
Engineering of ontologies with Description Logics
3. description logics

Nicolas Troquard

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

1 / 46

Many application domains can be modelled without the full expressivity of FOL.

■ E.g., Knowledge bases widely used in bio-medicine are simple taxonomies.

Description Logics are a family of logics:

■ (typically) fragments of FOL

■ (typically) decidable satisfiability, validity, entailment problems

■ underlying the W3C Web Ontology Language

2 / 46

Example
■ A juvenile disease affects only children or teenagers

■ Children and teenagers are not adults

■ A person is either a child, a teenager, or an adult

■ Juvenile arthritis is a kind of arthritis and a juvenile disease

■ Every kind of arthritis damages some joint

Formalisation in FOL:

■ ∀x.(JuvDisease(x) → ∀y.(Affects(x, y) → Child(y) ∨ Teenager(y)))

■ ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
■ ∀x.(Person(x) → (Child(x) ∨ Teenager(x) ∨ Adult(x)))

■ ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

■ ∀x.(Arthritis(x) → ∃y.(Damages(x, y) ∧ Joint(y)))

Some patterns:

■ ∀x.(C(x) → D(x))
■ D(x) is a formula with one free variable, that can be identified with formulas with quantifiers:

▶ ∀x.(C(x) → ∀y.(R(x, y) → E(y))
▶ ∀x.(C(x) → ∃y.(R(x, y) ∧ E(y))

■ C(x) is a formula with one free variable, that can be identified with formulas with quantifiers (not
in this example):
▶ ∀x.(∀y.(R(x, y) → E(y)) → D(x))
▶ ∀x.(∃y.(R(x, y) ∧ E(y)) → D(x))

3 / 46

Variables are redundant

■ ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
▶ Outermost universal quantification on variable x.
▶ Variable x is free in both Child(x) ∨ Teenager(x) and ¬Adult(x).

In DL:
Child ⊔ Teenager is subset of ¬Adult

■ ∀x.(Arthritis(x) → ∃y.(Damages(x, y) ∧ Joint(y)))
▶ ∃y.(Damages(x, y) ∧ Joint(y)) introduces one fresh variable y.
▶ Damages(x, y) uses the free (in subformula) variable x, and the fresh variable y.
▶ Joint(y) uses the fresh variable y.

In DL:
Arthritis is subset of ∃Damages.Joint

■ Analogously for ∀x.(JuvDisease(x) → ∀y.(Affects(x, y) → Child(y) ∨ Teenager(y))).

In DL:
JuvDisease is subset of ∀Affects.(Child ⊔ Teenager)

4 / 46

DL basic building blocks and their FOL counterparts

Concepts (unary predicates):

■ C 7→ C(x)

“Roles” (binary predicates):

■ R 7→ R(x, y)

Complex concepts:

■ ¬C 7→ ¬C(x)
■ C ⊔ D 7→ C(x) ∨ D(x)

■ C ⊓ D 7→ C(x) ∧ D(x)

■ ∃R.C 7→ ∃y.(R(x, y) ∧ C(y))

■ ∀R.C 7→ ∀y.(R(x, y) → C(y))

5 / 46

A decidable fragment of FOL

This is a fragment of FO2, that is First Order Logic consisting of all first-order sentences with at most
two distinct variables.

■ FO2 has the finite-model property and the satisfiability problem is decidable [Mortimer 1975]1

■ the satisfiability problem of FO2 is NEXPTIME-complete [Grädel, Kolaitis, Vardi 1997]2

1Michael Mortimer. “On language with two variables”. In: Zeit. fur Math. Logik und Grund. der Math. 21 (1975),
pp. 135–140.

2Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. “On the Decision Problem for Two-Variable First-Order Logic”. In:
The Bulletin of Symbolic Logic 3.1 (1997), pp. 53–69.

6 / 46

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

7 / 46

Basic language

(Basic) DL languages are inductively defined from:

■ Unary FOL predicate symbols

■ Binary FOL predicate symbols

■ FOL constants

■ Symbol ⊤: truth

■ Symbol ⊥: falsum

■ Propositional connectives: ¬, ⊔, ⊓
■ The existential and universal quantifiers: ∃, ∀
■ Parentheses (and)

No functions. No predicates of arity greater than 2.

8 / 46

ALC concepts

ALC concepts are built inductively from a set of atomic concepts and a set of (atomic) roles, as
follows:3

C ::= ⊤ | ⊥ | A | ¬C | C ⊔ C | C ⊓ C | ∃R.C | ∀R.C

where A is an atomic concept and R is an atomic role.

A concept represents a set of object. E.g.:

Child the set of children
Child ⊔ Teenager the set of non-adult persons
Disease ⊓ ∀Affects.Child the set of diseases affecting only children
Disease ⊓ ∃Affects.Child the set of diseases affecting some children
Male ⊓ ∃hasChild.(∃hasChild.⊤) the set of grandfathers
Female ⊓ ∀hasChild.(∃hasChild.Male) the set of women whose children all have a boy

3ALC stands for Attributive Language with Concept negation.
9 / 46

Graphical visualisation of objects, concepts, and roles

The set of women whose all children have no children or have a boy:

Female ⊓ ∀hasChild.((∀hasChild.⊥) ⊔ (∃hasChild.Male))

Ann (ann) is one of them.

ann: Female

john: Male

bob: Male

helen: Female

jules: Male fabian: Male

lara: Female

hasChild

hasChild

hasChild

hasChild hasChild

hasChild

This is a knowledge graph!

10 / 46

Graphical visualisation of objects, concepts, and roles

The set of women whose all children have no children or have a boy:

Female ⊓ ∀hasChild.((∀hasChild.⊥) ⊔ (∃hasChild.Male))

Ann (ann) is one of them.

ann: Female

john: Male

bob: Male

helen: Female

jules: Male fabian: Male

lara: Female

hasChild

hasChild

hasChild

hasChild hasChild

hasChild

This is a knowledge graph!

10 / 46

Graphical visualisation of objects, concepts, and roles
The set of women whose all children have no children or have a boy:

Female ⊓ ∀hasChild.((∀hasChild.⊥) ⊔ (∃hasChild.Male))

Hillary (hillary) is one of them.

hillary: Female

chelsea: Female

charlotte: Female

aidan: Male

jasper: Male

bill: Male

marc: Male

hasChild

hasChild

hasChild

hasChild

isMarriedTo

isMarriedTo

11 / 46

General concept inclusions

Formalisation in FOL:

■ ∀x.(JuvDisease(x) → ∀y.(Affects(x, y) → Child(y) ∨ Teenager(y)))

■ ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
■ ∀x.(Person(x) → (Child(x) ∨ Teenager(x) ∨ Adult(x)))

■ ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

■ ∀x.(Arthritis(x) → ∃y.(Damages(x, y) ∧ Joint(y)))

They all have the form:
∀x.(C(x) → D(x))

In DL:
C ⊑ D

where C and D are ALC concepts.

We call these statements General concept inclusions (GCIs).

12 / 46

General concept inclusions

Formalisation in FOL:

■ ∀x.(JuvDisease(x) → ∀y.(Affects(x, y) → Child(y) ∨ Teenager(y)))

■ ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
■ ∀x.(Person(x) → (Child(x) ∨ Teenager(x) ∨ Adult(x)))

■ ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

■ ∀x.(Arthritis(x) → ∃y.(Damages(x, y) ∧ Joint(y)))

Formalisation in DL:

■ JuvDisease ⊑ ∀Affects.(Child ⊔ Teenager)

■ Child ⊔ Teenager ⊑ ¬Adult
■ Person ⊑ Child ⊔ Teenager ⊔ Adult

■ JuvArthritis ⊑ Arthritis ⊓ JuvDisease

■ Arthritis ⊑ ∃Damages.Joint

13 / 46

Terminological statements

■ Subtyping:
Arthritis ⊑ Disease

■ Definitions:
JuvArthritis ≡ JuvDisease ⊓ Arthritis

■ Disjointness:
Child ⊑ ¬Adult

■ Covering:
Person ⊑ Child ⊔ Teenager ⊔ Adult

■ Domain restriction:
∃Affects.⊤ ⊑ Disease

■ Range restriction:
⊤ ⊑ ∀Affects.LivingThing

14 / 46

Axioms

Domain knowledge is represented with a set of CGIs of the form:

C ⊑ D

where C and D are concepts.

They form the terminological box TBox.

Data is represented with a set of statements of the form:

C(a)

where C is a concept and a is an object/individual; and of the form

R(a, b) ; ¬R(a, b)

where R is a role, and a and b are individuals.

They form the assertion box ABox.

15 / 46

Description Logic knowledge bases

An ALC knowledge base is composed of:

■ a TBox

■ an ABox

E.g.,

TBox:

■ JuvDisease ⊑ ∀Affects.(Child ⊔ Teenager)

■ Child ⊔ Teenager ⊑ ¬Adult
■ Person ⊑ Child ⊔ Teenager ⊔ Adult

■ JuvArthritis ⊑ Arthritis ⊓ JuvDisease

■ Arthritis ⊑ ∃Damages.Joint

ABox:

■ JuvArthritis(jra)

■ Child(johnSmith)

■ (Child ⊔ Teenager)(maryJones)

■ Affects(jra, johnSmith)

16 / 46

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

17 / 46

An interpretation for ALC is a tuple I = (∆I , .I), where:

■ ∆I is non-empty set; the domain of interpretation

■ .I is the interpretation function that associates:
▶ every concept name A to a subset AI ⊆ ∆I

▶ every role name R to a subset RI ⊆ ∆I ×∆I

▶ every individual name a an object aI ∈ ∆I .
▶ ⊤I = ∆I

▶ ⊥I = ∅

Given an interpretation I = (∆I , .I), the meaning of a concepts is given inductively, as follows:

■ (¬C)I = ∆I \ CI

■ (C ⊓D)I = CI ∩DI

■ (C ⊔D)I = CI ∪DI

■ (∀R.C)I = {x | ∀y.(x, y) ∈ RI → y ∈ CI}
■ (∃R.C)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

18 / 46

Example

Let I = (∆I , .I) be the interpretation defined as:

■ ∆I = {jra, flu, johnSmith}
■ JuvDiseaseI = {jra}
■ ChildI = {johnSmith}
■ TeenagerI = ∅
■ AffectsI = {(jra, johnSmith)}

We have:

■ (JuvDisease ⊓ Child)I = ∅
■ (Child ⊔ Teenager)I = {johnSmith}
■ (∃Affects.⊤)I = {jra}
■ (∃Affects.Teenager)I = ∅
■ (∃Affects.(Child ⊔ Teenager))I = {jra}
■ (¬Child)I = {jra, flu}
■ (∀Affects.Teenager)I = {flu, johnSmith}

19 / 46

Given an interpretation I = (∆I , .I), we define the satisfiability of axioms as:

■ I |= C ⊑ D iff CI ⊆ DI .

■ I |= C ≡ D iff CI = DI .

■ I |= C(a) iff aI ∈ CI .

■ I |= R(a, b) iff (aI , bI) ∈ RI .

■ I |= ¬R(a, b) iff (aI , bI) ̸∈ RI .

An ALC knowledge base K is composed of:

■ a TBox T (C ⊑ D axioms)

■ an ABox A (C(a), R(a, b), ¬R(a, b) axioms)

An interpretation I is a model of the knowledge base K if I |= ax for every axiom ax in T ∪ A.
A knowledge base is satisfiable if it has a model.

20 / 46

Example

Let I = (∆I , .I) be the interpretation,

■ ∆I = {jra, flu, johnSmith}
■ JuvDiseaseI = {jra}
■ ChildI = {johnSmith}
■ TeenagerI = ∅
■ AffectsI = {(jra, johnSmith)}

We have:

■ (∀Affects.(Child ⊔ Teenager))I = ∆I

■ (∀Affects.Teenager)I = {flu, johnSmith}

Consider the knowledge base K,

■ JuvDisease(jra)

■ Affects(jra, johnSmith)

■ JuvDisease ⊑ ∀Affects.(Child ⊔ Teenager)

I is a model of K.

Consider the knowledge base K′,

■ JuvDisease(jra)

■ Affects(jra, johnSmith)

■ JuvDisease ⊑ ∀Affects.Teenager

I is not a model of K′.

21 / 46

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

22 / 46

Reasoning problems

Let K = (T ,A) be an ALC knowledge base, let C, D be ALC concepts, and let b be a named
individual.

■ C is satisfiable wrt. to T if there exists a model I of T and some d ∈ ∆I with d ∈ CI .

■ C is subsumed by D wrt. to T if CI ⊆ DI for every model I of T .

■ C and D are equivalent wrt. T if CI = DI for every model I of T .

■ K is consistent/satisfiable if there exists a model of K.

■ b is an instance of C wrt. K if bI ∈ CI for every model I of K.

All reduceable from knowledge base consistency/satisfiability.

23 / 46

Reasoning problems (reduceability to KB consistency/satisfiability)

Reducing equivalence to subsumption:
T |= C ≡ D iff T |= C ⊑ D and T |= D ⊑ C

Reducing subsumption to concept satisfiability:
T |= C ⊑ D iff C ⊓ ¬D is not satisfiable wrt. T

Reducing concept satisfiability to knowledge base consistency:
C is satisfiable wrt. T iff (T , {C(b)}) is consistent.

Reducing instance checking to knowledge base consistency:
(T ,A) |= C(b) iff (T ,A ∪ {¬C(b)}) is not consistent.

24 / 46

Complexity

The problem of deciding the satisfiability of ALC knowledge bases is EXPTIME-complete.

Efficient tableau method in [Donini and Massacci 2000]4.

4Francesco M. Donini and Fabio Massacci. “EXPtime tableaux for ALC”. In: Artificial Intelligence 124.1 (2000), pp. 87–138.
25 / 46

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

26 / 46

Additional concepts: Qualified number restrictions
Syntax: For every integer n, role name R, and concept C, we can also have the concept (≤ nR.C),
that refers to things have less than n R-successors that are C.
Similarly, we can have the concept (≥ nR.C).

Let DL be a description logic. The set of DLQ concepts is the smallest set of concepts that contains
all DL concepts and (≤ nR.C) and (≥ nR.C) for every n ∈ N, role R, and concept C.

Semantics: Let #RC = #({y | (x, y) ∈ RI ∧ y ∈ CI})

(≤ nR.C)I = {x | #RC ≤ n} ; (≥ nR.C)I = {x | #RC ≥ n}

Example:

MildArthritis ≡ Arthritis⊓(≤ 2Damages.Joint) ; SevereArthritis ≡ Arthritis⊓(≥ 5Damages.Joint)

Remarks:

■ ∃R.C and (≥ 1R.C) are equivalent.

■ One can define
▶ (= nR.C) = (≥ nR.C) ⊓ (≤ nR.C)
▶ (> nR.C) = ¬(≤ nR.C)
▶ (< nR.C) = ¬(≥ nR.C)

■ Functionality (F) can be expressed with: ⊤ ⊑ (≤ 1 hasSSN.⊤)

27 / 46

Additional concepts: Nominals

Syntax: For every individual name a, we can also have the concept {a}, to represent the singleton
containing a.

Let DL be a description logic. The set of DLO concepts is the smallest set of concepts that contains
all DL concepts and {a} for every individual name a.

Semantics:
({a})I = {aI}

Example: Individuals affected by a disease that also affects johnSmith

∃Affects−.(Disease ⊓ ∃Affect.{johnSmith}

Simulating ABox axioms:

{johnSmith} ⊑ Child ; {jra} ⊑ ∃Affects.{johnSmith} ; {jra} ⊑ ¬∃Affects.{johnSmith}

28 / 46

Additional axioms: Role hierarchy

Syntax: We can add an RBox R, and for every R and S, we can add an axiom R ⊑ S to represent the
fact that R is subsumed by S.

Let DL be a description logic. A DLH ontology is a DL ontology that may contain an RBox with
axioms of the form R ⊑ S, where S and R roles in DL.

Semantics:
I |= R ⊑ S iff RI ⊆ SI

Example:
hasSister ⊑ hasSibling ; hasParent ⊑ hasAncestor

29 / 46

Additional roles: Inverse roles

Syntax: For every role name R, we can also have the role R− that represents the inverse of role R.

Let DL be a description logic. The set of DLI concepts is the smallest set of concepts that contains
all DL concepts and where inverse roles can occur in all places of role names.

Semantics:
(R−)I = {(x, y) | (y, x) ∈ RI}

Example (an RBox axiom):
Affects− ≡ AffectedBy

Another way to capture range restrictions:

∃Affects−.⊤ ⊑ Person

Expressing symmetry:
hasSibling ⊑ hasSibling−

30 / 46

Additional roles: Chain roles

Syntax: For every two roles R and S, we can also have the role R ◦ S that represents the composition
of role R with role S.

Semantics:
(R ◦ S)I = {(x, z) | (x, y) ∈ RI ∧ (y, z) ∈ SI}

Example:
hasUncle ⊑ hasMother ◦ hasBrother

Capturing transitive (S) roles:

hasAncestor ◦ hasAncestor ⊑ hasAncestor

31 / 46

More

‘Self’ concepts:
(∃R.Self)I = {x | (x, x) ∈ RI}

Universal role:
UI = ∆I ×∆I

Identitiy ABox axioms:
I |= a = b iff aI = bI

I |= a ̸= b iff aI ̸= bI

32 / 46

Partial summary

DL C R axioms

ALC ¬C, C ⊓ C, ∃R.C R C ⊑ C, C(a), R(a, b), ¬R(a, b)

ALCI ¬C, C ⊓ C, ∃R.C R, R− C ⊑ C, C(a), R(a, b), ¬R(a, b)
ALCQ ¬C, C ⊓ C, ∃R.C, (▷◁ nR.C) R C ⊑ C, C(a), R(a, b), ¬R(a, b)
ALCO ¬C, C ⊓ C, ∃R.C, {a} R C ⊑ C, C(a), R(a, b), ¬R(a, b)
ALCH ¬C, C ⊓ C, ∃R.C R C ⊑ C, C(a), R(a, b), ¬R(a, b), R ⊑ R
ALCF ¬C, C ⊓ C, ∃R.C R C ⊑ C, C(a), R(a, b), ¬R(a, b), ⊤ ⊑ (≤ 1R.⊤)
ALCS ¬C, C ⊓ C, ∃R.C R C ⊑ C, C(a), R(a, b), ¬R(a, b), R ◦ R ⊑ R
...

SROIQ5 ¬C, C ⊓ C, ∃R.C, (▷◁ nR.C), {a}, ∃R.Self R, R−,
R ◦ . . . ◦
R, U

C ⊑ C, C(a), R(a, b), ¬R(a, b), a = b, a ̸= b, R ⊑ R

... and more

5Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The Even More Irresistible SROIQ”. In: KR 2006. 2006.
33 / 46

Some complexity results

See http://www.cs.man.ac.uk/~ezolin/dl/.

Complexity of reasoning problems :

DL complexity

ALC EXPTIME-complete
ALCI EXPTIME-complete
ALCQ EXPTIME-complete
ALCO EXPTIME-complete
ALCH EXPTIME-complete
ALCF EXPTIME-complete
ALCS EXPTIME-complete
ALCHOQ EXPTIME-complete
ALCOIQ NEXPTIME-complete
ALCHOIQ NEXPTIME-complete
ALCSHOIQ = SROIQ N2EXPTIME-complete
...

34 / 46

http://www.cs.man.ac.uk/~ezolin/dl/

Outline

1 A fragment of FOL

2 Syntax of basic Description Logics

3 Semantics of basic Description Logics

4 Reasoning

5 More expressive DLs

6 Less expressive DLs

35 / 46

The need for light-weight Description Logics

The complexity of the extensions of ALC are still very hard computationally to reason with.

Some ontologies have a very large TBox (e.g., medical domain, SNOWMED)

Often we want to reason with a very large amount of data (e.g., diagnostic of monitoring data).

36 / 46

EL, EL++

EL is the fragment of ALC without ⊔ and ¬:

C ::= A | C ⊓ C | ∃R.C

EL++ is the minimal DL obtained by adding to EL:
■ ⊤ and ⊥ concepts;

■ a concept {a} for every named individual a;

■ an RBox, that can contain any R1 ◦ . . . ◦Rn ⊑ S.

Reasoning with EL++ is PTIME-complete [Baader, Brandt and Lutz 2005]6.

6Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Envelope”. In: IJCAI-05.
37 / 46

RL

Let R be a role name, A be a concept name, a and b be two named individuals.

Subconcepts:
B ::= A | B ⊓B | B ⊔B | ∃R.B

Superconcepts:
C ::= A | ⊥ | C ⊓ C | ∀R.C

TBox:
B ⊑ C

ABox:
A(a) R(a, b)

RL reasoning can be captured by rule-based reasoning in Datalog (forward and backward chaining
techniques), a subset of Prolog.

Knowledge base satisfiability with RL is in PTIME.

38 / 46

Allowed in RL

■ Subtyping:
Arthritis ⊑ Disease

■ Definitions:
JuvArthritis ≡ JuvDisease ⊓ Arthritis

■ Disjointness:
Child ⊓ Adult ⊑ ⊥

■ Covering:
Person ⊑ Child ⊔ Teenager ⊔ Adult

■ Domain restriction:
∃Affects.⊤ ⊑ Disease

■ Range restriction:
⊤ ⊑ ∀Affects.LivingThing

39 / 46

DL-Lite family

[Calvanese et al. 2007]7

The DL-lite extended family (grouped according to the data complexity of “positive existential query
answering under the unique name assumption”) [Artale et al. 2014]8:

7Diego Calvanese et al. “Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family”. In:
J. Autom. Reason. 39.3 (2007), pp. 385–429.

8Alessandro Artale et al. “The DL-Lite Family and Relations”. In: CoRR abs/1401.3487 (2014).
40 / 46

DL-LiteR

Let R be a role name, A be a concept name, a and b be two named individuals.

Subconcepts:
B ::= A | ∃P.⊤

Superconcepts:
C ::= A | ¬A | A ⊓A | ∃P.⊤ | ∃P.C

Roles:
P ::= R | R−

TBox:
B ⊑ C

RBox:
P ⊑ P Dis(P, P)

ABox:
A(a) R(a, b)

41 / 46

Disallowed in DL-LiteR

■ Definitions:
JuvArthritis ≡ JuvDisease ⊓ Arthritis

■ Covering:
Person ⊑ Child ⊔ Teenager ⊔ Adult

■ Transitive role:
hasAncestor ◦ hasAncestor ⊑ hasAncestor

■ Cardinality restrictions:

SevereArthritis ⊑ Arthritis ⊓ (≥ 5Damages.Joint)

■ Functional role:
⊤ ⊑ (≤ 1 hasSSN.⊤)

■ ...

42 / 46

Allowed in DL-LiteR

■ Subtyping:
Arthritis ⊑ Disease

■ Concept disjointness:
Child ⊑ ¬Adult

■ Role disjointness:
Dis(hasChild, hasMother)

■ Domain restriction:
∃Affects.⊤ ⊑ Disease

■ Range restriction:
∃Affects−.⊤ ⊑ LivingThing

■ Symmetric role:
hasSibling ⊑ hasSibling−

■ ...

43 / 46

DL-LiteR

Problem Parameter Computational complexity

satisfiability size of knowledge base NLOGSPACE
instance checking size of data AC0

query answering size of data AC0

44 / 46

Summary

■ EL++ is good when focusing on TBox reasoning; tractable satsifiability.

■ RL is good when focusing on ABox rule-based reasoning.

■ DL-LiteR is good for query answering with limited TBox/RBox expressivity and and large ABox.

EL++, RL, and DL-LiteR correspond to OWL 2 profiles, as defined by the World Wide Web
Consortium (W3C).

https://www.w3.org/TR/owl2-profiles/

They are (part of) of what we look at next.

45 / 46

https://www.w3.org/TR/owl2-profiles/

Credits

Many slides and examples based on Ian Horrocks’s KRR lectures
https://www.cs.ox.ac.uk/people/ian.horrocks/.
https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/

46 / 46

https://www.cs.ox.ac.uk/people/ian.horrocks/
https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/

	A fragment of FOL
	Syntax of basic Description Logics
	Semantics of basic Description Logics
	Reasoning
	More expressive DLs
	Less expressive DLs

