
Engineering of ontologies with Description Logics
5.1 advanced topics: perceptron operators in description logics

Nicolas Troquard

Joint work with

Pietro Galliani
Oliver Kutz
Claudio Masolo
Guendalina Righetti
Daniele Porello

1 / 29

Outline

1 The perceptron operator

2 Concept learning

3 The ‘counting’ perceptron operator

2 / 29

Some Description Logics

ALC concepts, examples:

■ Fly ⊓Mammal

■ ¬Mammal

■ ∃has.Heart
ALCQ concepts, examples:

■ all ALC concepts

■ (≥ 2 has.Leg)

Axioms, examples:

■ Mammal ⊑ Animal

■ Animal ⊑ ∃has.Heart
■ Cat(garfield)

Interpretations I = (∆I , ·I):
■ ∆I a set of individuals

■ CI ⊆ ∆I

■ RI ⊆ ∆I ×∆I

Semantics, examples:

■ (Fly ⊓Mammal)I : all the individuals that fly
and are mammals

■ LegI : all the individuals that are legs

■ hasI : all the pairs of individuals (d1, d2)
such that d1 possesses d2.

■ (≥ 2 has.Leg)I : all the indviduals that
possess at least two things that are legs.

3 / 29

Perceptron operators in Description Logics

Define a concept in terms of a threshold and weights. E.g.,

Majority = ∇∇1(C1 : 1/2, C2 : 1/2, C3 : 1/2) .

It is true of some individual d in an interpretation I if and only if

1/2 ·
{

1 if d ∈ CI
1

0 otherwise

}
+ 1/2 ·

{
1 if d ∈ CI

2

0 otherwise

}
+ 1/2 ·

{
1 if d ∈ CI

3

0 otherwise

}
≥ 1 .

The perceptron operator (or ‘tooth’):1

C = ∇∇t(C1 : w1, . . . , Cp : wp)

where w⃗ = (w1, . . . , wp) ∈ Zp, t ∈ Z, Ci are concepts expressions.

We define the value vIC(d) =
∑

i∈{1,...,p}{wi | d ∈ CI
i } and the truth condition

CI = {d ∈ ∆I | vIC(d) ≥ t} .

1Daniele Porello et al. “A Toothful of Concepts: Towards a Theory of Weighted Concept Combination”. In: Description
Logics 2019. 2019.

4 / 29

Links with circuits and with learning models

[The majority ternary operation] ⟨xyz⟩ is probably the most important ternary operation in the
entire universe, because it has amazing properties that are continually being discovered and
rediscovered. [D. Knuth. The Art of Computer Programming, Vol. 4a Part 1, p. 63]

Threshold Operators have been studied in the context of propositional logic and
circuit complexity: [Valiant 1984], [Hajnal et al. 93], [Beimel and Weinreb 2006],
[Goldmann et al. 1992] [Goldmann and Karpinski 1998].

Here, instead, we are interested in their possible application to Knowledge Representation in
Description Logic.

The models of neurons in [McCulloch and Pitts 1943] are built from threshold functions.

Perceptron operators are simple connectives that provide a natural link between
knowledge representation and statistical learning: obvious connections with linear classification models.

5 / 29

Some uses in knowledge representation
Accommodating non-prototypical individuals:

Creating concept combinations [Righetti et al. 2021]2:

2Guendalina Righetti et al. “Concept combination in weighted logic”. In: JOWO 2021 proceedings. CEUR, 2021.
6 / 29

Florida Criminal Punishment Code
Felony Score Sheet describes various features of a crime and their assigned points. Features may
include ‘possession of cocaine’, or ‘number of caused injuries’. A threshold must be reached to decide
compulsory imprisonment.

7 / 29

A knowledge base describing the laws of Florida would need to represent the score sheet.

It must contain the definition of the concept CompulsoryImprisonment.

We can represent CompulsoryImprisonment, e.g., as:3

∇∇44(CocainePrimary : 16,ModerateInjuries : 18, . . .) .

3Pietro Galliani et al. “Perceptron Connectives in Knowledge Representation”. In: EKAW 2020.
8 / 29

Complexity of the perceptron operator

Adding the ∇∇ operator to a Description Logic that contains ALC does not affect the complexity of
reasoning.

Theorem (Galliani et al., EKAW 2020)

Let L be a Description Logic that contains all Boolean connectives. A problem of entailment in ‘L +
perceptrons’ can be polynomially reduced to a a problem of entailment in L.

9 / 29

Outline

1 The perceptron operator

2 Concept learning

3 The ‘counting’ perceptron operator

10 / 29

Importing concepts learnt from data into an ontology

11 / 29

Concept learning from data with the perceptron operator

In [Galliani et al., EKAW 2020] we evaluate the practical usefulness of threshold expressions.
We investigate how well simple non-nested threshold expressions perform in representing concepts
from the Gene Ontology (GO)4:

■ A knowledge base consisting of over 44,000 different concepts annotating more than one million
gene products from 4,591 different species.

■ Concepts are partitioned into the three disjoint sub-ontologies:
▶ Cellular Component: concept relating to locations inside of a cell (“Nucleus”, ...)
▶ Biological Process: concept specifying “biological programs” to which a gene product participates

(“Asexual Reproduction”, “Oxygen Transport”, ...);
▶ Molecular Function: concept relative to specific molecular-level roles performed by gene products

(“Enzyme Binding”, “Structural Constituent of Ribosome”, ...).

We focus on the annotations of the Saccharomyces Genome Database and on the subset of the Gene
Ontology curated for annotating yeast gene products.

We considered the following question: up to which degree is it possible to infer the Molecular Function
annotations of a gene product from its Cellular Component and Biological Process ones?

In other words, given the locations of a gene product inside of a yeast cell and the overall “biological
programs” it is involved in, can we infer (to some degree, at least) its specific molecular-level role?

4Gene Ontology Consortium. “The Gene Ontology (GO) database and informatics resource”. In: Nucleic acids research
(2004).

12 / 29

Concept learning from data with the perceptron operator (approach)

An unsophisticated approach: a very basic evolutionary algorithm to extract threshold expressions from
data.

1 generate a population of 100 random perceptron expressions (with Gene Ontology concepts as
arguments, integer weights, at most 10 arguments, and threshold fixed at 100),

2 they attempt to “copy” (concept, weight) pairs from randomly selected candidate perceptron
expressions;

3 the weights are mutated randomly;

4 every 10 turns the worst-performing half are removed and replaced with random ones.

5 after 1000 turns, return the perceptron expression that performs best over the training data.

Baselines: state-of-the-art learning algorithms as implemented in the Waikato Environment for
Knowledge Analysis (WEKA), Random Forest classifier, the Sequential Minimal Optimization
algorithm for Support Vector Machines , a decision table majority classifier, a logistic regression
classifier and a multilayer perceptron classifier.

Performance measure: Matthews Correlation

13 / 29

Concept learning from data with the perceptron operator (data preparation)

We prepared the data as follows:

1 remove all gene product annotations listed as “dubious” in the Saccharomyces Genome Database.

2 select from the mapping file of the Saccharomyces Genome Database, gene products with at least
three annotations of type Cellular Component or Biological Process: 4,595.

3 select as the labels to predict the Molecular Function type annotations that occur in at least 100
of the selected gene products: 17.

4 select as features the Cellular Component or Biological Process terms that apply to at least one of
the selected gene products: 120.

14 / 29

Concept learning from data with the perceptron operator (results)

Matthews Correlations of predictions on five
Molecular Function terms. We report averages
between five folds and standard deviation.

RF = Random Forest, SVM = Support Vector
Machine, DT = Decision Table, LR = Logistic
Regression, MLP = Multilayer Perceptron, ∇∇ =
our Threshold Expressions.

The five rows correspond to the
Molecular Function Gene Ontology terms
GO:0016787 (hydrolase activity), GO:0016301
(kinase activity), GO:0030234 (enzyme regulator
activity), GO:0022857 (transmembrane
transporter activity) and GO:0016740
(transferase activity).

RF SVM DT LR MLP ∇∇

GO:0016787 .34 (.02) .30 (.03) .22 (.03) .30 (.03) .26 (.07) .22 (.06)
GO:0016301 .67 (.07) .53 (.06) .51 (.09) .66 (.06) .79 (.03) .75 (.04)
GO:0030234 .25 (.06) .18 (.01) .12 (.03) .20 (.04) .22 (.07) .27 (.06)
GO:0022857 .80 (.02) .71 (.04) .55 (.02) .79 (.02) .75 (.03) .72 (.05)
GO:0016740 .50 (.01) .48 (.03) .47 (.04) .45 (.04) .48 (.02) .47 (.03)

15 / 29

Outline

1 The perceptron operator

2 Concept learning

3 The ‘counting’ perceptron operator

16 / 29

The (regular) perceptron operator is lacking
The Felony Score Sheet is slightly more complicated than our first modelling.

For instance, 18 points are added for every instance (every count) of a ‘moderate injury victim’.

Of course we can use one concept 1MI, 2MI, 3MI, ... for each number of moderate injury. With all of
them pairwise disjoint and with weights 18, 36, 54, ... we can use

∇∇44(CocainePrimary : 16, 1MI : 18, 2MI : 36, 3MI : 54, . . .) .

With each (i+1)MI a subset of iMI, we can use

∇∇44(CocainePrimary : 16, 1MI : 18, 2MI : 18, 3MI : 18, . . .) .

No matter what, one must decide what will be the maximum number of moderate injuries that are
taken into account, introduce new concepts (and possibly axioms in the TBox), multiply weights, and
write them all into a perceptron operator.

17 / 29

The Counting Perceptron Operator

In [Galliani et al. DL 2021]5, we define a new collection of counting perceptron operators (or ‘counting
teeth’):

C = ∇∇t
∗
(
C1 : w1, . . . , Cp : wp | (R1, D1) : m1, . . . , (Rq, Dq) : mq

)
,

where w⃗ = (w1, . . . , wp) ∈ Zp, m⃗ = (m1, . . . ,mq) ∈ Zq, t ∈ Z, Ci and Di are concepts expressions
and Ri are roles.

5Pietro Galliani, Oliver Kutz, and Nicolas Troquard. “Perceptron Operators That Count”. In: DL 2021. 2021.
18 / 29

Semantics

C = ∇∇t
∗
(
C1 : w1, . . . , Cp : wp | (R1, D1) : m1, . . . , (Rq, Dq) : mq

)
The following value is possibly ill-defined (when both negative weights and infinite role-branching are
allowed).

vIC(d) =
∑

i∈{1,...,p}

{wi | d ∈ CI
i }+

∑
i∈{1,...,q}

(mi · |{c ∈ ∆I | (d, c) ∈ RI
i ∧ c ∈ DI

i }|) .

We introduce two values, vIC≥0(d) and vIC<0(d): the sum of the non-negative summands, and the
sum of the negative summands, respectively.

vIC≥0(d) =
∑

i∈{1,...,p}
wi≥0

{wi | d ∈ CI
i }+

∑
i∈{1,...,q}

mi≥0

(mi · |{c ∈ ∆I | (d, c) ∈ RI
i ∧ c ∈ DI

i }|) .

vIC<0(d) =
∑

i∈{1,...,p}
wi<0

{wi | d ∈ CI
i }+

∑
i∈{1,...,q}

mi<0

(mi · |{c ∈ ∆I | (d, c) ∈ RI
i ∧ c ∈ DI

i }|) .

We define:
CI = {d ∈ ∆I | vIC≥0(d) ≥ t− vIC<0(d)} .

19 / 29

Felony Score Sheet with counting perceptron operators

With caused a role, we define the concept CompulsoryImprisonment of the Felony Score Sheet as:

CompulsoryImprisonment = ∇∇44
∗
(
CocainePrimary : 16, · · · | (caused,ModerateInjury) : 18, . . .

)
.

d

caused

caused

caused

Injury

CocainePrimary

Felony

ModerateInjury

vICompulsoryImprisonment≥0
(d) = 16+ 18× 2 + . . .

= 52 + . . .

The Felony Score Sheet contains only pos-
itive weights, so:

d ∈ CompulsoryImprisonmentI .

20 / 29

ALCQ into ALC + counting tooth

Qualified cardinality restrictions in ALC + counting tooth:

(≥ tR.C)I = (∇∇t
∗(| (R,C) : 1))I

21 / 29

ALC + counting tooth into ALCQ?

One can express “has as many sons as daughters”:

AsMany =∇∇0
∗
(

| (isParentOf,Boy) : 1, (isParentOf,Girl) : −1
)
⊓

∇∇0
∗
(

| (isParentOf,Girl) : 1, (isParentOf,Boy) : −1
)
.

This cannot be expressed in ALCQ.6

6Franz Baader. “A New Description Logic with Set Constraints and Cardinality Constraints on Role Successors”. In:
FROCOS 2017. 2017, Lemma 2.

22 / 29

Particular case: Embedding ALC with counting teeth with non-negative weights into ALCQ
Consider the counting tooth C = ∇∇t

∗
(
C1 : w1, . . . , Cp : wp | (R1, D1) : m1, . . . , (Rq, Dq) : mq

)
where

all mj ∈ m⃗ are non-negative.

Now define the counting tooth

C’ = ∇∇t
∗
(
C1 : w′

1, . . . , Cp : w′
p, E1 : w′

p+1, . . . , Er : w′
p+r |

(R2, D2) : m2, . . . , (Rq, Dq) : mq

)
where:

■ w′
i = wi, for 1 ≤ i ≤ p

■ r =
⌈

t
m1

⌉
■ w′

p+i = i ·m1, for 1 ≤ i ≤ r

■ Ei = (= i R1.D1), for 0 ≤ i ≤ r− 1

■ Er = (≥ r R1.D1)

Lemma

(C)I = (C’)I .

23 / 29

Preliminary complexity results

Proposition (Galliani et al. DL 2021)

Reasoning with ALC with counting teeth, disallowing non-negative weights, wrt. to a TBox, is in
2EXPTIME. When the threshold is represented in unary, then it is EXPTIME-complete.

■ Iteratively eliminate the counting teeth:
▶ Apply the previous rewriting iteratively;
▶ The bound r is exponential in the binary representation of the threshold t.
▶ Obtain an ALCQ + regular tooth formula.

■ Use [Galliani et al. EKAW 2020]7 to transform the reasoning task into a problem of TBox
entailment in ALCQ.
▶ Every entailment in ALCQ + regular teeth, can be polynomially reduced into an entailment in

ALCQ. (Ripple carry adder, and digital number comparator in the syntax of ALC.)

■ Use the fact that ALCQ TBox reasoning is EXPTIME-complete.8

7Galliani et al., “Perceptron Connectives in Knowledge Representation”.
8Stephan Tobies. “The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expressive Description

Logics”. In: J. Artif. Intell. Res. 12 (2000), pp. 199–217.
24 / 29

ALCSCC∞

Main reference: [Baader and De Bortoli, FROCOS 2019].9

ALCSCC∞ uses formulas of the quantifier-free Boolean algebra with Pressburger arithmetic
(QFBAPA∞) to express constraints on role successors.

The set of ALCSCC concept expressions over NC and NR is defined as follows:

C ::= A | ¬C | C ⊓ C | C ⊔ C | succ(F) ,

where A ∈ NC , F is a QFBAPA∞ formula using role names and ALCSCC concept expressions over
NC and NR as set variables.

We can define:

■ ∃R.C = succ(|R ∩ C| ≥ 1);

■ (≤ nR.C) = succ(|R ∩ C| ≤ n);

■ (≥ nR.C) = succ(|R ∩ C| ≥ n);

■ ... and more.

■ E.g., succ(|R1 ∩ C| − 13 < 2 · |R2 ∩D|), ...

9Franz Baader and Filippo De Bortoli. “On the Expressive Power of Description Logics with Cardinality Constraints on Finite
and Infinite Sets”. In: FROCOS 2019. 2019.

25 / 29

General case: Embedding ALC with counting teeth into ALCSCC∞

Let C = ∇∇t
∗
(
C1 : w1, . . . , Cp : wp | (R1, D1) : wp+1, . . . , (Rq, Dq) : wq

)
.

We want to decide whether the concept description C is satisfiable wrt. a TBox T .

We add to T a fresh role name zooCi (‘zero-or-one’) for every 1 ≤ i ≤ p, with axioms:

■ (= 1 zooCi .⊤) ≡ Ci and

■ (= 0 zooCi .⊤) ≡ ¬Ci

We obtain the TBox T ′.

Define

summands =
{
w1 · |zooC1 ∩ ⊤|, . . . , wp · |zooCp ∩ ⊤|, wp+1 · |R1 ∩D1|, . . . , wq · |Rq ∩Dq|

}
.

Now consider the ALCSCC concept

C′ = succ

 ∑
wi·xi∈summands

wi≥0

wi · xi ≥ t−
∑

wi·xi∈summands
wi<0

wi · xi

 .

Lemma

C is (ALC + counting tooth)-satisfiable in T iff C′ is (ALCSCC∞)-satisfiable in T ′.

26 / 29

Complexity in the general case

Proposition (Galliani et al. DL 2021)

Reasoning in ALC with counting teeth, wrt. a TBox is EXPTIME-complete, even when the threshold
is expressed in binary, and even when the weights on roles are allowed to be negative.

■ Apply the previous transformation into ALCSCC∞.

■ Use the fact that TBox entailment in ALCSCC∞ is EXPTIME-complete
[Baader and De Bortoli, FROCOS 2019]10.

10Baader and De Bortoli, “On the Expressive Power of Description Logics with Cardinality Constraints on Finite and Infinite
Sets”.

27 / 29

Conclusions
Concepts in the Description Logic ‘ALC + perceptrons’ seem to be able to serve as decent estimators
of concepts defined from data.

‘ALC + counting perceptrons’ without negative weights:

unary binary

expressivity = ALCQ = ALCQ
complexity EXPTIME-c EXPTIME-c

Can be translated into ALCQ.

‘ALC + counting perceptrons’:

unary binary

expressivity > ALCQ > ALCQ
complexity EXPTIME-c EXPTIME-c

Can be translated into ALCSCC∞.

Perspectives:

■ study the succinctness of the perceptron operators;

■ implementation and statistical learning of counting teeth as in [Galliani et al. EKAW 2020];

■ add the perceptron operator as an OWLClassExpression in the OWL API.

28 / 29

Engineering of ontologies with Description Logics
5.1 advanced topics: perceptron operators in description logics

Nicolas Troquard

29 / 29

14 Boolean functions over 2 variables and no nesting

⊤ = ∇∇0
(0,0)(C1, C2)

C1

0

C2

0

t=0
0

0

⊥ = ∇∇1
(0,0)(C1, C2)

C1

0

C2

0

t=1
0

0

30 / 29

C1 = ∇∇1
(1,0)(C1, C2)

C1

1

C2

0

t=1
0

1

C2 = ∇∇1
(0,1)(C1, C2)

C1

0

C2

1

t=1
0

1

31 / 29

¬C1 = ∇∇0
(−1,0)(C1, C2)

C1

-1

C2

0

t=0
0

-1

¬C2 = ∇∇0
(0,−1)(C1, C2)

C1

0

C2

-1

t=0
0

-1

32 / 29

C1 ⊓ C2 = ∇∇2
(1,1)(C1, C2)

C1

1

C2

1

t=2
0

2

¬C1 ⊓ C2 = ∇∇1
(−1,1)(C1, C2)

C1

-1

C2

1

t=1
0

0

33 / 29

C1 ⊓ ¬C2 = ∇∇1
(1,−1)(C1, C2)

C1

1

C2

-1

t=1
0

0

¬C1 ⊓ ¬C2 = ∇∇0
(−1,−1)(C1, C2)

C1

-1

C2

-1

t=0
0

-2

34 / 29

C1 ⊔ C2 = ∇∇1
(1,1)(C1, C2)

C1

1

C2

1

t=1
0

2

¬C1 ⊔ C2 = ∇∇0
(−1,1)(C1, C2)

C1

-1

C2

1

t=0
0

0

35 / 29

C1 ⊔ ¬C2 = ∇∇0
(1,−1)(C1, C2)

C1

1

C2

-1

t=0
0

0

¬C1 ⊔ ¬C2 = ∇∇−1
(−1,−1)(C1, C2)

C1

-1

C2

-1

t=-1
0

-2

36 / 29

QFBAPA∞

The Description Logic ALCSCC∞ uses formulas of the quantifier-free Boolean algebra with
Pressburger arithmetic (QFBAPA) to express constraints on role successors.
QFBAPA over finite integers is presented in [Kuncak and Rinard 2007]11. It is extended with infinity in
[Baader and De Bortoli 2019]12. It uses a simple arithmetic with a single (positive) infinity. With
z ∈ N, we stipulate that over N ∪ {∞}, the operator + is commutative, and < is a strict linear order,
= is an equivalence relation, and: ∞+ z = ∞, z < ∞, z ≤ ∞, 0 · ∞ = 0, ∞+∞ = ∞, ∞ ̸< ∞.
A QFBAPA∞ formula F is a Boolean combination of set and numerical constraints like AT .

F ::=AT | AB | ¬F | F ∧ F | F ∨ F

AB ::=B = B | B ⊆ B

AT ::=T = T | T < T

B ::=x | ∅ | U | B ∪B | B ∩B | B
T ::= k | K | |B| | T + T | K · T
K ::= 0 | 1 | 2 | . . .

11Viktor Kuncak and Martin C. Rinard. “Towards Efficient Satisfiability Checking for Boolean Algebra with Presburger
Arithmetic”. In: CADE-21. Ed. by Frank Pfenning. 2007.

12Baader and De Bortoli, “On the Expressive Power of Description Logics with Cardinality Constraints on Finite and Infinite
Sets”.

37 / 29

Semantics of QFBAPA∞ formulas

The semantics of set terms B is defined using substitutions σ that assign a set σ(U) to the constant U
and subsets of σ(U) to set variables. The evaluation of all set terms under σ is done using the rules of
set theory.
Set constraints of the form AB are evaluated to true or false under σ, also by using the rules of set
theory.
Then the domain of σ is extended to PA expressions T by assigning to them an element of N ∪ {∞}.
The cardinality expression |B| is evaluated as the cardinality of σ(B) if B is finite, and as ∞ if it is
not. The evaluation of all PA expressions under σ is done using the rules of addition and multiplication
(extended with infinity as above).
Numerical constraints AT are evaluated to true or false under σ, under the rules of basic arithmetic.
Finally, a solution σ of a QFBAPA∞ formula F is a substitution that evaluates F to true, using the
rules of Boolean logic.

38 / 29

Syntax of ALCSCC∞

Let NC and NR be two disjoint sets of concept names, and role names, respectively.
The set of ALCSCC concept expressions over NC and NR is defined as follows:

C ::= A | ¬C | C ⊓ C | C ⊔ C | succ(F) ,

where A ∈ NC , F is a QFBAPA∞ formula using role names and ALCSCC concept expressions over
NC and NR as set variables.
An ALCSCC∞ TBox over NC and NR is a finite set of concept inclusions of the form C ⊑ D, where
C and D are ALCSCC∞ concept expressions over NC and NR. We write C ≡ D to signify that
C ⊑ D and D ⊑ C.

39 / 29

Semantics of ALCSCC∞

Given finite, disjoint sets NC and NR of concept and role names, respectively, an interpretation I
consists of a non-empty set ∆I and a mapping ·I that maps every concept name C to a subset
CI ⊆ ∆I and every role name R ∈ NR to a binary relation RI ⊆ ∆I ×∆I . Given an individual
d ∈ ∆I and a role name R ∈ NR, we define RI(d) as the set of R-successors. We define ARSI(d) as
the set of all successors of d. The mapping ·I is extended to Boolean combinations of concept
expressions in the obvious way.
Successor constraints are evaluated according to the semantics of QFBAPA∞. To determine whether
d ∈ (succ(F))I , U is evaluated as ARSI(d), the roles occurring in F are substituted with RI(d), and
the concept expressions C occurring in F are substituted with CI ∩ARSI(d).
Then, d ∈ (succ(F))I is true iff this substitution is a solution of the QFBAPA∞ formula F .
The interpretation I is a model of the TBox T if for every concept inclusion C ⊑ D in T , it is the case
that CI ⊆ DI .
A concept expression C is satisfiable wrt. the TBox T if there exists a model of the TBox such that
CI ̸= ∅.

40 / 29

Example

In the ALCSCC∞ formula succ(|causes| < 2), 2 is an integer constant (also a PA expression), causes
is a role, but also a set term, |causes| is a set cardinality (also a PA expression), and |causes| < 2 is a
numerical constraint.
When deciding whether d ∈ (succ(|causes| < 2))I , we build the substitution σ, such that σ(2) = 2,
and σ(causes) = causesI(d).
Let I be an interpretation, and suppose that d has 2 causes-successors, namely d1 and d2 (and nothing
else). We then have σ(causes) = {d1, d2}, σ(|causes|) = 2, and σ(|causes| < 2) = false. There are no
other possible substitutions to consider. So d ̸∈ (succ(|causes| < 2))I .
Suppose that we also have InjuryI = {d2, d3, d4}, and (d, d3) ∈ hasI (but nothing else).
When deciding whether d ∈ (succ(|causes ∩ Injury| = 1))I , Injury is a concept description but also a
set term, and we build the substitution σ′ such that σ′(1) = 1, σ′(causes) = causesI(d) = {d1, d2},
σ′(Injury) = InjuryI ∩ARSI(d) = {d2, d3}, σ′(causes ∩ Injury) = σ′(causes) ∩ σ′(Injury) = {d2},
σ′(|causes ∩ Injury|) = 1, and σ′(|causes ∩ Injury| = 1) = true. Hence σ′ is a solution of the
QFBAPA∞ formula |causes ∩ Injury| = 1. So d ∈ (succ(|causes ∩ Injury| = 1))I .

41 / 29

ALC and ALCQ

ALCQ is the fragment of ALCSCC∞ such that succ(F) is of the form succ(|R ∩ C| ≤ n) or
succ(|R ∩ C| ≥ n), where C is a concept expression and R ∈ NR, and n ∈ N. ALC is the fragment of
ALCSCC∞ such that succ(F) is of the form succ(|R ∩ C| ≥ 1).
Hence, we can define ∃R.C = succ(|R ∩ C| ≥ 1), (≤ nR.C) = succ(|R ∩ C| ≤ n), and
(≥ nR.C) = succ(|R ∩ C| ≥ n).

42 / 29

Example with negative weights

For purposes of illustration we define a ‘Modified Compulsory Imprisonment’ as

MCI = ∇∇44
∗
(
CocainePrimary : 16 | (caused,ModerateInjury) : 18),

(preventiveDetention,Month) : −1
)
,

where only cocaine possession as primary offence and the number of moderate injuries are kept from
the original score sheet, and where in addition every month of preventive detention lowers the score by
one.
We want to decide whether the felony d ∈ ∆I falls within the definition of this modified compulsory
imprisonment, under the assumptions that d is not in CocainePrimaryI , that
|preventiveDetentionI(d) ∩MonthI | = 12, and |causedI(d) ∩ModerateInjuryI | = 3.
So, we have: vIMCI≥0(d) = 0 + 3 · 18 = 54 and vIMCI<0(d) = 12 · (−1) = −12. We must evaluate

vIMCI≥0(d) ≥ t− vIMCI<0(d), which is 54 ≥ 44 + 12, or 54 ≥ 56, which is false. So d does not fall
within the modified compulsory imprisonment.

43 / 29

	The perceptron operator
	Concept learning
	The `counting' perceptron operator
	Appendix

