Engineering of ontologies with Description Logics
2. knowledge engineering with PL and FOL

Nicolas Troquard

Outline

1 Knowledge engineering with Propositional logic 2 Knowledge engineering with First Order Logic

Language

The language of propositional logic is inductively defined from:

- Propositional variables: atomic statements that can be true or false
- Symbol T: truth
- Propositional connectives:
- ᄀ: not
- V: or
- Parentheses (and)

Formally:

$$
A::=\top|p| \neg A \mid A \vee A
$$

where p is a propositional variable.
Defined connectives:
■ $A \wedge B:=\neg(\neg A \vee \neg B)$
■ $A \rightarrow B:=\neg A \vee B$
$\square A \leftrightarrow B:=(A \rightarrow B) \wedge(B \rightarrow A)$
■ $\perp:=\neg \top$

Examples

A simple knowledge base of the domain of tumours:
\square Benign $\rightarrow \neg$ Metastasis

- Stage4 $\leftrightarrow \neg$ Benign
- Treatment \rightarrow Surgery \vee Chemo \vee Radio

Meaning through interpretations

An interpretation for PL is a tuple $\mathcal{I}=\left(P, .^{\mathcal{I}}\right)$, where:

- P is a set of propositional variables
$\square .^{\mathcal{I}}: P \longrightarrow\{$ true, false $\}$ assigns truth values to propositional variables
The assignment.$^{\mathcal{I}}$ can be inductively extended to all PL formulas:
$\square(\neg A)^{\mathcal{I}}=$ true iff $A^{\mathcal{I}}=$ false
$\square(A \vee B)^{\mathcal{I}}=$ true iff $A^{\mathcal{I}}=$ true or $B^{\mathcal{I}}=$ true
We write $\mathcal{I} \models A$ when $A^{\mathcal{I}}=$ true, and say that A is satisfied in \mathcal{I}, or that \mathcal{I} is a model of A.

Reasoning, computational complexity of PL

A formula A is satisfiable if there is an interpretation that is a model of A.
A formula A is valid if A is satisfied in every model.
A set of formulas Γ entails a formula B if every interpretation that is model of all formulas in Γ is also a model of B.

Deciding satisfiability in PL is NP-complete.
Deciding unsatisfiability in PL is coNP-complete.
Deciding validity in PL is coNP-complete. (A valid iff $\neg A$ is not satisfiable)
Deciding entailment in PL is coNP-complete (Γ entails B iff $\left(\bigwedge_{A \in \Gamma} A\right) \rightarrow B$ is valid)
Reminder:
$\ldots \mathrm{AC}^{0} \subseteq \mathrm{LOGSPACE} \subseteq$ NLOGSPACE $\subseteq \mathrm{P} \subseteq \mathrm{NP}, \operatorname{coNP} \subseteq \ldots \subseteq \mathrm{PH} \subseteq$ PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE $\subseteq 2 E X P T I M E \subseteq$ N2EXPTIME $\subseteq 2 E X P S P A C E \subseteq \ldots \subseteq E \subseteq$ TOWER \subseteq $R E \subseteq \ldots$
... and much more, before, after, and in-between.

Limitations of PL (1)

Consider the following statements from a medical domain:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Consequence: Juvenile arthritis does not affect adults.
Attempt at formalisation in PL:
\square JuvDisease \rightarrow AffectsChild \vee AffectsTeenager
\square Child \vee Teenager $\rightarrow \neg$ Adult

- JuvArthritis \rightarrow JuvDisease \wedge Arthritis
\square Arthritis \rightarrow AffectsAdult
Does it entail: JuvArthritis $\rightarrow \neg$ AffectsAdult?

Limitations of PL (1)

Consider the following statements from a medical domain:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
\square Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Consequence: Juvenile arthritis does not affect adults.
Attempt at formalisation in PL:
\square JuvDisease \rightarrow AffectsChild \vee AffectsTeenager

- Child \vee Teenager $\rightarrow \neg$ Adult
- JuvArthritis \rightarrow JuvDisease \wedge Arthritis
- Arthritis \rightarrow AffectsAdult

Does it entail: JuvArthritis $\rightarrow \neg$ AffectsAdult?
No. Worse, we obtain an unsatisfiable set of formulas when we add:
\square JuvArthritis $\rightarrow \neg$ AffectsAdult?

- JuvArthritis

PL cannot make a distinction between objects, relationships between objects, and quantifier restrictions.

- A juvenile disease affects only children or teenagers
\square Children and teenagers are not adults
\square Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

We need a more expressive language for knowledge representation.

Outline

1 Knowledge engineering with Propositional logic

2 Knowledge engineering with First Order Logic

Language

FO languages are inductively defined from:

- Predicate Symbols, each with an arity
- Function symbols, each with an arity
- Constants
- Variables
- Symbol T: truth
- Propositional connectives: \neg, \vee
- The existential and universal quantifiers: \exists, \forall
- Parentheses (and)

Formally:

$$
\begin{gathered}
t::=x|c| f(t, \ldots, t) \\
\beta::=t=t \mid R(t, \ldots, t) \\
\alpha::=\top|\beta| \neg \alpha|\alpha \vee \alpha| \exists x . \alpha
\end{gathered}
$$

where t are terms, f are functions mapping tuples of terms to terms, and R are relations over terms. In the formula MotherOf(ann, john) $\wedge \exists x$. BrotherOf(bob, $x), x$ is a bound variable.
In the formula FatherOf(john, $x), x$ is a free variable.
A FO sentence is a formula without free variables.

Meaning through interpretations

An interpretation for FOL is a tuple $\mathcal{I}=\left(D, .^{\mathcal{I}}\right)$, where:
$\square D$ is non-empty set; the domain of interpretation
$\square .^{\mathcal{I}}$ is the interpretation function that associates:

- every constant c an object $c^{\mathcal{I}} \in D$.
- every n-ary function symbol f, a function $f^{\mathcal{I}}: D^{n} \longrightarrow D$
- every n-ary prediction symbol R, a relation $R^{\mathcal{I}} \subseteq D^{n}$.

Meaning through interpretations and assignments

Interpreting terms:
To interpret free variables, given an interpretation \mathcal{I}, an assignment is a function g that assigns an element of D to every variable of the language.

- We can extend the assignment g : to constants $g(c)=c$, and to functions

$$
g\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)
$$

Given an interpretation \mathcal{I} and an assignment g, every FOL formula is either true or false:
$\square R\left(t_{1}, \ldots, t_{n}\right)^{\mathcal{I}}[g]=$ true iff $\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right) \in R^{\mathcal{I}}$
$\square\left(t_{1}=t_{2}\right)^{\mathcal{I}}[g]=$ true iff $g\left(t_{1}\right)=g\left(t_{2}\right)$
$\square(\neg \alpha)^{\mathcal{I}}[g]=$ true iff $\alpha^{\mathcal{I}}[g]=$ false
$\square\left(\alpha_{1} \vee \alpha_{2}\right)^{\mathcal{I}}[g]=$ true iff $\alpha_{1}^{\mathcal{I}}[g]=$ true or $\alpha_{2}^{\mathcal{I}}[g]=$ true

$$
(\exists x . \alpha)^{\mathcal{I}}[g]=\text { true iff there is } a \in D \text { such that } \alpha^{\mathcal{I}}[g / x \rightarrow a]=\text { true }
$$

That is, there is an a in the domain of interpretation that we can (re)assign to x, that makes α true in \mathcal{I} under the (modified) assignment.

Satisfiability of sentences

For interpreting a sentence, assignments are irrelevant (no free variables).
Given a sentence α, we write $\mathcal{I} \models \alpha$ when $\alpha^{\mathcal{I}}=\operatorname{true}$, and say that α is satisfied in \mathcal{I}, or that \mathcal{I} is a model of α.

Validity and entailment are defined from satisfiability.

Example in FOL (1)

- Child, Arthritis, ... Unary predicates
- Affects Binary predicate
- ssnOf Unary function
- johnSmith, maryJones, jra Constants ${ }^{1}$

■ x, y, z variables
E.g.:

- Child(johnSmith)
- Affects(jra, johnSmith)
- $\forall x$. (Affects $(\mathrm{jra}, x) \rightarrow \operatorname{Child}(x) \vee$ Teenager $(x))$
- $\neg(\exists x . \exists y$. $(J u v \operatorname{Arthritis}(x) \wedge \operatorname{Affects}(x, y) \wedge$ Adult $(y)))$

[^0]- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Formalisation in FOL:

$\square \forall x .(\forall y .(J u v D i s e a s e(x) \wedge \operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee$ Teenager $(y)))$

- $\forall x$. $(\operatorname{Child}(x) \vee$ Teenager $(x) \rightarrow \neg \operatorname{Adult}(x))$
- $\forall x$. (JuvArthritis $(x) \rightarrow \operatorname{Arthritis}(x) \wedge$ JuvDisease $(x))$
$\square \exists x$. $(\exists y$. $(\operatorname{Arthritis}(x) \wedge \operatorname{Affects}(x, y) \wedge \operatorname{Adult}(y)))$

A juvenile disease affects only children or teenagers
\square JuvDisease \rightarrow AffectsChild \vee AffectsTeenager

- 8 possible interpretations (over the three propositional variables)
- 7 models
$\square \forall x .(\forall y .(J u v D i s e a s e(x) \wedge \operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee$ Teenager $(y)))$
- infinity of interpretations (over arbitrary domains)
- infinity of models

Why are we interested in reasoning?

- Discover new knowledge
- Detect undesired consequences
- Γ entails Teenager $(x) \rightarrow \operatorname{Cat}(x)$
- broken knowledge: Γ entail \perp

Juvenile arthritis does not affect adults?

Knowledge base Γ :
$1 \forall x .(\forall y .(J u v D i s e a s e(x) \wedge \operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee$ Teenager $(y)))$
■ $\forall x$. $(\operatorname{Child}(x) \vee$ Teenager $(x) \rightarrow \neg$ Adult $(x))$
3 $\forall x$. (JuvArthritis $(x) \rightarrow \operatorname{Arthritis}(x) \wedge$ JuvDisease $(x))$
4 . $\exists x$. $(\exists y$. $(\operatorname{Arthritis~}(x) \wedge \operatorname{Affects}(x, y) \wedge \operatorname{Adult}(y)))$

Question:

\square Does Γ entail $\forall x .(\forall y$. $(J u v \operatorname{Arthritis}(x) \wedge \operatorname{Affects}(x, y) \rightarrow \neg \operatorname{Adult}(y))$?

Exercise

Answer the question.

Juvenile arthritis does not affect adults? (solution)

Knowledge base Γ :
$1 \quad \forall x .(\forall y .(J u v D i s e a s e(x) \wedge \operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee$ Teenager $(y)))$
2 $\forall x$. $(\operatorname{Child}(x) \vee$ Teenager $(x) \rightarrow \neg$ Adult $(x))$
${ }_{3} \forall x$. $(J u v \operatorname{Arthritis}(x) \rightarrow \operatorname{Arthritis}(x) \wedge$ JuvDisease $(x))$
4 . $\exists x$. $(\exists y$. $(\operatorname{Arthritis~}(x) \wedge \operatorname{Affects}(x, y) \wedge \operatorname{Adult}(y)))$

Question:

\square Does Γ entail $\forall x$. $(\forall y$. (JuvArthritis $(x) \wedge \operatorname{Affects}(x, y) \rightarrow \neg \operatorname{Adult}(y))$?
Answer:
■ JuvArthritis (x) implies $\operatorname{Arthritis}(x)$ and JuvDisease (x) (use axiom 3)

- so we have JuvDisease (x) and $\operatorname{Affects}(x, y)$

■ JuvDisease (x) and $\operatorname{Affects}(x, y)$ imply Child $(y) \vee$ Teenager (y) (use axiom 1)
\square Child $(y) \vee$ Teenager (y) implies $\neg \operatorname{Adult}(x)$ (use axiom 2)
\square so JuvArthritis $(x) \wedge \operatorname{Affects}(x, y)$ imply $\neg \operatorname{Adult}(x)$
\square so juvenile arthritis does not affect adults.

FOL as a language for foundational ontologies (1)

DOLCE [Masolo et al. 2003, Borgo et al. 2022] ${ }^{2}$, a foundational ontology. The taxonomy:

[^1]
FOL as a language for foundational ontologies (2)

(ASO: agentive social object, SOB: social object, SC: society, P: (temporal) parthood, ED: endurant, PD: perdurant, T : time, PRE : presence, $\mathrm{PC}(\mathrm{C})$: (constant) participation)

Example of taxonomy (Agent):

- $\forall x$. $(\operatorname{ASO}(x) \rightarrow \mathrm{SOB}(x))$
- $\forall x$. $(\mathrm{SC}(x) \rightarrow \mathrm{ASO}(x))$

Example of typing (Mereology):

- $\mathrm{P}(x, y, t) \rightarrow \mathrm{ED}(x) \wedge \mathrm{ED}(y) \wedge \mathrm{T}(t)$

Example of definition ((Constant) Participation):

- $\mathrm{PC}(x, y, t) \rightarrow \mathrm{ED}(x) \wedge \mathrm{PD}(x) \wedge \mathrm{T}(t)$
$\square \operatorname{PCC}(x, y):=\exists t .(\operatorname{PRE}(y, t)) \wedge \forall t .(\operatorname{PRE}(y, t) \rightarrow \operatorname{PC}(x, y, t))$

The set of valid formulas in FOL can be characterized with a finite, sound and complete axiomatization. Validities in FOL are recursively enumerable [Gödel 1929].
Satisfiability in FOL is undecidable [Church 1936, Turing 1937].

We need a language computationally easier for knowledge representation and reasoning. This is what we look at next.

Credits

Many slides and examples based on lan Horrocks's KRR lectures https://www.cs.ox.ac.uk/people/ian.horrocks/.
https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/

[^0]: ${ }^{1}$ jra: juvenile rheumatoid arthritis

[^1]: ${ }^{2}$ Stefano Borgo et al. "DOLCE: A descriptive ontology for linguistic and cognitive engineering". In: Applied Ontology 17.1 (2022), pp. 45-69.

