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Abstract. During the last decade, various approaches have been put
forward to integrate business processes with different types of data. Each
of these approaches reflects specific demands in the whole process-data
integration spectrum. One particularly important point is the capabil-
ity of these approaches to flexibly accommodate processes with multiple
cases that need to co-evolve. In this work, we introduce and study an
extension of coloured Petri nets, called catalog-nets, providing two key
features to capture this type of processes. On the one hand, net transi-
tions are equipped with guards that simultaneously inspect the content
of tokens and query facts stored in a read-only, persistent database. On
the other hand, such transitions can inject data into tokens by extracting
relevant values from the database or by generating genuinely fresh ones.
We systematically encode catalog-nets into one of the reference frame-
works for the (parameterised) verification of data and processes. We show
that fresh-value injection is a particularly complex feature to handle, and
discuss strategies to tame it. Finally, we discuss how catalog-nets relate
to well-known formalisms in this area.

1 Introduction

The integration of control flow and data has become one of the most promi-
nently investigated topics in BPM [25]. Taking into account data when working
with processes is crucial to properly understand which courses of execution are
allowed [11], to account for decisions [5], and to explicitly accommodate busi-
ness policies and constraints [13]. Hence, considering how a process manipulates
underlying volatile and persistent data, and how such data influence the possible
courses of execution within the process, is central to understand and improve
how organisations, and their underlying information systems, operate through-
out the entire BPM lifecycle: from modelling and verification [10,18] to enact-
ment [19,21] and mining [2]. Each of such approaches reflects specific demands
in the whole process-data integration spectrum. One key point is the capability
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of these approaches to accommodate processes with multiple co-evolving case
objects [4,14]. Several modelling paradigms have adopted to tackle this and
other important features: data-/artifact-centric approaches [10,18], declarative
languages based on temporal constraints [4], and imperative, Petri net-based
notations [14,22,24].

With an interest in (formal) modelling and verification, in this paper we con-
centrate on the latter stream, taking advantage from the long-standing tradition
of adopting Petri nets as the main backbone to formalise processes expressed
in front-end notations such as BPMN, EPCs, and UML activity diagrams. In
particular, we investigate for the first time the combination of two different, key
requirements in the modelling and analysis of data-aware processes. On the one
hand, we support the creation of fresh (case) objects during the execution of the
process, and the ability to model their (co-)evolution using guards and updates.
Examples of such objects are orders and their orderlines in an order-to-cash
process. On the other hand, we handle read-only, persistent data that can be
accessed and injected in the objects manipulated by the process. Examples of
read-only data are the catalog of product types and the list of customers in an
order-to-cash process. Importantly, read-only data have to be considered in a
parameterised way. This means that the overall process is expected to operate
as desired in a robust way, irrespectively of the actual configuration of such data.

While the first requirement is commonly tackled by the most recent and
sophisticated approaches for integrating data within Petri nets [14,22,24], the
latter has been extensively investigated in the data-centric spectrum [9,12], but
only recently ported to more conventional, imperative processes with the sim-
plifying assumptions that the process control-flow is block-structured (and thus
1-bounded in the Petri net sense) [7].

In this work, we reconcile these two themes in an extension of coloured Petri
nets (CPNs) called catalog-nets (CLog-nets). On the one hand, in CLog-net
transitions are equipped with guards that simultaneously inspect the content of
tokens and query facts stored in a read-only, persistent database. On the other
hand, such transitions can inject data into tokens by extracting relevant val-
ues from the database or by generating genuinely fresh ones. We systematically
encode CLog-nets into the most recent version of mcmt [1,16], one of the few
model checkers natively supporting the (parameterised) verification of data and
processes [6,8,9]. We show that fresh-value injection is a particularly complex
feature to handle, and discuss strategies to tame it. We then stress that, thanks
to this encoding, a relevant fragment of the model can be readily verified using
mcmt, and that verification of the whole model is within reach with a minor
implementation effort. Finally, we discuss how catalog nets provide a unifying
approach for some of the most sophisticated formalisms in this area, highlighting
differences and commonalities.

2 The CLog-net Formal Model

Conceptually, a CLog-net integrates two key components. The first is a read-only
persistent data storage, called catalog, to account for read-only, parameterised
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data. The second is a variant of CPN, called ν-CPN [23], to model the process
backbone. Places carry tuples of data objects and can be used to represent:
(i) states of (interrelated) case objects, (ii) read-write relations, (iii) read-only
relations whose extension is fixed (and consequently not subject to parameterisa-
tion), (iv) resources. As in [14,23,24], the net employs ν-variables (first studied
in the context of ν-PNs [26]) to inject fresh data (such as object identifiers).
A distinguishing feature of CLog-nets is that transitions can have guards that
inspect and retrieve data objects from the read-only, catalog.

Catalog. We consider a type domain D as a finite set of pairwise disjoint data
types accounting for the different types of objects in the domain. Each type
D ∈ D comes with its own (possibly infinite) value domain ΔD, and with an
equality operator =D. When clear from the context, we simplify the notation and
use = in place of =D. R(a1 : D1, . . . , an : Dn) is a D-typed relation schema, where
R is a relation name and ai : Di indicates the i-th attribute of R together with
its data type. When no ambiguity arises, we omit relation attributes and/or
their data types. A D-typed catalog (schema) RD is a finite set of D-typed
relation schemas. A D-typed catalog instance Cat over RD is a finite set of facts
R(o1, . . . , on), where R ∈ RD and oi ∈ ΔDi

, for i ∈ {1, . . . , n}.
We adopt two types of constraints in the catalog relations. First, we assume

the first attribute of every relation R ∈ RD to be its primary key, denoted as
pk(R). Also, a type of such attribute should be different from the types of other
primary key attributes. Then, for any R,S ∈ RD, R.a → S .id defines that the
projection R.a is a foreign key referencing S .id, where pk(S ) = id, pk(R) �= a
and type(id) = type(a). While the given setting with constraints may seem a
bit restrictive, it is the one adopted in the most sophisticated settings where
parameterisation of read-only data is tackled [9,12].

Example 1. Consider a simple catalog of an order-to-delivery scenario, con-
taining two relation schemas. Relation schema ProdCat(p : ProdType) indicates
the product types (e.g., vegetables, furniture) available in the organisation cat-
alogue of products. Relation schema Comp(c : CId, p : ProdType, t : TruckType)
captures the compatibility between products and truck types used to deliver
orders; e.g. one may specify that vegetables are compatible only with types of
trucks that have a refrigerator. �

Catalog Queries. We fix a countably infinite set VD of typed variables with a
variable typing function type : VD → D. Such function can be easily extended to
account for sets, tuples and multisets of variables as well as constants. As query
language we opt for the union of conjunctive queries with inequalities and atomic
negations that can be specified in terms of first-order (FO) logic extended with
types. This corresponds to widely investigated SQL select-project-join queries
with filters, and unions thereof.

A conjunctive query (CQ) with atomic negation Q over RD has the form

Q ::=ϕ |R(x1, . . . , xn) | ¬R(x1, . . . , xn) |Q1 ∧ Q2 | ∃x.Q,
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where (i) R(D1, . . . ,Dn) ∈ RD, x ∈ VD and each xi is either a variable of type
Di or a constant from ΔDi

; (ii) ϕ ::= y1 = y2 | ¬ϕ |ϕ ∧ ϕ | � is a condition, s.t.
yi is either a variable of type D or a constant from ΔD. CQ¬

D denotes the set
of all such conjunctive queries, and Free(Q) the set of all free variables (i.e.,
those not occurring in the scope of quantifiers) of query Q. CD denotes the set
of all possible conditions, Vars(Q) the set of all variables in Q, and Const(Q)
the set of all constants in Q. Finally, UCQ¬

D denotes the set off all unions of
conjunctive queries over RD. Each query Q ∈ UCQ¬

D has the form Q =
∧n

i=1 Qi,
with Qi ∈ CQ¬

D.
A substitution for a set X = {x1, . . . , xn} of typed variables is a function

θ : X → ΔD, such that θ(x) ∈ Δtype(x) for every x ∈ X. An empty substitution
is denoted as 〈〉. A substitution θ for a query Q, denoted as Qθ, is a substitution
for variables in Free(Q). An answer to a query Q in a catalog instance Cat is
a set of substitutions ans(Q,Cat) = {θ : Free(Q) → Val(Cat) | Cat , |= θ Q},
where Val(Cat) denotes the set of all constants occurring in Cat and |= denotes
standard FO entailment.

Example 2. Consider the catalog of Example 1. Query ProdCat(p) retrieves the
product types p present in the catalog, whereas given a product type value veg,
query ∃c.Comp(c, veg, t) returns the truck types t compatible with veg. �

CLog-nets. We first fix some standard notions related to multisets. Given a set
A, the set of multisets over A, written A⊕, is the set of mappings of the form
m : A → N. Given a multiset S ∈ A⊕ and an element a ∈ A, S(a) ∈ N denotes
the number of times a appears in S. We write an ∈ S if S(a) = n. The support of
S is the set of elements that appear in S at least once: supp(S) = {a ∈ A | S(a) >
0}. We also consider the usual operations on multisets. Given S1, S2 ∈ A⊕: (i)
S1 ⊆ S2 (resp., S1 ⊂ S2) if S1(a) ≤ S2(a) (resp., S1(a) < S2(a)) for each
a ∈ A; (ii) S1 + S2 = {an | a ∈ A and n = S1(a) + S2(a)}; (iii) if S1 ⊆ S2,
S2 − S1 = {an | a ∈ A and n = S2(a) − S1(a)}; (iv) given a number k ∈ N,
k · S1 = {akn | an ∈ S1}; (v) |m| =

∑
a∈A m(a). A multiset over A is called

empty (denoted as ∅⊕) iff ∅⊕(a) = 0 for every a ∈ A.
We now define CLog-nets, extending ν-CPNs [23] with the ability of querying

a read-only catalog. As in CPNs, each CLog-net place has a color type, which
corresponds to a data type or to the cartesian product of multiple data types
from D. Tokens in places are referenced via inscriptions – tuples of variables
and constants. We denote by ΩA the set of all possible inscriptions over a set
A and, with slight abuse of notation, use Vars(ω) (resp., Const(ω)) to denote
the set of variables (resp., constants) of ω ∈ ΩA. To account for fresh external
inputs, we employ the well-known mechanism of ν-Petri nets [26] and introduce
a countably infinite set ΥD of D-typed fresh variables, where for every ν ∈ ΥD,
we have that Δtype(ν) is countably infinite (this provides an unlimited supply of
fresh values). We fix a countably infinite set of D-typed variable XD = VD � ΥD

as the disjoint union of “normal” (VD) and fresh (ΥD) variables.

Definition 1. A D-typed CLog-net N over a catalog schema RD is a tuple
(D,RD, P, T, Fin, Fout, color, guard), where:
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1. P and T are finite sets of places and transitions, s.t. P ∩ T = ∅;
2. color : P → ℘(D) is a place typing function;
3. Fin : P ×T → Ω⊕

VD
is an input flow, s.t. type(Fin(p, t)) = color(p) for every

(p, t) ∈ P × T ;
4. Fout : T × P → Ω⊕

XD∪ΔD
is an output flow, s.t. type(Fout(t, p)) = color(p)

for every (t, p) ∈ T × P ;
5. guard : T → {Q ∧ ϕ | Q ∈ UCQ¬

D, ϕ ∈ CD} is a partial guard assignment
function, s.t., for every guard(t) = Q ∧ ϕ and t ∈ T , the following holds:
(a) Vars(ϕ) ⊆ InVars(t), where InVars(t) = ∪p∈PVars(Fin(p, t));
(b) OutVars(t) \ (InVars(t) ∪ ΥD) ⊆ Free(Q) and Free(Q) ∩ Vars(t) = ∅,

where OutVars(t) = ∪p∈PVars(Fout(t, p)) and Vars(t) = InVars(t) ∪
OutVars(t). �

Here, the role of guards is twofold. On the one hand, similarly, for example, to
CPNs, guards are used to impose conditions (using ϕ) on tokens flowing through
the net. On the other hand, a guard of transition t may also query (using Q)
the catalog in order to propagate some data into the net. The acquired data
may be still filtered by using InVars(t). Note that in condition (b) of the guard
definition we specify that there are some variables (excluding the fresh ones)
in the outgoing arc inscriptions that do not appear in InVars(t) and that are
used by Q to insert data from the catalog. Moreover, it is required that all free
variables of Q must coincide with the variables of inscriptions on outgoing and
incoming arcs of a transition it is assigned to. In what follows, we shall define
arc inscriptions as k · ω, where k ∈ N and ω ∈ ΩA (for some set A).

Semantics. The execution semantics of a CLog-net is similar to the one of
CPNs. Thus, as a first step we introduce the standard notion of net marking.
Formally, a marking of a CLog-net N = (D,RD, P, T, Fin, Fout, color, guard)
is a function m : P → Ω⊕

D, so that m(p) ∈ Δ⊕
color(p) for every p ∈ P . We

write 〈N,m,Cat〉 to denote CLog-net N marked with m, and equipped with a
read-only catalog instance Cat over RD.

The firing of a transition t in a marking is defined w.r.t. a so-called binding
for t defined as σ : Vars(t) → ΔD. Note that, when applied to (multisets of)
tuples, σ is applied to every variable singularly. For example, given σ = {x �→
1, y �→ a}, its application to a multiset of tuples ω = {〈x, y〉2, 〈x, b〉} results in
σ(ω) = {〈1, a〉2, 〈x, b〉}.

Definition 2. A transition t ∈ T is enabled in a marking m and a fixed catalog
instance Cat, written m[t〉Cat, if there exists binding σ satisfying the follow-
ing: (i) σ(Fin(p, t)) ⊆ m(p), for every p ∈ P ; σ(guard(t)) is true; (ii) σ(x) �∈
Val(m) ∪ Val(Cat), for every x ∈ ΥD ∩ OutVars(t);1 (iii) σ(x) ∈ ans(Q,Cat)
for x ∈ OutVars(t) \ (ΥD ∪ InVars(t)) ∩Vars(Q) and query Q from guard(t). �

1 Here, with slight abuse of notation, we define by Val(m) the set of all values appear-
ing in m.
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Essentially, a transition is enabled with a binding σ if the binding selects
data objects carried by tokens from the input places and the read-only catalog
instance, so that the data they carry make the guard attached to the transition
true.

When a transition t is enabled, it may fire. Next we define what are the
effects of firing a transition with some binding σ.

Definition 3. Let 〈N,m,Cat〉 be a marked CLog-net, and t ∈ T a transition
enabled in m and Cat with some binding σ. Then, t may fire producing a new
marking m′, with m′(p) = m(p)−σ(Fin(p, t))+σ(Fout(t, p)) for every p ∈ P . We
denote this as m[t〉Catm

′ and assume that the definition is inductively extended
to sequences τ ∈ T ∗. �

For 〈N,m0, Cat〉 we use M(N) = {m | ∃τ ∈ T.m0[τ〉Catm} to denote the set of
all markings of N reachable from its initial marking m0.

We close with an example that illustrates all the main features of CLog-nets.
Given b ∈ N, a marked CLog-net 〈N,m0, Cat〉 is called bounded with bound b

if |m(p)| ≤ b, for every marking m ∈ M(N) and every place p ∈ Pc. Unbounded-
ness in CLog-nets can arise due to various reasons: classical unbounded genera-
tion of tokens, but also uncontrollable emission of fresh values with ν-variables or
replication of data values from the catalog via queries in transition guards. Notice
that Definition 3 does not involve the catalog, which is in fact fixed throughout
the execution.

Execution Semantics. The execution semantics of a marked CLog-net
〈N,m0, Cat〉 is defined in terms of a possibly infinite-state transition system
in which states are labeled by reachable markings and each arc (or transition)
corresponds to the firing of a transition in N with a given binding. The transition
system captures all possible executions of the net, by interpreting concurrency as
interleaving. Due to space limitations, the formal definition of how this transition
system is induced can be found in [15].

As pointed out before, we are interested in analysing a CLog-net irrespec-
tively of the actual content of the catalog. Hence, in the following when we
mention a (catalog-parameterised) marked net 〈N,m0〉 without specifying how
the catalog is instantiated, we actually implicitly mean the infinite set of marked
nets 〈N,m0, Cat〉 for every possible instance Cat defined over the catalog schema
of N .

Example 3. Starting from the catalog in Example 1, Fig. 1 shows a simple,
yet sophisticated example of CLog-net capturing the following order-to-delivery
process. Orders can be created by executing the new order transition, which uses
a ν-variable to generate a fresh order identifier. A so-created, working order
can be populated with items, whose type is selected from those available in the
catalog relation ProdCat . Each item then carries its product type and owning
order. When an order contains at least one item, it can be paid. Items added to
an order can be removed or loaded in a compatible truck. The set of available
trucks, indicating their plate numbers and types, is contained in a dedicated pool
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Fig. 1. A CLog-net (its catalog is in Example 1). In the picture, Item and Truck are
compact representations for ProdType × Order and Plate × TruckType respectively.
The top blue part refers to orders, the central orange part to items, and the bottom
violet part to delivery trucks.

place. Trucks can be borrowed from the pool and placed in house. An item can
be loaded into a truck if its owning order has been paid, the truck is in house,
and the truck type and product type of the item are compatible according to
the Comp relation in the catalog. Items (possibly from different orders) can be
loaded in a truck, and while the truck is in house, they can be dropped, which
makes them ready to be loaded again. A truck can be driven for delivery if it
contains at least one loaded item. Once the truck is at its destination, some items
may be delivered (this is simply modelled non-deterministically). The truck can
then either move, or go back in house. �

Example 3 shows various key aspects related to modelling data-aware pro-
cesses with multiple case objects using CLog-nets. First of all, whenever an object
is involved in a many-to-one relation from the “many” side, it then becomes
responsible of carrying the object to which it is related. This can be clearly seen
in the example, where each item carries a reference to its owning order and, once
loaded into a truck, a reference to the truck plate number. Secondly, the three
object types involved in the example show three different modelling patterns for
their creation. Unboundedly many orders can be genuinely created using a ν-
variable to generate their (fresh) identifiers. The (finite) set of trucks available in
the domain is instead fixed in the initial marking, by populating the pool place.
The CLog-net shows that such trucks are used as resources that can change
state but are never destroyed nor created. Finally, the case of items is particu-
larly interesting. Items in fact can be arbitrarily created and destroyed. However,
their creation is not modelled using an explicit ν-variable, but is instead simply
obtained by the add item transition with the usual token-creation mechanism, in
which the product type is taken from the catalog using the query assigned to add
item. Thanks to the multiset semantics of Petri nets, it is still possible to create
multiple items having the same product type and owning order. However, it is
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not possible to track the evolution of a specific item, since there is no explicit
identifier carried by item tokens. This is not a limitation in this example, since
items are not referenced by other objects present in the net (which is instead
the case for orders and trucks). All in all, this shows that ν-variables are only
necessary when the CLog-net needs to handle the arbitrary creation of objects
that are referenced by other objects.

3 From CLog-nets to MCMT

We now report on the encoding of CLog-nets into the verification language sup-
ported by the mcmt model checker, showing that the various modelling con-
structs of CLog-nets have a direct counterpart in mcmt, and in turn enabling
formal analysis.

mcmt is founded on the theory of array-based systems [1,16], an umbrella
term used to refer to infinite-state transition systems specified using a declara-
tive, logic-based formalism by which arrays are manipulated via logical updates.
An array-based system is represented using a multi-sorted theory with two kinds
of sorts: one for the indexes of arrays, and the other for the elements stored
therein. Since the content of an array changes over time, it is referred to by a
function variable, whose interpretation in a state is that of a total function map-
ping indexes to elements (applying the function to an index denotes the classical
read array operation). We adopt here the module of mcmt called “database-
driven mode”, which supports the representation of read-only databases.

Specifically, we show how to encode a CLog-net 〈N,m0〉, where N =
(D,RD, P, T, Fin, Fout, color, guard) into (data-driven) mcmt specification.
The translation is split into two phases. First, we tackle the type domain and
catalog. Then, we present a step-wise encoding of the CLog-net places and tran-
sitions into arrays.

Data and Schema Translation. We start by describing how to translate static
data-related components. Let D = {D1, . . . ,Dnd

}. Each data type Di is encoded
in mcmt with declaration :smt (define-type Di). For each declared type D
mcmt implicitly generates a special NULL constant indicating an empty/unde-
fined value of D.

To represent the catalog relations of RD = {R1, . . . , Rnr
} in mcmt, we pro-

ceed as follows. Recall that in catalog every relation schema has n + 1 typed
attributes among which some may be foreign keys referencing other relations,
its first attribute is a primary key, and, finally, primary keys of different rela-
tion schemas have different types. With these conditions at hand, we adopt the
functional characterisation of read-only databases studied in [9]. For every rela-
tion Ri(id, A1, . . . , An) with pk(R) = {id}, we introduce unary functions that
correctly reference each attribute of Ri using its primary key. More specifically,
for every Aj (j = 1, . . . , n) we create a function fRi,Aj

: Δtype(id) → ΔtypeAj
. If

Aj is referencing an identifier of some other relation S (i.e., Ri .Aj → S .id), then
fRi,Aj

represents the foreign key referencing to S. Note that in this case the types
of Aj and S.id should coincide. In mcmt, assuming that D Ri.id = type(id)
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and D Aj = type(Aj), this is captured using statement :smt (define Ri Aj
::(-> D Ri.id D Aj)).

All the constants appearing in the net specification must be properly defined.
Let C = {v1, . . . , vnc

} be the set of all constants appearing in N . C is defined
as

⋃
t∈T Const(guard(t)) ∪ supp(m0) ∪ ⋃

t∈T,p∈P Const(Fout(t, p)). Then, every
constant vi ∈ C of type D is declared in mcmt as :smt (define vi ::D).

The code section needed to make mcmt aware of the fact that these ele-
ments have been declared to describe a read-only database schema is depicted
in Listing 1.1 (notice that the last declaration is required when using mcmt in
the database-driven mode).

Listing 1.1.

:db_driven

:db_sorts D1 ,...,Dnd

:db_functions

R1_A1 ,..., Rnr_Ak

:db_constants v1 ,...,vnc

:db_relations // l e a v e empty

Listing 1.2.

:initial

:var x

:cnj init p1
...

init pn

Places. Given that, during the net execution, every place may store unbound-
edly many tokens, we need to ensure a potentially infinite provision of val-
ues to places p using unbounded arrays. To this end, every place p ∈ P with
color(p) = D1 × . . . × Dk is going to be represented as a combination of arrays
p1, . . . , pk, where a special index type Pind (disjoint from all other types) with
domain ΔPind

is used as the array index sort and D1, . . . ,Dk account for the
respective target sorts of the arrays.2 In mcmt, this is declared as :local
p 1 D1 ... :local p k Dk. Then, intuitively, we associate to the j-th token
(v1, . . . , vk) ∈ m(p) an element j ∈ ΔPind

and a tuple (j, p1[j], . . . , pk[j]), where
p1[j] = v1, . . . , pk[j] = vk. Here, j is an “implicit identifier” of this tuple in m(p).
Using this intuition and assuming that there are in total n control places, we
represent the initial marking m0 in two steps (a direct declaration is not possible
due to the language restrictions of mcmt). First, we symbolically declare that all
places are by default empty using the mcmt initialisation statement from List-
ing 1.2. There, cnj represents a conjunction of atomic equations that, for ease
of reading, we organized in blocks, where each init pi specifies for place pi ∈ P
with color(pi) = D1×. . .×Dk that it contains no tokens. This is done by explic-
itly “nullifying” all component of each possible token in pi, written in mcmt as
(= pi 1[x] NULL D1)(= pi 2[x] NULL D2)...(= pi k[x] NULL DK). The ini-
tial marking is then injected with a dedicated mcmt code that populates the
place arrays, initialised as empty, with records representing tokens therein. Due
to the lack of space, this code is provided in [15].

Transition Enablement and Firing. We now show how to check for transi-
tion enablement and compute the effect of a transition firing in mcmt. To this
2 mcmt has only one index sort, but, as shown in [15], there is no loss of generality in

doing that.
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t

[Q ∧ ϕ]
pin1

pink

• • •

pout1

poutn

• • •

ri
1 · �in1

rik · �ink

ro1
· �out1

ron · �outn

Fig. 2. A generic CLog-net transition (rij and roj are natural numbers)

end, we consider the generic, prototypical CLog-net transition t ∈ T depicted in
Fig. 2. The enablement of this transition is subject to the following conditions:
(FC1) there is a binding σ that correctly matches tokens in the places to the cor-
responding inscriptions on the input arcs (i.e., each place pini provides enough
tokens required by a corresponding inscription F (pini, t) = �ini), and that com-
putes new and possibly fresh values that are pairwise distinct from each other
as well as from all other values in the marking; (FC2) the guard guard(t) is
satisfied under the selected binding. In mcmt, t is captured with a transition
statement consisting of a guard G and an update U as in Listing 1.3.

Listing 1.3.

:transition

:var x,x1 ,...,xK,y1 ,...,yN

:var j

:guard G
... U ...

Listing 1.4.

:numcases NC

...

:case (= j i)
:val v1,i
...

:val vk,i
...

Here every x (resp., y) represents an existentially quantified index variable corre-
sponding to variables in the incoming inscriptions (resp., outgoing inscriptions),
K =

∑
j∈{1,...,k} rij , N =

∑
j∈{1,...,n} roj and j is a universally quantified vari-

able, that will be used for computing bindings of ν-variables and updates. In the
following we are going to elaborate on the construction of the mcmt transition
statement. We start by discussing the structure of G which in mcmt is repre-
sented as a conjunction of atoms or negated atoms and, intuitively, addresses all
the conditions stated above.

First, to construct a binding that meets condition (FC1), we need to make
sure that every place contains enough of tokens that match a corresponding
arc inscription. Using the array-based representation, for every place pini with
Fin(pini, t) = rii · �ini and |color(pini)| = k, we can check this with a formula

ψpini
:= ∃x1, . . . , xrii .

∧

j1,j2∈{x1,...,xrij},j1 �=j2,

l∈{1,...,k}

pini,l[j1] = pini,l[j2] ∧
∧

l∈{1,...,k}
pini,l[x1] �= NULL Dl
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Given that variables representing existentially quantified index variables are
already defined, in mcmt this is encoded as conjunctions of atoms (= pini l[j1]
pini l[j2]) and atoms not(= pini l[x1] NULL Dl), where NULL Dl is a special
null constant of type of elements stored in pini l. All such conjunctions, for all
input places of t, should be appended to G.

We now define the condition that selects proper indexes in the output places
so as to fill them with the tokens generated upon transition firing. To this end,
we need to make sure that all the q declared arrays aw of the system3 (including
the arrays pouti corresponding to the output places of t) contain no values in
the slots marked by y index variables. This is represented using a formula

ψpouti
:= ∃y1, . . . , yrii .

∧

j∈{y1,...,yrij},w∈{1,...q}
aw[j] = NULL Dw,

which is encoded in mcmt similarly to the case of ψpini
.

Moreover, when constructing a binding, we have to take into account the case
of arc inscriptions causing implicit “joins” between the net marking and data
retrieved from the catalog. This happens when there are some variables in the
input flow that coincide with variables of Q, i.e., Vars(Fin(pinj , t))∩Vars(Q) �=
∅. For ease of presentation, denote the set of such variables as s = {s1, . . . , sr}
and introduce a function π that returns the position of a variable in a tuple or
relation. E.g., π(〈x, y, z〉, y) = 2, and π(R,B) = 3 in R(id, A,B,E). Then, for
every relation R in Q we generate a formula

ψR :=
∧

j∈{1,...,k},s∈
(
s∩Vars(R)

)
pinj,π( �inj ,s)[x] = fR,Aπ(R,s)(id)

This formula guarantees that values provided by a constructed binding respect
the aforementioned case for some index x (that has to coincide with one of
the index variables from ψpinj

) and identifier id. In mcmt this is encoded as
a conjunction of atoms (= (R Ai id) pinj l[x]), where i = π(R, s) and l =
π( �inj , s). As in the previous case, all such formulas are appended to G.

We now incorporate the encoding of condition (FC2). Every variable z of
Q with type(z) = D has to be declared in mcmt as :eevar z D. We call an
extended guard a guard Qe ∧ ϕe in which every relation R has been substituted
with its functional counterpart and every variable z in ϕ has been substituted
with a “reference” to a corresponding array pinj that z uses as a value provider
for its bindings. More specifically, every relation R/n + 1 that appears in Q
as R(id, z1, . . . , zn) is be replaced by conjunction id �= NULL D ∧ fR,A1(id) =
z1 ∧ . . . ∧ fR,An

(id) = zn, where D = type(id). In mcmt, this is written as (not
(= id NULL D)) expr1 ... exprn (id should be declared using :eevar as well).
Here, every expri corresponds to an atomic equality from above and is specified in
mcmt in three different ways based on the nature of zi. Let us assume that zi has

3 This is a technicality of mcmt, as explained in [15], since mcmt has only one index
sort.
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been declared before as :eevar z i D. If zi appears in a corresponding incom-
ing transition inscription, then expri is defined as (= (R Ai id) pin j[x])
(= z i pin j[x]), where i-th attribute of R coincides with the j-th variable in
the inscription Fin(pin, t). If zi is a variable bound by an existential quantifier
in Q, then expri in mcmt is going to look as (= (R Ai id) zi). Finally, if zi is
a variable in an outgoing inscription used for propagating data from the catalog
(as discussed in condition (1)), then expri is simply defined with the following
statement: (= (R Ai id) z i), where Di is the type of zi.

Variables in ϕ are substituted with their array counterparts. In particular,
every variable z ∈ Vars(ϕ) is substituted with pinj i[x], where i = π( �inj , z).
Given that ϕ is represented as a conjunction of variables, its representation in
mcmt together with the aforementioned substitution is trivial. To finish the
construction of G, we append to it the mcmt version of Qe ∧ ϕe.

We come back to condition (FC1) and show how bindings are generated for
ν-variables of the output flow of t. In mcmt we use a special universal guard
:uguard (to be inserted right after the :guard entry) that, for every variable
ν ∈ ΥD ∩ (OutVars(t) \ Vars( �outj)) previously declared using :eevar nu D,
and for arrays p1, . . . , pk with target sort D, consists of expression (not(=nu
p 1[j]))...(not(=nu p k[j])) for all p. This encodes “local” freshness for
ν-variables, which suffice for our goal.

After a binding has been generated and the guard of t has been checked,
a new marking is generated by assigning corresponding tokens to the outgoing
places and by removing tokens from the incoming ones. Note that, while the
tokens are populated by assigning their values to respective arrays, the token
deletion happens by nullifying (i.e., assigning special NULL constants) entries in
the arrays of the input places. All these operations are specified in the special
update part of the transition statement U and are captured in mcmt as depicted
in Listing 1.4. There, the transition runs through NC cases. All the following cases
go over the indexes y1,. . . , yN that correspond to tokens that have to be added to
places. More specifically, for every place pout ∈ P such that |color(pout)| = k,
we add an i-th token to it by putting a value vr,i in i-th place of every r-
th component array of pout. This vr,i can either be a ν-variable nu from the
universal guard, or a value coming from a place pin specified as pin[xm] (from
some x input index variable) or a value from some of the relations specified as
(R Ai id). Note that id should be also declared as :eevar id D Ri.id, where
type(id) = D Ri.id. Every :val v statement follows the order in which all the
local and global variables have been defined, and, for array variables a and every
every case (= j i), such statement stands for a simple assignment a[i] := v.

Implementation Status. The provided translation is fully compliant with the
concrete specification language mcmt. The current implementation has however
a limitation on the number of supported index variables in each mcmt transition
statement. Specifically, two existentially quantified and one universally quanti-
fied variables are currently supported. This has to be taken into account if one
wants to run the model checker on the result produced by translating a CLog-
net, and possibly requires to rewrite the net (if possible) into one that does not
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exceed the supported number of index variables. What can be actually rewritten
(and how) is beyond the scope of this paper.

In addition, notice that this limitation is not dictated by algorithmic nor the-
oretical limitations, but is a mere characteristic of the current implementation,
and comes from the fact that the wide range of systems verified so far with mcmt
never required to simultaneously quantify on many array indexes. There is an
ongoing implementation effort for a new version of mcmt that supports arbitrar-
ily many quantified index variables, and consequently concrete model checking
of the full CLog-net model is within reach. Currently, we do not have a software
prototype that encodes the translation, but this section indicates exactly how
this should be implemented.

4 Parameterised Verification

Thanks to the encoding of CLog-nets into (the database-driven module of)
mcmt, we can handle the parameterised verification of safety properties over
CLog-nets, and study crucial properties such as soundness, completeness, and
termination by relating CLog-nets with the foundational framework underlying
such an mcmt module [8,9].

This amounts to verifying whether it is true that all the reachable states of
a marked CLog-net satisfy a desired condition, independently from the content
of the catalog. As customary in this setting, this form of verification is tackled
in a converse way, by formulating an unsafe condition, and by checking whether
there exists an instance of the catalog such that the CLog-net can evolve the
initial marking to a state where the unsafe condition holds. Technically, given
a property ψ capturing an unsafe condition and a marked CLog-net 〈N,m0〉,
we say that 〈N,m0〉 is unsafe w.r.t. ψ if there exists a catalog instance Cat for
N such that the marked CLog-net with fixed catalog 〈N,m0, Cat〉 can reach a
configuration where ψ holds.

With a slight abuse of notation, we interchangeably use the term CLog-net
to denote the input net or its mcmt encoding. We start by defining (unsafety)
properties, in a way that again guarantees a direct encoding into the mcmt
model checker. For space limitations, we refer to the translation of properties
over CLog-nets in [15].

Definition 4. A property over CLog-net N is a formula of the form ∃�y.ψ(�y),
where ψ(�y) is a quantifier-free query that additionally contains atomic predi-
cates [p ≥ c] and [p(x1, . . . , xn) ≥ c], where p is a place name from N , c ∈ N,
and Vars(ψ) = YP , with YP being the set of variables appearing in the atomic
predicates [p(x1, . . . , xn) ≥ c]. �

Here, [p ≥ c] specifies that in place p there are at least c tokens. Similarly,
[p(x1, . . . , xn) ≥ c] indicates that in place p there are at least c tokens carrying
the tuple 〈x1, . . . , xn〉 of data objects. A property may also mention relations
from the catalog, provided that all variables used therein also appear in atoms
that inspect places.
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This can be seen as a language to express data-aware coverability properties of
a CLog-net, possibly relating tokens with the content of the catalog. Focusing on
covered markings as opposed as fully-specified reachable markings is customary
in data-aware Petri nets or, more in general, well-structured transition systems
(such as ν-PNs [26]).

Example 4. Consider the CLog-net of Example 3, with an initial marking that
populates the pool place with available trucks. Property ∃p, o.[delivered(p, o) ≥
1] ∧ [working(o) ≥ 1] captures the undesired situation where a delivery occurs
for an item that belongs to a working (i.e., not yet paid) order. This can never
happen, irrespectively of the content of the net catalog: items can be delivered
only if they have been loaded in a compatible truck, which is possible only if the
order of the loaded item is paid . �

In the remainder of the section, we focus on the key properties of soundness
and completeness of the backward reachability procedure encoded in mcmt,
which can be used to handle the parameterised verification problem for CLog-
nets defined above.4 We call this procedure BReach, and in our context we
assume it takes as input a marked CLog-net and an (undesired) property ψ,
returning UNSAFE if there exists an instance of the catalog so that the net can
evolve from the initial marking to a configuration that satisfies ψ, and SAFE
otherwise. For details on the procedure itself, refer to [9,16]. We characterise the
(meta-)properties of this procedure as follows.

Definition 5. Given a marked CLog-net 〈N,m0〉 and a property ψ, BReach is:
(i) sound if, whenever it terminates, it produces a correct answer; (ii) partially
sound if a SAFE result it returns is always correct; (iii) complete (w.r.t. unsafety)
if, whenever 〈N,m0〉 is UNSAFE with respect to ψ, then BReach detects it and
returns UNSAFE. �

In general, BReach is not guaranteed to terminate (which is not surprising given
the expressiveness of the framework and the type of parameterised verification
tackled).

As we have seen in Sect. 3, the encoding of fresh variables requires to employ
a limited form of universal quantification. This feature goes beyond the founda-
tional framework for (data-driven) mcmt [9], which in fact does not explicitly
consider fresh data injection. It is known from previous works (see, e.g., [3]) that
when universal quantification over the indexes of an array is employed, BReach

cannot guarantee that all the indexes are considered, leading to potentially spu-
rious situations in which some indexes are simply “disregarded” when exploring
the state space. This may wrongly classify a SAFE case as being UNSAFE, due
to spurious exploration of the state space, similarly to what happens in lossy
systems. By combining [9] and [3], we then obtain:

Theorem 1. BReach is partially sound and complete for marked CLog-nets.
�

4 Backward reachability is not marking reachability. We consider reachability of a con-
figuration satisfying a property that captures the covering of a data-aware marking.
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Fortunately, mcmt is equipped with techniques [3] for debugging the returned
result, and tame partial soundness. In fact, mcmt warns when the produced
result is provably correct, or may have been produced due to a spurious state-
space exploration.

A key point is then how to tame partial soundness towards recovering full
soundness and completeness We obtain this by either assuming that the CLog-
net of interest does not employ at all fresh variables, or is bounded.
Conservative CLog-nets are CLog-nets that do not employ ν-variables in arc
inscriptions. It turns out that such nets are fully compatible with the founda-
tional framework in [9], and consequently inherit all the properties established
there. In particular, we obtain that BReach is a semi-decision procedure.

Theorem 2. BReach is sound and complete for marked, conservative CLog-
nets. �

One may wonder whether studying conservative nets is meaningful. We argue
in favour of this by considering modelling techniques to “remove” fresh variables
present in the net. The first technique is to ensure that ν-variables are used only
when necessary. As we have extensively discussed at the end of Sect. 2, this is the
case only for objects that are referenced by other objects. This happens when
an object type participates on the “one” side of a many-to-one relationship, or
for one of the two end points of a one-to-one relationship. The second technique
is to limit the scope of verification by singling out only one (or a bunch of) “pro-
totypical” object(s) of a given type. This is, e.g., what happens when checking
soundness of workflow nets, where only the evolution of a single case from the
input to the output place is studied.

Example 5. We can turn the CLog-net of Example 3 into a conservative one
by removing the new order transition, and by ensuring that in the initial marking
one or more order tokens are inserted into the working place. This allows one
to verify how these orders co-evolve in the net. A detected issue carries over the
general setting where orders can be arbitrarily created. �

A third technique is to remove the part of the CLog-net with the fresh objects
creation, assuming instead that such objects are all “pre-created” and then listed
in a read-only, catalog relation. This is more powerful than the first technique
from above: now verification considers all possible configurations of such objects
as described by the catalog schema. In fact, using this technique on Example 3
we can turn the CLog-net into a conservative CLog-net that mimics exactly the
behaviour of the original one.

Example 6. We make the CLog-net from Example 3 conservative in a way
that reconstructs the original, arbitrary order creation. To do so we extend
the catalog with a unary relation schema CrOrder accounting for (pre-)created
orders. Then, we modify the new order transition: we substitute the ν-variable
νo with a normal variable o, and we link this variable to the catalog, by adding
as a guard a query CrOrder(o). This modified new order transition extracts an
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order from the catalog and making it working. Since in the original CLog-net
the creation of orders is unconstrained, it is irrelevant for verification if all the
orders involved in an execution are created on-the-fly, or all created at the very
beginning. Paired with the fact that the modified CLog-net is analysed for all
possible catalog instances, i.e., all possible sets of pre-created orders, this tells
us that the original and modified nets capture the same relevant behaviours. �

Bounded CLog-nets. An orthogonal approach is to study what happens if the
CLog-net of interest is bounded (for a given bound). In this case, we can “compile
away” fresh-object creation by introducing a place that contains, in the initial
marking, enough provision of pre-defined objects. This effectively transforms the
CLog-net into a conservative one, and so Theorem 2 applies. If we consider a
boudned CLog-net and its catalog is acyclic (i.e., its foreign keys cannot form
referential cycles where a table directly or indirectly refers to itself), then it is
possible to show using the results from [9] that verifying safety of conservative
CLog-nets becomes decidable.

Several modelling strategies can be adopted to turn an unbounded CLog-net
into a bounded one. We illustrate two strategies in the context of our running
example.

Example 7. Consider again the CLog-net of Example 3. It has two sources of
unboundedness: the creation of orders, and the addition of items to working
orders. The first can be tackled by introducing suitable resource places. E.g., we
can impose that each order is controlled by a manager and can be created only
when there is an idle manager not working on any other order. This makes the
overall amount of orders unbounded over time, but bounded in each marking by
the number of resources. Items creation can be bounded by imposing, concep-
tually, that each order cannot contain more than a maximum number of items.
This amounts to impose a maximum multiplicity on the “many” side of each
one-to-many relation implicitly present in the CLog-net. �

5 Comparison to Other Models

We comment on how the CLog-nets relate to the most recent data-aware Petri
net-based models, arguing that they provide an interesting mix of their main
features.
DB-nets. CLog-nets in their full generality match with an expressive fragment
of the DB-net model [22]. DB-nets combine a control-flow component based
on CPNs with fresh value injection a là ν-PNs with an underlying read-write
persistent storage consisting of a relational database with full-fledged constraints.
Special “view” places in the net are used to inspect the content of the underlying
database, while transitions are equipped with database update operations.

In CLog-nets, the catalog accounts for a persistent storage solely used in a
“read-only” modality, thus making the concept of view places rather unnecessary.
More specifically, given that the persistent storage can never be changed but only
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queried for extracting data relevant for running cases, the queries from view
places in DB-nets have been relocated to transition guards of CLog-nets. While
CLog-nets do not come with an explicit, updatable persistent storage, they can
still employ places and suitably defined subnets to capture read-write relations and
their manipulation. In particular, as shown in [23], read-write relations queried
using UCQ¬

D queries can be directly encoded with special places and transitions
at the net level. The same applies to CLog-nets.

While verification of DB-nets has only been studied in the bounded case,
CLog-nets are formally analysed here without imposing boundedness, and para-
metrically w.r.t. read-only relations. In addition, the mcmt encoding provided
here constitutes the first attempt to make this type of nets practically verifiable.
PNIDs. The net component of our CLog-nets model is equivalent to the for-
malism of Petri nets with identifiers (PNIDs [17]) without inhibitor arcs. Inter-
estingly, PNIDs without inhibitor arcs form the formal basis of the Information
Systems Modelling Language (ISML) defined in [24]. In ISML, PNIDs are paired
with special CRUD operations to define how relevant facts are manipulated.
Such relevant facts are structured according to a conceptual data model spec-
ified in ORM, which imposes structural, first-order constraints over such facts.
This sophistication only permits to formally analyse the resulting formalism by
bounding the PNID markings and the number of objects and facts relating them.
The main focus of ISML is in fact more on modelling and enactment. CLog-nets
can be hence seen as a natural “verification” counterpart of ISML, where the
data component is structured relationally and does not come with the sophis-
ticated constraints of ORM, but where parameterised verification is practically
possible.
Proclets. CLog-nets can be seen as a sort of explicit data version of (a relevant
fragment of) Proclets [14]. Proclets handle multiple objects by separating their
respective subnets, and by implicitly retaining their mutual one-to-one and one-
to-many relations through the notion of correlation set. In Fig. 1, that would
require to separate the subnets of orders, items, and trucks, relating them with
two special one-to-many channels indicating that multiple items belong to the
same order and loaded in the same truck.

A correlation set is established when one or multiple objects o1, . . . , on are co-
created, all being related to the same object o of a different type (cf. the creation
of multiple items for the same order in our running example). In Proclets, this
correlation set is implicitly reconstructed by inspecting the concurrent histories
of such different objects. Correlation sets are then used to formalise two sophis-
ticated forms of synchronisation. In the equal synchronisation, o flows through
a transition t1 while, simultaneously, all objects o1, . . . , on flow through another
transition t2. In the subset synchronisation, the same happens but only requiring
a subset of o1, . . . , on to synchronise.

Interestingly, CLog-nets can encode correlation sets and the subset synchroni-
sation semantics. A correlation set is explicitly maintained in the net by imposing
that the tokens carrying o1, . . . , on also carry a reference to o. This is what hap-
pens for items in our running example: they explicitly carry a reference to the
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order they belong to. Subset synchronisation is encoded via a properly crafted
subnet. Intuitively, this subnet works as follows. First, a lock place is inserted in
the CLog-net so as to indicate when the net is operating in a normal mode or is
instead executing a synchronisation phase. When the lock is taken, some objects
in o1, . . . , on are nondeterministically picked and moved through their transition
t2. The lock is then released, simultaneously moving o through its transition t1.
Thanks to this approach, a Proclet with subset synchronisation points can be
encoded into a corresponding CLog-net, providing for the first time a practical
approach to verification. This does not carry over Proclets with equal synchroni-
sation, which would allow us to capture, in our running example, sophisticated
mechanisms like ensuring that when a truck moves to its destination, all items
contained therein are delivered. Equal synchronisation can only be captured in
CLog-nets by introducing a data-aware variant of wholeplace operation, which
we aim to study in the future.

6 Conclusions

We have brought forward an integrated model of processes and data founded
on CPN that balances between modelling power and the possibility of carry-
ing sophisticated forms of verification parameterised on read-only, immutable
relational data. We have approached the problem of verification not only foun-
dationally, but also showing a direct encoding into mcmt, one of the most well-
established model checkers for the verification of infinite-state dynamic systems.
We have also shown that this model directly relates to some of the most sophis-
ticate models studied in this spectrum, attempting at unifying their features in
a single approach. Given that mcmt is based on Satisfiability Modulo Theories
(SMT), our approach naturally lends itself to be extended with numerical data
types and arithmetics. We also want to study the impact of introducing whole-
place operations, essential to capture the most sophisticated syhncronization
semantics defined for Proclets [14]. At the same time, we are currently defining
a benchmark for data-aware processes, systematically translating the artifact
systems benchmark defined in [20] into corresponding imperative data-aware
formalisms, including CLog-nets.
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