 Web Ontology Language
is based on SROIQ.

Contributions:

■ extension of the refinement operators to SROIQ concepts and roles.

■ computational complexity.

■ almost-sure termination of repair algorithms.

11 / 44

Asymmetric Hybrids: Dialogues for Computational Concept Combination
(Righetti, Porello, Troquard, Kutz, Hedblom, Galliani — [FOIS 2021], [IJCAI 2022])

■ In English, compound nouns follow a Modifier-Head schema.

■ A Fish-Vehicle is primarily Vehicle (Head) that is also a Fish (Modifier)
■ Naively taking the conjunction Fish ⊓ Vehicle does not work:

▶ Commutativity is against the asymmetry.
▶ Typically, Fish ⊓ Vehicle is not satisfiable (extension always empty).

■ Idea:
▶ Adapt ontology aggregation based on axiom weakening.
▶ Have an ontology of Fish and an ontology of Vehicle.
▶ Define a new ontology with the axioms FishVehicle ≡ Fish ⊓ Vehicle, and FishVehicle(wanda).
▶ Add knowledge from the Vehicle ontology (with probability pV) and from the Fish ontology (with

probability pF), with pV > pF .
▶ Weaken axioms when the Fish-Vehicle ontology becomes inconsistent.

12 / 44

Outline

1 Concept refinements and axiom weakening

2 Fine vs. coarse repair of ontologies

3 Ontology aggregations

4 Conclusions

13 / 44

Description Logics

ALC concepts over NC and NR:

C ::= A | ¬C | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C ,

where A is a concept name in NC and R is a role name in NR.

EL is the restriction of ALC allowing only conjunctions and existential restrictions.

(SROIQ also has nominals, inverse roles, qualified role restrictions, ...)

The set L(DL, Nc, NR) collects all the concepts of DL over NC and NR.

A TBox is a finite set of concept inclusions of the form C ⊑ D where C and D are concepts.

RaiseWages ⊔ TaxHighIncomes ⊑ ¬RightPolicy

An ABox is a finite set of formulas of the form C(a) and R(a, b), where a and b are individual names
in NI .

RaiseWages(Switzerland), ShareBorder(Switzerland,France)

(SROIQ also has an RBox, a finite set of role inclusions, and role constraints.)

14 / 44

Semantics

An interpretation is a tuple I = (∆I , ·I), where ∆I is a non-empty domain, and ·I is a function:

■ a ∈ NI , a
I ∈ ∆I .

■ C ∈ NC , C
I ⊆ ∆I .

■ R ∈ NR, R
I ⊆ ∆I ×∆I .

It is extended to all ALC concepts as follows:

■ ⊤I = ∆I ; ⊥I = ∅; (¬C)I = ∆I \ CI

■ (C ⊓D)I = CI ∩DI ; (∃R.C)I = {x ∈ ∆I | (x, y) ∈ RI , and y ∈ CI}
The truth value of axioms is:

■ I |= C ⊑ D iff CI ⊆ DI ; I |= C(a) iff a ∈ CI ; I |= R(a, b) iff (aI , bI) ∈ RI .

The interpretation I is a model of the ontology O if it satisfies all the axioms in O. An ontology is
consistent if it has a model.

Given two concepts C and D, we say that C is subsumed by D w.r.t. the ontology O (C ⊑O D) if
I |= C ⊑ D for every model I of O. We write C ≡O D when C ⊑O D and D ⊑O C.

C is “strictly” subsumed by D w.r.t. O (C ⊏O D) if C ⊑O D and C ̸≡O D.

15 / 44

Refinement operators

A generalisation refinement operator (wrt. an ontology O) is a function:

γO(C) ⊆ {C′ ∈ L(DL, Nc, NR) | C ⊑O C′} .

A specialisation refinement operator is a function:

ρO(C) ⊆ {C′ ∈ L(DL, Nc, NR) | C′ ⊑O C} .

Expected properties:

1 generalisation if D ∈ γO(C) then C ⊑O D

2 specialisation if D ∈ ρO(C) then D ⊑O C

3 trivial generalisability ⊤ ∈ γ∗
O(C)

4 falsehood specialisability ⊥ ∈ ρ∗O(C)

5 generalisation finiteness γO(C) is finite

6 specialisation finiteness ρO(C) is finite.

In [AAAI’18], we propose refinement operators with these properties.
details

16 / 44

Complexity

The refinement operators proposed in the paper are “efficient”.

Definition

Given an ontology O and concepts C,D, the problems γO-membership and ρO-membership ask
whether D ∈ γO(C) and D ∈ ρO(C), respectively.

ALC EL SROIQ [DL 2020]

γO-membership EXPTIME-complete PTIME-complete N2EXPTIME-complete
ρO-membership EXPTIME-complete PTIME-complete N2EXPTIME-complete

details

Hence: the problems are no harder than concept subsumption.

17 / 44

Axiom Weakening

Definition (Axiom weakening)

Given a concept inclusion C ⊑ D, the set of (least) weakenings of C ⊑ D w.r.t. O, denoted by
gO(C ⊑ D) is the set of all axioms C′ ⊑ D′ such that

C′ ∈ ρO(C) and D′ = D

or
C′ = C and D′ ∈ γO(D) .

Given an assertional axiom C(a), the set of (least) weakenings of C(a), denoted gO(C(a)) is the set of
all axioms C′(a) such that

C′ ∈ γO(C).

Lemma

For every axiom φ, if φ′ ∈ gO(φ), then φ |=O φ′.

18 / 44

Special care with infinite chains of refinements

In general, refinement operators are reflexive: C ∈ γO(C), and C ∈ ρO(C).

There may also be infinite chains of strict refinements.

Example: Reference ontology O:
■ A ⊑ ∃R.A

We have:
∃R.A ∈ γO(A)

So:

■ ∃R.A ∈ γO(A)

■ ∃R.∃R.A ∈ γO(∃R.A)

■ ∃R.∃R.∃R.A ∈ γO(∃R.∃R.A)

■ . . .

■ (∃R.)kA ∈ γk
O(A)

19 / 44

Almost-sure reachability of ⊤ and ⊥

See [EPIA 2022].

A simple procedure to reach ⊤: Input concept C; Iteratively generalize it until ⊤ is reached.

■ while C ̸= ⊤:
■ uniformly at random choose C′ ∈ γO(C)

■ C = C′

Non-termination.
Almost-sure termination.

Theorem

Let O be a DL ∈ {EL,ALC,SROIQ} ontology, let C be a concept, and let (Ci)i∈N be a sequence of
concepts such that C0 = C and each Ci+1 is chosen uniformly at random in γO(Ci). Then, with
probability 1, there exists some i ∈ N such that Ci = ⊤.

■ The rate of growth in size of generalizations and of the set of generalizations is “small”.
▶ if C′ ∈ γO(C) ∪ ρO(C), then |C′| is linear in |C|+ |O|.
▶ card(γO(C)) and card(ρO(C)) is linear in |O|.

20 / 44

Outline

1 Concept refinements and axiom weakening

2 Fine vs. coarse repair of ontologies

3 Ontology aggregations

4 Conclusions

21 / 44

Needs for a reference ontology

Reference ontology: any ontology Oref with which one can make “useful” inferences.

The purpose of Oref is to make “useful” generalisations of a concept C with:

γOref(C) ,

“useful” specialisations of a concept C with:

ρOref(C) ,

and sensible weakening of axioms with
gOref(ϕ) .

22 / 44

ChooseAxiom

ChooseAxiom(O) is critical.

For the experimental evaluation, we consider:

■ Random: take an axiom at random;

■ MIS: take an axiom occurring the most often in the set of minimally inconsistent sets at random.

In practice:

■ ask the user to choose an axiom, possibly in a MIS.

23 / 44

WeakenAxiom

WeakenAxiom(ϕ, Oref).

For evaluation:

■ choose an axiom uniformly at random in gOref(ϕ).

In practice:

■ ask the user to choose an axiom in gOref(ϕ).

24 / 44

Repair strategies

Algorithm 1 RepairOntologyRemove(O)

while O is inconsistent do
BadAx ← ChooseAxiom(O)
O ← O \ {BadAx}

end while
return O

Algorithm 2 RepairOntologyWeaken(O)

Oref ← MaximallyConsistent(O)
while O is inconsistent do

BadAx ← ChooseAxiom(O)
WeakerAx ← WeakenAxiom(BadAx, Oref)
O ← O \ {BadAx} ∪ {WeakerAx}

end while
return O

25 / 44

Comparing two repairs: relative quality

When is one of two consistent repairs O1 and O2 of an inconsistent ontology O preferable to the other?

Here, we compare their information content, in the inferred class hierarchies.

Inf(Oi) = {A ⊑ B | A,B ∈ NC ∩ sub(Oi), Oi |= A ⊑ B} .

Measure to compare the inferable information content of two ontologies:

Definition

Let O1 and O2 be two consistent ontologies. If Inf(O1) ̸= Inf(O2), we define the
inferable information content IIC(O1, O2) of O1 w.r.t. O2 as IIC(O1, O2) =

card(Inf(O1) \ Inf(O2))

card(Inf(O1) \ Inf(O2)) + card(Inf(O2) \ Inf(O1))
;

if instead Inf(O1) = Inf(O2), we set IIC(O1, O2) = 0.5.

26 / 44

Properties of IIC and interpretation

1 IIC(O1, O2) ∈ [0, 1];

2 IIC(O1, O2) = 1− IIC(O2, O1);

3 IIC(O1, O2) = 0.5 if and only if card(Inf(O1)) = card(Inf(O2));

4 IIC(O1, O2) = 1 if and only if Inf(O2) ⊂ Inf(O1);

5 IIC(O1, O2) > 0.5 if and only if card(Inf(O1) \ Inf(O2)) > card(Inf(O2) \ Inf(O1)).

Applied to two repairs O1 and O2 of the same inconsistent ontology, we interpret

IIC(O1, O2) > 0.5

as O1 being a ‘better’ repair than O2.

27 / 44

Results on ontologies from the NCBO BioPortal

Results over 100 repairing runs on 10 ontologies from the BioPortal made inconsistent.

Random MIS

bctt 0.55 (0.35) 0.72 (0.36)
co-wheat 0.69 (0.29) 0.76 (0.31)
elig 0.61 (0.30) 0.72 (0.27)
hom 0.68 (0.26) 0.71 (0.31)
icd11 0.60 (0.30) 0.71 (0.40)
ofsmr 0.65 (0.31) 0.76 (0.29)
ogr 0.56 (0.32) 0.70 (0.35)
pe 0.56 (0.33) 0.67 (0.41)
taxrank 0.56 (0.31) 0.82 (0.36)
xeo 0.67 (0.29) 0.67 (0.34)

Table: Mean and standard deviation (in parentheses) of IIC between RepairOntologyWeaken and
RepairOntologyRemove, both when choosing axioms at random (left column) and by sampling minimally
inconsistent sets (right). Bolded values are significant (p < 0.05) with respect to both Wilcoxon and T-test with
Holm-Bonferroni correction; non-bolded values were not significant for either.

28 / 44

bctt co elig hom icd11 ofsmr ogr pe taxrank xeo

0.55

0.60

0.65

0.70

0.75

0.80

M
ea
n
IIC

Repair quality (left=random, right=MIS)
Axiom Weakening VS Axiom Removal

Figure: Comparing weakening-based ontology repair with removal-based ontology repair. Mean IIC of
weakening-based against removal-based repair for each ontology, when choosing axioms at random (left) or by
sampling minimally inconsistent sets (right).

29 / 44

Implementations

https://bitbucket.org/troquard/ontologyutils/ (src/main/java/www/ontologyutils/apps)

■ AppAutomatedRepairWeakening

■ AppInteractiveRepair

■ AppInteractiveReferenceOntologyAndRepair

30 / 44

https://bitbucket.org/troquard/ontologyutils/

Outline

1 Concept refinements and axiom weakening

2 Fine vs. coarse repair of ontologies

3 Ontology aggregations

4 Conclusions

31 / 44

Social choice: discursive dilemma

■ P: the defendant did a certain action;

■ Q: the defendant had a contractual obligation not to do that action;

■ C: the defendant is liable.

P? Q? C ≡ P ∧Q? C?

Juror 1 yes yes yes yes
Juror 2 no yes yes no
Juror 3 yes no yes no

Majority yes yes yes no

Each Juror makes a consistent judgement; the Majority is inconsistent.

32 / 44

Repairing collective ontologies

agenda

A discursive dilemma.

1 2 3 4 5 6 7 8 9 10 11

Expert 1 1 0 1 0 1 0 0 0 0 0 0
Expert 2 0 0 1 0 0 0 1 1 1 1 1
Expert 3 1 1 0 0 1 0 1 1 0 0 1

Majority 1 0 1 0 1 0 1 1 0 0 1

{1, 3, 8} is an inconsistent set of axioms:

■ RaiseWages(Switzerland)

■ RaiseWelfare(Switzerland)

■ RaiseWelfare ⊑ ¬RaiseWages

33 / 44

A principled reference ontology

Idea:

1 Preference <i over the set of axioms O for every agent i.

2 Lexicographic preference over the subsets of axioms.

3 Collective preference.

4 <-optimal MCS: most collectively preferred axioms are added iteratively, as long as they cause no
inconsistency.

5 Reference ontology as <-optimal MCS.

Proposition

If ontology consistency is in the complexity class C, then the problem of finding the <-optimal MCS is
in the class NPC.

34 / 44

A majority voting procedure

Parameters:

■ O is an (inconsistent) ontology.

■ each Oi is a consistent subset of O.
■ each <i is a preference over O.

Algorithm 3 VoteBasedCollectiveOntology(O, (<i)i, (Oi)i)

Oref ← ReferenceOntology(O, (<i)i)
R← Majority((Oi)i)
while R is inconsistent do

BadAx ← ChooseAxiom(R)
WeakerAx ← WeakenAxiom(BadAx, Oref)
R← R\{BadAx} ∪ {WeakerAx}

end while
return R

35 / 44

A turn-based procedure

Algorithm 4 TurnBasedCollectiveOntology(O, (<i)i, (Oi)i)

Oref ← ReferenceOntology(O, (<i)i)
R← ∅
ConsideredAxioms ← ∅
FinishedAgents ← ∅
Agent ← 1
while FinishedAgents ̸= Agents do

if OAgent ⊆ ConsideredAxioms then
FinishedAgents ← FinishedAgents ∪{ Agent }

else
Ax ← FavoriteNonConsideredAxiom(<Agent, OAgent)
ConsideredAxioms ← ConsideredAxioms ∪{Ax}
while R ∪ {Ax} is inconsistent do

Ax ← WeakenAxiom(Ax, Oref)
end while
R← R ∪ {Ax}

end if
Agent ← (Agent (mod # Agents)) + 1

end while
return R

36 / 44

Agents’ happiness with an ontology

■ Tolerant Happiness: an agent is tolerantly happy when their chosen axioms are in (or follow
from) the collective repaired ontology, regardless of whether this ontology also entails further
statements.

■ Strict Happiness: an agent is strictly happy when their chosen axioms are in (or follow from) the
collective ontology and everything that follows from the collective ontology also follows from their
own chosen axioms.

37 / 44

Agents’ happiness, formally

Definition

Let Oi be the set of axioms chosen by an agent i, and O be a consistent collective ontology, we define:

■ the tolerant agent happiness TolH(O|Oi) as

|{φ ∈ Oi ∪ Inf(Oi) s.t. O |= φ}|
|Oi ∪ Inf(Oi)|

;

■ the strict agent happiness StrH(O|Oi) as

|{φ ∈ Oi ∪ Inf(Oi) ∪O ∪ Inf(O) s.t. O |= φ and Oi |= φ}|
|Oi ∪ Inf(Oi) ∪O ∪ Inf(O)| .

38 / 44

Results

We used 7 ontologies from BioPortal. Made the ontologies inconsistent 250 times through the addition
of random axioms.
Each time and for each agent i, we randomly generated a preference order <i, and chose the individual
ontology Oi to be a consistent set of the best axioms of the agenda w.r.t. <i.

Average agent happiness using our two methods (voting, turn) and two baselines (unanimity, removal).

39 / 44

https://bitbucket.org/troquard/ontologyutils/ (src/main/java/www/ontologyutils/apps)

■ AppTurnBasedMechanism

40 / 44

https://bitbucket.org/troquard/ontologyutils/

Outline

1 Concept refinements and axiom weakening

2 Fine vs. coarse repair of ontologies

3 Ontology aggregations

4 Conclusions

41 / 44

Conclusions

We proposed “efficient” refinement operators for EL, ALC, and recently for SROIQ.

We proposed and implemented algorithms to repair inconsistent ontologies by weakening axioms.

Of course, weakening an axiom will preserve at least as much information as removing it would.

We quantified it.

We found that it is significant only if one can pinpoint reliably to the culprits for inconsistency.

We used axiom weakening in two approaches for ontology aggregation.

We found that the turn-based mechanism is preferable for tolerant-happiness; the voting mechanism is
preferable for strict-happiness.

42 / 44

Further work
Implementation:

■ Extend to SROIQ.
■ Plugin for Protégé.

Ontology evaluation criteria:

■ What makes an ontology good?

■ Here: quantity of information

■ [Fox & Tenenbaum]: generality, efficiency, perspicuity, transformability, extensibility, granularity,
scalability, competence.

■ [Gruber]: clarity, coherence, extensibility, minimal encoding, minimal ontological commitment.

■ . . .

Need for inconsistent ontology benchmarks
(or “good” methods to render an existing ontology inconsistent):

■ What makes an ontology badly hurt?

■ Hard to repair ontologies?

■ Hard to perform fault-tolerant reasoning?

■ . . .
43 / 44

Engineering of ontologies with Description Logics
5.2 advanced topics: concept refinements and their applications

Nicolas Troquard

44 / 44

Subconcepts

Definition

Let O be a DL ontology. The set of subconcepts of O is given by

sub(O) = {⊤,⊥} ∪
⋃

C(a)∈O

sub(C) ∪
⋃

C⊑D∈O

sub(C) ∪ sub(D) ,

where sub(C) is the set of subconcepts in C.

back

45 / 44

Upward and Downward cover sets of concepts

The upward cover of the concept C collects the most specific subconcepts of the ontology O that
subsume C.

The downward cover of C collects the most general subconcepts from O subsumed by C.

Definition

Let O be a DL ontology and C a concept. The upward cover and downward cover of C w.r.t. O are:

UpCovO(C) := {D ∈ sub(O) | C ⊑O D and

∄.D′ ∈ sub(O) with C ⊏O D′ ⊏O D},
DownCovO(C) := {D ∈ sub(O) | D ⊑O C and

∄.D′ ∈ sub(O) with D ⊏O D′ ⊏O C}.

back

46 / 44

Example: Limits of considering only subconcepts of the ontology

UpCovO and DownCovO miss interesting refinements.

Example

Let NC = {A,B,C} and O = {A ⊑ B}.
■ We have UpCovO(A ⊓ C) = {A}.
■ Iterating: UpCovO(A) = {A,B} and UpCovO(B) = {B,⊤}.
■ B ⊓ C is missed by the iterated application of UpCovO from A ⊓ C.

■ Similarly, UpCovO(∃R.A) = {⊤}, while we can expect ∃R.B to be a generalisation of ∃R.A.

back

47 / 44

Abstract refinement, generalisation, and specialisation operator
The abstract refinement operator ζ↑,↓ is defined by induction on the structure of concept descriptions.

ζ↑,↓(⊤) = ↑(⊤)

ζ↑,↓(⊥) = ↑(⊥)

ζ↑,↓(A) = ↑(A), A ∈ NC

ζ↑,↓(¬C) = {¬C
′ | C′ ∈ ζ↓,↑(C)} ∪ ↑(¬C)

ζ↑,↓(C ⊓ D) = {C′ ⊓ D | C′ ∈ ζ↑,↓(C)}∪

{C ⊓ D
′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C ⊓ D)

ζ↑,↓(C ⊔ D) = {C′ ⊔ D | C′ ∈ ζ↑,↓(C)}∪

{C ⊔ D
′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C ⊔ D)

ζ↑,↓(∀R.C) = {∀R.C
′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∀R.C)

ζ↑,↓(∃R.C) = {∃R.C
′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∃R.C)

The generalisation operator and specialisation operator are defined, respectively, as

γO = ζUpCovO,DownCovO , and

ρO = ζDowCovO,UpCovO .

back

48 / 44

Example (continued)

■ NC = {A,B,C}.
■ O = {A ⊑ B}.
■ B ⊓ C is not in the iterated UpCovO from A ⊓ C.

■ But γO(A ⊓ C) = {A ⊓ C,B ⊓ C,A ⊓ ⊤, A}.

Details:

γO(A ⊓ C) = {A′ ⊓ C | A′ ∈ γO(A)} ∪ {A ⊓ C′ | C′ ∈ γO(C)} ∪ UpCovO(A ⊓ C)

■ γO(A) = UpCovO(A)

■ γO(C) = UpCovO(C)

■ UpCovO(A) = {A,B}
■ UpCovO(C) = {⊤}
■ UpCovO(A ⊓ C) = {A}

back

49 / 44

Complexity (case of γO with an EL ontology)

Lemma

When DL = EL, deciding whether D ∈ γO(C) is PTIME-hard.

■ Deciding whether D ∈ UpCovO(C) is as hard as atomic subsumption.
■ Deciding whether D ∈ γO(C) is as hard as deciding whether C′ ∈ DownCovO(C).

Lemma

When DL = EL, UpCovO(C) is computable in polynomial time.

■ card(sub(O)) is linear in |O|.
■ Deciding whether D ∈ UpCovO(C) requires at most 1 + 4× card(sub(O)) calls to the subroutine for DL

concept subsumption.
■ It suffices to check for every D ∈ sub(O) whether D ∈ UpCovO(C) and collect those concepts for which

the answer is positive.

Lemma

When DL = EL, deciding whether D ∈ γO(C) is in PTIME.

■ card(γO(C)) ≤ (|O|+ 2)× |C|.
■ We can decide whether γO(C) contains a particular concept by computing only a linear number of times

UpCovO(C′), where |C′| is linearly bounded by |C′|+ |O|.
back

50 / 44

SROIQ upward and downward covers

Let O = T ∪ R ∪A be an ontology.

Let C be a concept, the upward cover and downward cover of C wrt. O are as for ALC.

Let r be a role name, the upward cover and downward cover of r wrt. O (where N−
R = {r− | r ∈ NR}):

UpCovO(r) := {s ∈ NR ∪N−
R ∪ {E,U} | r ⊑O s and

∄.s′ ∈ NR ∪N−
R ∪ {E,U} with r ⊏O s′ ⊏O s and

s, s′ are simple in R}.

DownCovO(r) := {s ∈ NR ∪N−
R ∪ {E,U} | s ⊑O r and

∄.s′ ∈ NR ∪N−
R ∪ {E,U} with r ⊏O s′ ⊏O s and

s, s′ are simple in R}.

Let n be a non-negative integer:

UpCovO(n) := {n, n+ 1},

DownCovO(n) :=

{
{n− 1, n} when n > 1

{n} when n = 0.

51 / 44

SROIQ concepts and roles refinement operators

Role restrictions are upgraded from ALC with role refinements:

ζ↑,↓(∀R.C) = {∀R′.C | R′ ∈ ↓(R)} ∪ {∀R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∀R.C)

ζ↑,↓(∃R.C) = {∃R′.C | R′ ∈ ↑(R)} ∪ {∃R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∃R.C)

SROIQ concepts:

ζ↑,↓(∃R.Self) = {∃R′.Self | R′ ∈ ↑(R)} ∪ ↑(∃R.Self)

ζ↑,↓({i}) = ↑({i})
ζ↑,↓(≤ n R.C) = {≤ m R.C | m ∈ ↑(n)} ∪ {≤ n R′.C | R′ ∈ ↓(R)}∪

{≤ n R.C′ | C′ ∈ ζ↓,↑(C)} ∪ ↑(≤ n R.C)

ζ↑,↓(≥ n R.C) = {≥ m R.C | m ∈ ↓(n)} ∪ {≥ n R′.C | R′ ∈ ↑(R)}∪
{≥ n R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(≥ n R.C)

SROIQ roles:

ζ↑,↓(r) = ↑(r)

ζ↑,↓(r
−) = {s− | s ∈ ↑(r), s ∈ NR} ∪ {s | s− ∈ ↑(r), s− ∈ N−

R }
ζ↑,↓(U) = ↑(U)

ζ↑,↓(E) = ↑(E)
52 / 44

	Concept refinements and axiom weakening
	Fine vs. coarse repair of ontologies
	Ontology aggregations
	Conclusions
	Appendix

