
Social Commitments in Time:

Satisfied or Compensated

Paolo Torroni, Federico Chesani, Paola Mello, and Marco Montali

DEIS, University of Bologna. V.le Risorgimento 2, 40136 Bologna, Italy

Abstract. We define a framework based on computational logic technol-
ogy and on a reactive axiomatization of the Event Calculus to formalize
the evolution of commitments in time. We propose a new characteri-
zation of commitments with time that enables a rich modeling of the
domain, various forms of reasoning, and run-time and static verification.

1 Introduction

Social commitments are commitments made from an agent to another agent to
bring about a certain property. In broad terms, a social commitment represents
the commitment that an agent, called debtor, has towards another agent, called
creditor, to bring about some property or state of affairs, which is the subject of
the commitment. In some instantiations of this idea, such as [7,16], the subject
of a commitment is a temporal logic formula.

Commitments are a well-known concept in Multi-Agent Systems (MAS) re-
search [2,14]. Representing the commitments that the agents have to one another
and specifying constraints on their interactions in terms of commitments provides
a principled basis for agent interactions [15]. From a MAS modelling perspec-
tive, a role can be modelled by a set of commitments. For example, a seller in an
online market may be understood as committing to its price quotes and a buyer
may be understood as committing to paying for goods received. Commitments
also serve as a natural tool to resolve design ambiguities. The formal semantics
enables verification of conformance and reasoning about the MAS specifications
[6] to define core interaction patterns and build on them by reuse, refinement,
and composition.

Central to the whole approach is the idea of manipulation of commitments:
their creation, discharge, delegation, assignment, cancellation, and release, since
commitments are stateful objects that change in time as events occur. Time
and events are, therefore, essential elements. Some authors distinguish between
base-level commitments, written C(x, y, p), and conditional commitments, writ-
ten CC(x, y, p, q) (x is the debtor, y is the creditor, and p/q are properties).
CC(x, y, p, q) signifies that if p is brought out, x will be committed towards y to
bring about q.

In this work we give emphasis to temporal aspects of commitments. We build
from previous research by Mallya et al. [12,11]. In our opinion, they represent
the best articulated research on time-enhanced commitments to date. The main

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 228–243, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Social Commitments in Time: Satisfied or Compensated 229

idea in these articles is to extend a commitment framework with a way to de-
scribe time points and intervals, and alternative outcomes due to commitments
extending into the uncertain future. The perspective on commitment-related
temporal issues proposed by [12] mainly aims to capture the idea of validity of a
commitment. Thus the previous notation C(x, p, y) is extended with existential
and universal temporal quantifiers, which become prefixes of p. There are two
types of quantification. By an existential quantification, [t1, t2]p, we mean that p
is true at one or more moments in the interval beginning at t1 and ending at t2.
By a universal quantification, [t1, t2]p, we indicate instead that p is true at every
moment in the interval beginning at t1 and ending at t2. Nestings are possible.
For example, a commitment from x to y that q is going to hold at every moment
in a week beginning on some day between the 1st and 20th of February could
be written as follows: C(x, y, [01.02.2009, 20.02.2009]([tstart, tstart + 7days]q)).

This is an elegant approach which decouples the temporal quantification from
the proposition, enabling reasoning about the temporal aspect without regard
to the propositions’ meaning. However, there are still some cases in which such
a characterization is difficult to use in practical applications. The main prob-
lems are due to the lack of variables in temporal logic expressions, and from
the separation between such expressions and the other parts of the represented
knowledge. Among the aims of this work there is our intention to identify such
cases and discuss them.

Along with a notation to express commitments, we need a language to express
operations on commitments. For example, Yolum and Singh propose a notation
based on the Event Calculus temporal representation language to describe com-
mitment manipulation inside an operational framework [16]. Moreover, from a
design perspective, we need an architecture in which a commitment notation, a
temporal representation language and a specification and verification framework
are given a specific role.

In this paper, we discuss our ongoing research about commitment frame-
works. We start by introducing some issues regarding social commitment mod-
eling, and define a number of desiderata for social commitment frameworks. We
then propose a new notation for commitments and commitment specification
programs: the Commitment Modeling Language (CML). Finally, we outline an
abstract commitment framework architecture and a concrete instance of it that
supports CML. In such an instance, temporal reasoning with commitments is
operationalized using a reactive implementation of the Event Calculus and var-
ious verification tasks can be accomplished thanks to an underlying declarative,
computational logic-based framework.

2 Some Issues Regarding Modeling

The following informal discussion is example-driven. Examples are mainly taken
from the literature. We start by observing that in some cases Mallya et al.’s no-
tation can be simplified, considering that to represent an existentially quantified
time interval it is sufficient to represent a time point using a variable with a

230 P. Torroni et al.

domain. We then sketch a new possible notation that accommodates variables
with domains and temporal modeling in several dimensions. Again, based on
literature examples, we demonstrate the possible usage of rules to model condi-
tional commitments. Finally we discuss time associated with commitment state
changes and the issue of compensation.

2.1 Time Variables, Rules and Constraints

Let us analyze the scenario proposed by Mallya et al. in [12].

Example 1. A travel agent wishes to book an airline ticket to a certain destina-
tion, a rental car to use while there, and a hotel room at which to stay. Consider
four situations:

– Situation 1.1. The travel agent wants the passenger to fly on a particular
day while still reserving the right to choose any flight on that day. If the
airline offers such a deal, it becomes committed to maintaining a condition—
a booked ticket—over an extended time period.

– Situation 1.2. The car rental company offers a one-week free rental in
January.

– Situation 1.3. A hotel offers an electronic discount coupon that expires today,
but text on the coupon states that it can only be used during a future spring
break. Note that in this case the commitment violates a constraint about
time. In fact, the coupon expires before it can be used.

– Situation 1.4. The car rental company guarantees that its cars will not break
down for at least two days, promising an immediate replacement if one does.
However, if the company is closed on weekends, then a customer who rents
a car on a Friday would not benefit from the warranty if the car broke down
on Saturday. Thus in this case the car rental company offers a warranty that
cannot be used during the period in which the warranty is valid. �

Following [12], we use the symbols h for hotel, g for guest, r for rental company, c
for customer, a for airline and p for the proposition, subject of the commitment.
How do we model the situations above using commitments?

Situation 1.1. Let p represent that a ticket booking is guaranteed. Thus, using an
existential temporal quantifier, [t1, t1+24hrs]p, we express that a ticket booking
is guaranteed for 1 day, as of t1 [12].

However, in practical applications, it may be interesting to explicitly model
the time at which the commitment is satisfied (e.g., when the ticket is issued). To
this end, we could use an alternative notation, which associates p with a variable,
and binds such a variable to a domain interval: [T]p, T ∈ [t1, t1 + 24hrs]. We
write the commitment as follows:

C(a, g, [T]p), t1 ≤ T, T ≤ t1 + 24hrs. (1)

In this way, the commitment is satisfied if there is a possible value of T
which falls in the range [t1, t1 + 24hrs], and such a value can be used for further
inferences.

Social Commitments in Time: Satisfied or Compensated 231

Situation 1.2. Let p denote free rental, and t1 January 1st. Thus, using a univer-
sal temporal quantifier, guaranteed free rental for 7 days as of time t3 is denoted
by [t3, t3 + 7days]p. Then to express that such an interval [t3, t3 + 7days] is inside
January, Mallya et al. [12] use a condition on t3, namely t1 ≤ t3 ≤ t1 + 24days,
and they attach an existential temporal quantifier outside of the quantifier above:
[t1, t1 + 31days]([t3, t3 + 7days]p), t1 ≤ t3 ≤ t1 + 24days.

Let us now use the notation introduced above, instead of existential temporal
quantification. We obtain [T, T +7days]p, t1 ≤ T, T ≤ t1 +24days. Note that we
simplified the notation. In particular, we do not need do distinguish any more
between existentially/universally quantified time intervals, because all intervals
are universally quantified, and we can drop the over-line notation. The resulting
commitment is:

C(r, c, [T, T + 7days]p), t1 ≤ T, T ≤ t1 + 24days. (2)

Situation 1.3. Mallya et al. propose the following solution:

C(h, c, [t1, t1 + 24hrs]([t3, t3 + 7days]p)), t1 + 24hrs < t3,

where t1, t1 + 24hrs is “today” (before spring break) and spring break starts
on t3 and lasts one week. In this way, we obtain two disjoint intervals. The
commitment should be resolved before the end of the first interval in order not
to be breached, however it can only be resolved during the second interval, which
implies that it will be necessarily breached. An alternative notation for the same
commitment is the following:

C(h, t, [Ts, Te]p), t1 ≤ Ts, Te ≤ t1 + 7days, t3 ≤ Ts, Te ≤ t3 + 24hrs. (3)

In this way, we eliminate the need for nested intervals, and unresolvability can
automatically be discovered by basic CLP inference [9].

Situation 1.3 shows that in a specific case, we can do away with nesting. In
general, all existential temporal quantifiers can be mapped onto CLP domain
restrictions, so the need for nesting intervals is only due to nested universal
temporal quantifiers. An example of such a situation is the following:

Example 2. The car rental company offers a one-week free rental every month,
for the whole 2009. �

In this case, we cannot do away with nested intervals. It is possible to extend
Mallya et al.’s Solution 2 and write

[t1, t1 + 12months]([t3, t3 + 7days]p), t1 ≤ t3 ≤ t1 + 24days,

however that does not capture the “every month” concept, due to lack of do-
main variables. A different notation is needed. For example, we may use nested
commitments, instead of nested intervals. Alternatively, if the “every month”
concept is often used in the domain, we could define a new (non-binary) con-
straint and a dedicated propagation algorithm which ensures a very compact

232 P. Torroni et al.

notation and an efficient inference process. Non-binary (global) constraints are
one of the prominent features of constraint programming frameworks. It may
well be that a global constraints that we can use is already available off-the
shelf.1

Situation 1.4. Mallya et al. propose the following solution:

C(r, c, ([t1, t1 + 2days]great car ∨ [t1, t2]replace car)), t2 < t1 + 2days,

where great car means that the car has not broken down, and replace car rep-
resents the warranty that the rental company gives on the quality of the car,
t1 denotes the instant at which the car is rented on Friday and t2 denotes the
closing of the rental company on Friday. Using the framework presented in [12]
is it possible to reason on this “warranty paradox” using CTL and realize that
the warranty cannot be enjoyed if the car is rented on a Friday and it breaks
down on Saturday.

Note that this modeling, however intuitive, may give rise to some counter-
intuitive results. For example, c may decide to satisfy the commitment by
replacing a perfectly functioning car with a broken car.

If we wish to follow Situation 1.4’s description more literally, we should opt for
a different formalization. For example, the commitment about the replacement
car should only be a consequence of the car breaking down:

C(r, c, [T]replace car)← t1 ≤ T, T ≤ t2,H(break down, T), T ≤ t1 +2days (4)

where by H(break down(T)) we denote an event occurred (“Happened”) at time
T . Again, it is possible to reason on the “warranty paradox” using basic CLP
inference. The result of such a reasoning would be a “real” validity interval for
the warranty, which excludes Saturday.

Thus using a rule-based notation we can express many situations in a faith-
ful way. In particular, it would be possible to express conditional commitments.
However, there is another possible solution, based on the concept of compen-
sation. A compensation is an action to be taken to recover from a situation of
violation. To this end, we need to explicitly denote the state of commitments.
For instance, we can write [t]viol(C(x, y, p)) to indicate that a commitment has
been violated at time t (due to an event occurring at time t which falsifies p, or
due to the elapsing at time t of a time interval in which p was supposed to be
verified). We obtain:

C(r, c, [t1, t2]great car). (5)
C(r, c, [Tr]replace car)← [Tb]viol(C(r, c, [Ts, Te]great car)),

Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.
(6)

1 See Beldiceanu and Carlsson’s global constraints catalog,
http://www.emn.fr/x-info/sdemasse/gccat/

http://www.emn.fr/x-info/sdemasse/gccat/

Social Commitments in Time: Satisfied or Compensated 233

(Tb is the time of break down, Tr is the time of replacement). Alternatively,
using an extended notation, we could write:

compensate(r, c, [Tr]replace car, C(r, c, [Ts, Te]great car), Tb))←
Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.

(7)

More on compensations below.
Note that we can easily refine the rules above to specify what “immediate

replacement” means (1 day? 3 hours?), by posing another constraint between Tb

and Tr, other than Tb ≤ Tr.

2.2 Time of Commitments

Another temporal dimension could be interesting in many applications. It is the
time of the commitment itself. To the best of our knowledge, this dimension has
not been considered by previous research.

Example 3. Consider a university-like agent organization, in which agent x and
faculty f belong to. There are roles with social responsibilities, which we can
express by way of commitments. One such role is that of director of studies (dos).
x has been appointed dos at Faculty f on October 29, 2008.

We can express that x has been appointed dos for 2009 at Faculty f , using a
notation like:

C(x, f, [01.01.2009, 31.12.2009]dos). (8)

But how can we express that x has been appointed dos on October 29th 2008?
This could be an important element of the domain. Consider a regulation that
says that a Faculty member that has been appointed director of studies cannot
take more commitments in the Faculty. The notation above does not permit to
reason at this level. The closest approximation is probably: a Faculty member
cannot take more commitments in the Faculty while he is director of studies.
Or, we could resort to an additional commitment to express the appointment,
beside the dos commitment. But this would complicate the model by increasing
the number of commitments. A simple solution is to attach the duration of the
commitment to the commitment itself:

[29.10.2008, Tend]active(C(x, f, [01.01.2009, 31.12.2009]dos)). (9)

2.3 Compensations

Contracts often involve deadlines and compensations. Usually, compensation ac-
tions are possibilities given to recover from a situation of violation. In a typical
setting, a commitment not satisfied in time will not become satisfied by actions
taken after the deadline, but it will instead incur in a further commitment from
the debtor’s side to take a compensation action. The extent of the compensation
required may be subject to context-dependent conditions and be directly related
to the time spent after the deadline before the compensation action is taken.

234 P. Torroni et al.

Example 4. According to the Italian civil code, the owners of real estate must
pay taxes to the municipality (I.C.I.) between June 1 and June 16 of every tax
year, for the property owned during the previous solar year. The Law allows the
debtor who did not pay by the deadline to recover, by their own initiative, from
such a violation by a procedure called spontaneous revision. The spontaneous
revision procedure is permitted only if the debtor has not yet been officially
notified about ongoing investigations related to such a violation. A spontaneous
revision’s compensation of a previous violation amounts to 3% of the amount
not paid, which counts as a sanction, plus the legal interests on the amount not
paid, which depend on the time elapsed between the I.C.I. payment deadline
and the payment by spontaneous revision. �

To model this example, we can resort to a compensate notation like we did above.
Let t1 be June 1st, t2 be June 16th, c a citizen, m a municipality, and let domain-
dependent knowledge such as the interest rate IRate and the amount of taxes
to be paid by a citizen be defined by rules or facts such as interest rate(0.025)
and ici(c, 100euro). A possible solution of Example 4 is the following:

C(c, m, [T]pay ICI(Amt)), t1 ≤ T, T ≤ t2 ← ici(c, Amt). (10)
compensate(c, m, [Tp]pay ICI(Amt), C(c, m, [Tr]s rev(Amtnew)))←
interest rate(IRate), Amtnew = Amt× (1.03 + IRate× (Tr − Tp)),

¬H(official notification(pay ICI(Amt)), Tn), Tn < Tr.

(11)

(s rev stands for spontaneous revision, Amt for amount, and “=” is a CLP
equality constraint).

Such examples are ubiquitous in legislation bodies, and in many domains in
which contracts are used to establish rights and obligations of interacting parties.
To be able to model such situations and reason about them, a notation should
accommodate variables inside commitments and allow us to relate such variables
with domains and expressions containing other variables.

Note that in this case compensate is syntactic sugar for an alternative and
equally expressive notation. One could resort for instance to conditional com-
mitments, and include original content (pay ICI) and compensating content
(s rev) in one single CC-like fact. However, compensations could be defined in
different ways depending on the domain. For example, one can introduce various
degrees of violation, such as mild/serious violation, depending on whether an
official notification has been issued or not. A commitment modeling framework
should be flexible enough to accommodate all these needs. This notation helps
to abstract away from the specific compensation semantics.

3 Desiderata for a Commitment Modeling Framework

The considerations made above suggest a number of desiderata for a commitment
modeling framework that enables reasoning with time. The first two desiderata
are taken from [12].

Social Commitments in Time: Satisfied or Compensated 235

Time intervals. Contracts often involve time bounds. It should be possible
to express such time bounds, in order to enable reasoning about satisfaction or
breach of commitments in general.

Achievement and maintenance. Two kinds of commitment conditions are
possible: achievement conditions (a ticket will be issued by the end of the day),
and maintenance conditions (the car will work without breaking down for 2
days). They should both be accommodated.

Degrees of violation. It should be possible to reason about the extent of
breach of a commitment, to capture ideas such as partial or mild violation of a
contract.

Compensation. The language should enable associating commitments with
compensation actions.

Time of commitment state changes. It should be possible to reason about
the time a commitment assumes a particular state, e.g., the time a commitment
is created, violated or discharged. The framework should enable reasoning about
the state of commitments along time.

Meta-level reasoning. There could be commitments about commitments (and
further nesting). The notation should accommodate contracts in which a com-
mitment is about another commitment that will be created at some later point,
or about some existing commitment.

Simplicity. The notation should be easy and at the same time rigorous. It
should be possible to run automated reasoning tasks on commitment-based con-
tract specifications. Some interesting reasoning tasks are: contract analysis, com-
mitment tracking, and compliance verification.

Modularity. It should be possible to extend the commitment notation or mod-
ify the underlying theories and reasoning procedures in a modular way. Moreover,
it should be possible to integrate a commitment framework with other domain
knowledge, so as to enable reasoners and agents using commitments to reason
using all available knowledge, possibly including ontological knowledge. Such an
integration should preserve the modularity principle.

4 A New Notation for Social Commitments: CML
We propose a new notation for social commitments. We call it CML (Commit-
ment Modeling Language). To enable reasoning, we consider commitments as a
part of a knowledge base. In particular, social commitments are specified inside
CML programs (CPrograms), which could describe for example a contract.

A CML program is made of rules. A rule in the form

CRuleHead← CRuleBody. (12)

is used to define effects of events on the state of commitments. More specifically,
the user can use such rules to define for instance which events create, discharge,

236 P. Torroni et al.

or break which commitments, in the style of [16]. The body defines the context,
i.e., the conditions that must hold in order for an event to have an effect on the
state of a commitment. If no context is defined, the rule is said to be a fact.

Atoms in the body of rules may be external predicates, not defined in the
commitment specification program (this should be allowed because of the mod-
ularity principle), or they can be fluents modeling the state of commitments.
Such a state can be associated with existentially quantified temporal variables
or with universally quantified intervals.

The CML syntax, shown in Figure 1, is easily extensible to accommodate var-
ious models of commitment evolution. For example, p viol has been introduced
alongside viol and active as a possible new commitment state, and a new type
of commitment operation, e.g., compensate, could be added to the language to
provide the user with such a high-level abstraction.

CMLProgram ::= CRules

CRules ::= CRule[CRules]

CRule ::= CRuleHead"."|CRuleHead"← "CRuleBody"."

CRuleHead ::= OPC"("Terms", "Commitment")"

OPC ::= = "create"|"discharge"|"cancel"|"release"|"assign"|"delegate"| . . .
CRuleBody ::= CRuleBodyElem|[", "CRuleBody]

CRuleBodyElem ::= holds"("Interval State"("Commitment", "T ime"))"|
Atom|Constraint

Commitment ::= C"("Agent", "Agent", "[Interval]CAtom")"

Interval ::= "["TExpr[", "TExpr]"]"

TExpr ::= T ime OPT T ime|T ime OPT Duration

OPT ::= " + "|"− "

T ime ::= Date|Numeral|V ariable|TExpression

Duration ::= Numeral Granularity

Granularity ::= "hrs"|"days"|"weeks"|"months"| . . .
Agent ::= Term

Atom ::= Ident|Ident"("Terms")"

Term ::= Atom|Numeral|V ariable

T erms ::= Term[", "Term]

CAtom ::= Atom|Commitment

Constraint ::= V ariable" ∈ "Domain|V ariable OPCLP TExpr

State ::= "viol"|"p viol"|"active"| . . .
OPCLP ::= " = "|" �= "|" ≤ "|" ≥ "|" < "|" > "

Domain ::= Interval|Set

Fig. 1. Syntax of CML programs

Social Commitments in Time: Satisfied or Compensated 237

A sample CProgram, modeling Situation 1.4, is the following:

create(rent a car(Tc, Te), C(r, c, [Tc, Tc + 2days]great car)). (13)
create(car broken(Tb), C(r, c, [Tr]replace car))←

Tr ≤ Tb + 24hours, holds([Tb]viol(C(r, c, [Ts, Te]great car), Tb)).
(14)

Renting a car at time Tc until Te creates a commitment that for 2 days as of
Tc the car does not break down. The car breaking down at a time Tb creates a
commitment that the car must be replaced within 24 hours of the incident, if
the breakdown has caused a breach of commitment.

While CML provides very expressive constructs such as variables with do-
mains, constraints and rules, on the other hand it does not explicitly
accommodate temporal logic expressions, such as pUq or ©p. We are currently
investigating whether and how temporal logic formulae can be mapped onto
CML expressions.

Two fundamental aspects of commitment frameworks are manipulation and
reasoning [15]. Manipulation operates on the state of commitments.

4.1 States of Commitments

Recently, many authors proposed different possible evolutions of the commit-
ment state, from an initial state after creation, down to its satisfaction through
discharge, delegation or cancellation operations, or else to its violation due to the
occurrence of events that contradict the subject of the agreement represented by
the commitment itself. For instance, in [7], Fornara and Colombetti propose the
following set of states for a commitment: empty (e), cancelled (c), precommit-
ment (p), conditional (cc), active (a), fulfilled (f), and violated (v). The states
and their transitions are depicted in Figure 2.

5 Commitment Manipulation and Reasoning

Usually, once the conditions specified in the commitment are either satisfied (for
an achievement commitment) or violated (for a maintenance commitment), the
commitment assumes a final state. However, as discussed above, if we consider
also relevant temporal aspects, such as deadlines, we could define a finer-grained

e

ccp a

f

vc

Fig. 2. Fornara & Colombetti’s commitment state transitions [7]

238 P. Torroni et al.

e

ccp a

f

vpv

pf

c

Fig. 3. A possible extension to a commitment state transitions accounting for partial
violation (pv) and partial fulfillment (pf) of commitments

characterization of the state of a commitment. For example, after a deadline has
passed, the debtor may still opt for a belated action that partially makes up for
the violation. It may be interesting to distinguish among (1) commitment satis-
fied in time, (2) commitment “violated” before the deadline but “satisfied” after
the deadline (partial violation/partial satisfaction), and (3) violated commitment.
Such a distinction is depicted in Figure 3, which is an extended version of Figure 2.

This issue is discussed in depth by Fornara and Colombetti in [8], where
the authors propose a new commitment life-cycle accommodating two states
after violated: extinguished and irrecoverable. Our contribution here is not in the
theoretical underpinning of sanctions and violations, but rather in building a
framework where different theories of violation and sanction may be instantiated
and operationalized.

5.1 Reasoning about Commitments

Yolum and Singh [16] propose to reason about commitments using the Event
Calculus (EC) [10]. The EC was introduced by Kowalski and Sergot as a logic
programming framework for representing and reasoning about events and their
effects. Basic concepts are that of event, happening at a point in time, and prop-
erty (or fluent), holding during time intervals. Fluents are initiated/terminated
by occurring events. There are many different formulations of the EC axioms. A
simple one, taken from [5], is the one below (F stands for Fluent, Ev for Event).

holds at(F, T)← initiates(Ev, F, TStart)
∧ TStart < T ∧ ¬clipped(TStart, F, T).

(ec1)

clipped(T1, F, T3)← terminates(Ev, F, T2)
∧ T1 < T2 ∧ T2 < T3.

(ec2)

initiates(Ev, F, T)← happens(Ev, T) ∧ holds(F1, T)
∧ ... ∧ holds(FN , T).

(ec3)

terminates(Ev, F, T)← happens(Ev, T) ∧ holds(F1, T)
∧ ... ∧ holds(FN , T).

(ec4)

Social Commitments in Time: Satisfied or Compensated 239

Axioms ec1 and ec2 are the general ones of EC, whereas ec3 and ec4 are user-
defined, domain-specific axiom schemas. The EC is a suitable formalism to specify
the effects of commitment manipulation, and reason from such operations. As a
sample fragment of Yolum and Singh’s formalization, consider a create operation,
whose purpose is to establish a commitment, and can only be performed by the
debtor. To express that an event e(x) carried out by x at time t creates a com-
mitment C(x, y, p), Yolum and Singh define the operation create(e(x), C(x, y, p))
in terms of happens(e(x), t) ∧ initiates(e(x), C(x, y, p), t).

In the same way, the semantics of CML can be given in terms of EC programs.
This helps simplicity, because the language of EC is very simple, and modularity,
because for different domains we can define different theories of commitments.

The EC is an effective framework for temporal reasoning. It has been exten-
sively used in the literature to carry out two main reasoning tasks: deductive
narrative verification, to check whether a certain fluent holds given a narrative
(set of events), and abductive planning, to simulate a possible narrative which
satisfies some requirements [13]. Chittaro and Montanari [4] proposed a way to
use the EC for run-time monitoring and verification. It is based on a mecha-
nism to cache the outcome of the inference process every time the knowledge
base is updated by a new event. In a nutshell, the Cached Event Calculus (CEC)
computes and stores fluents’ maximum validity intervals (MVIs), which are the
maximum time intervals in which fluents hold, according to the known events.
The set of cached validity intervals is then extended/revised as new events oc-
cur or get to be known. Therefore, the EC can be used as a basis for reasoning
on commitments in many ways, including not only planning and static verifica-
tion, but also tracking, depending on the EC implementation used (abductive,
deductive, reactive).

6 Social Commitment Framework Architecture

We propose an abstract, layered architecture that enables modeling and reason-
ing with social commitments. It consists of:

– a user application layer;
– a commitment modeling layer;
– a temporal representation and reasoning layer;
– a reasoning and verification layer.

On the top layer, the user can define contracts or agent social interaction
rules using commitments. Such definitions are based on a language provided by
the layer below. The commitment modeling language is implemented using a
temporal representation and reasoning framework, which is in turn built on top
of a more general reasoning and verification framework, which lies at the bottom
layer. It is important to rely on a formal framework that accommodates various
forms of verification, because in this way commitments can be operationalized
and the user can formally analyze commitment-based contracts, reason on the
state of commitments, plan for actions needed to reach states of fulfillment, and
track the evolution of commitments at run-time.

240 P. Torroni et al.

Indeed, the underlying reasoning and verification layer must be powerful
enough to implement a temporal representation and reasoning layer. We pro-
pose a concrete instance of such an architecture, represented in Figure 4.

User and Domain Knowledge Base

Commitment Modeling Language

Reactive Event Calculus

SCIFF Framework

(CML Program)

(REC Theory)

(SCIFF Program)

(Prolog + CLP)

create, discharge, cancel, ...

initiates, terminates

holds_at, clipped, mvi, E, H, ...

SICStus Prolog clauses,
clp(fd), clp(R), CHR constraints

Fig. 4. Social commitment framework architecture

At the bottom layer, we find a number of Prolog+CLP modules which im-
plement the SCIFF family of proof-procedures and provide the SCIFF language
to the layer above [1]. The SCIFF framework is based on abductive logic pro-
gramming and it consists of a declarative specification language and a family
of proof-procedures for reasoning from SCIFF specifications. Some kinds of rea-
soning are: deduction, hypothetical reasoning, static verification of properties,
compliance checking and run-time monitoring. In general, SCIFF comes in hand
for a number of useful tasks in the context of agent interaction. A high-level
description of SCIFF and of its usage is given in [15], also in relation with com-
mitments. The CLP solvers integrated in SCIFF can work with discrete and
dense domains, depending on the application needs, and they are particularly
useful for reasoning along the temporal dimension.

On top of the SCIFF layer there is a SCIFF implementation of the EC, which
uses ideas taken from CEC and thus enables runtime verification. It is called the
Reactive Event Calculus (REC). This layer provides to the layer above the REC
language, which consists of domain-dependent axioms with schemas ec3 and ec4.

In the third layer, the constructs that define the Commitment Modeling Lan-
guage (CML), i.e., the notation proposed above, are written by way of REC
theories. Thus this layer will provide the top layer with the language to write
a CProgram. The top layer consists of user and domain-dependent knowledge
encoded into a CProgram. An example of a program for the top layer was given
in Section 4.

We believe that such an architecture, and its instantiation based on SCIFF,
REC, and the CML, can successfully address the desiderata identified above.
Modularity is achieved in two directions: in the vertical direction, by making
CML programs, EC theory, and commitment theories independent of each other,
and in the horizontal direction, by letting the user refer to external inputs by
way of simple atoms. Atoms can be mapped into function calls via suitable inter-
faces such as those available in most Prolog engines. CML is a simple and easily

Social Commitments in Time: Satisfied or Compensated 241

extensible language, which consists of primitives such as create, discharge, etc.,
in the style of [16]. The language is expressive enough to express time inter-
vals, achievement and maintenance conditions, and time of commitment state
change. Thanks to the expressivity of the language and to the modularity of the
architecture, it is possible to extend the framework to model different kinds of
violation and powerful new constructs such as compensation. In fact, the states
of commitments and manipulation operations are not hard-wired in the archi-
tecture, but they can be (re)defined by the user. Finally, CML accommodates
meta-lavel reasoning on commitments, and the underlying REC engine can rea-
son about commitments at all levels by treating a commitment state as a fluent
which holds for a period of time.

7 Conclusion

We identified some issues regarding the representation of commitments which
are still open, and we formulated a number of desiderata for a commitment
modeling framework. To the best of our knowledge, in the state of the art there
is no framework that satisfies all the desiderata. We believe that a possible
answer could come from a commitment framework organized into four layers.

On top of the stack, at the user level, contracts can be specified by way of
commitment programs. We identified in SCIFF a potential candidate for the
bottom layer and we defined a notation for top-level programs. A prototypical
implementation exists of all the four layers.2 Its usage for commitment tracking
purposes is demonstrated in a companion paper [3].

Our discussion was informal and example-driven. We gave emphasis to tem-
poral aspects of commitments in relation with deadlines. However, deadlines
are only a special case of temporal constraints and CLP constraints in general.
Surely there are many other types of constraint that could be very useful for
modeling the domain correctly and compactly. In particular, global constraints
capture common patterns and help specify complex and recurring constraints
in a simple way. Each global constraint comes with an effective and efficient
propagation algorithm capable of powerful inference. A useful activity could
be to isolate a subset of CLP constraints of interest for commitment-related
domains. A concrete implementation of the commitment modeling framework
should include a library of such CLP constraints. To the best of our knowledge,
the inference potential of such a technology, unlocked by the architecture we
propose, is unprecedented in the domain of commitments.

Currently we are evaluating the CML language and framework empirically on
a number of case studies. Some of the formal properties of the CML framework,
in particular insofar as reasoning is concerned, are discussed in [3]. We plan to
focus not on the expressivity of the top-level commitment programming language
and on the notion of sanctions. To this extent, we found more recent work by
Fornara and Colombetti [8] inspiring and very relevant to our approach. Along
this line, we also intend to investigate how CML and the abstract architecture
2 http://lia.deis.unibo.it/research/sciff/

http://lia.deis.unibo.it/research/sciff/

242 P. Torroni et al.

fit into the concrete application domain of electronic institutions. Commitments
or obligations are also included in their modeling, and often they work with
deadlines of events taking place instead of time.

Acknowledgments. We thank the anonymous reviewers for their useful com-
ments. This work has been partially supported by the FIRB project TOCAI.IT.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9(4), 1–43 (2008)

2. Castelfranchi, C.: Commitments: From individual intentions to groups and or-
ganizations. In: Lesser, V.R., Gasser, L. (eds.) Proceedings of the First Interna-
tional Conference on Multi-Agent Systems, pp. 41–48. The MIT Press, Cambridge
(1995)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
Reactive Event Calculus. In: Boutilier, C. (ed.) Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI), pp. 91–96. AAAI
Press, Menlo Park (2009)

4. Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event cal-
culus. Computational Intelligence 12(2), 359–382 (1996)

5. Chittaro, L., Montanari, A.: Temporal representation and reasoning in artificial
intelligence: Issues and approaches. Annals of Mathematics and Artificial Intelli-
gence 28(1-4), 47–106 (2000)

6. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
A road map of current technologies and future trends. Computational Intelli-
gence 23(1), 61–91 (2007)

7. Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 536–
542. ACM Press, New York (2002)

8. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial in-
stitutions. In: Normative Multi-Agent Systems. Dagstuhl Seminar Proceedings,
vol. 07122 (2007), http://drops.dagstuhl.de/opus/volltexte/2007/909

9. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20, 503–582 (1994)

10. Kowalski, R.A., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95 (1986)

11. Mallya, A.U., Huhns, M.N.: Commitments among agents. IEEE Internet Comput-
ing 7(4), 90–93 (2003)

12. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous
agents. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182.
Springer, Heidelberg (2004)

13. Shanahan, M.: An abductive event calculus planner. Journal of Logic Program-
ming 44(1-3), 207–240 (2000)

http://drops.dagstuhl.de/opus/volltexte/2007/909

Social Commitments in Time: Satisfied or Compensated 243

14. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

15. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M.,
Lamma, E., Mello, P.: Modelling interactions via commitments and expectations.
In: Dignum, V. (ed.) Handbook of Research on MAS: Semantics and Dynamics
of Organizational Models, Hershey, Pennsylvania, March 2009, pp. 263–284. IGI
Global (2009)

16. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: Proceedings of the First In-
ternational Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 527–534. ACM Press, New York (2002)

	Social Commitments in Time: Satisfied or Compensated
	Introduction
	Some Issues Regarding Modeling
	Time Variables, Rules and Constraints
	Time of Commitments
	Compensations

	Desiderata for a Commitment Modeling Framework
	A New Notation for Social Commitments: CML
	States of Commitments

	Commitment Manipulation and Reasoning
	Reasoning about Commitments

	Social Commitment Framework Architecture
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

