
Declarative Process Modeling in BPMN

Giuseppe De Giacomo1, Marlon Dumas2, Fabrizio Maria Maggi2(B),
and Marco Montali3

1 Sapienza Università di Roma, Rome, Italy
degiacomo@dis.uniroma1.it

2 University of Tartu, Tartu, Estonia
{marlon.dumas,f.m.maggi}@ut.ee

3 Free University of Bozen-Bolzano, Bolzano, Italy
montali@inf.unibz.it

Abstract. Traditional business process modeling notations, including
the standard Business Process Model and Notation (BPMN), rely on
an imperative paradigm wherein the process model captures all allowed
activity flows. In other words, every flow that is not specified is implic-
itly disallowed. In the past decade, several researchers have exposed the
limitations of this paradigm in the context of business processes with
high variability. As an alternative, declarative process modeling nota-
tions have been proposed (e.g., Declare). These notations allow model-
ers to capture constraints on the allowed activity flows, meaning that
all flows are allowed provided that they do not violate the specified con-
straints. Recently, it has been recognized that the boundary between
imperative and declarative process modeling is not crisp. Instead, mix-
tures of declarative and imperative process modeling styles are sometimes
preferable, leading to proposals for hybrid process modeling notations.
These developments raise the question of whether completely new nota-
tions are needed to support hybrid process modeling. This paper answers
this question negatively. The paper presents a conservative extension of
BPMN for declarative process modeling, namely BPMN-D, and shows
that Declare models can be transformed into readable BPMN-D models.

Keywords: BPMN · Declarative process modeling · Declare

1 Introduction

The standard Business Process Model and Notation (BPMN) [13] and related
approaches rely on an imperative paradigm wherein the process model cap-
tures all allowed activity flows. Underpinning these notations is a “closed world”
assumption, meaning that the process model captures all possible activity flows
and hence any unspecified activity flow is disallowed. This paradigm has proved
suitable in the context of regular and predictable processes, where there is
in essence one primary way of performing a process, with relatively few and
well-scoped variations.

c© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 84–100, 2015.
DOI: 10.1007/978-3-319-19069-3 6

Declarative Process Modeling in BPMN 85

In the past decade, several researchers have exposed the limitations of this
imperative paradigm in the context of business processes with high variabil-
ity, such as customer lead management processes, product design processes,
patient treatment and related healthcare processes [17,19]. As an alternative,
declarative process modeling notations have been proposed, e.g., Declare [1,14],
Guard-Stage-Milestones (GSM) [9] and the Case Management Model and Nota-
tion (CMMN) [11]. Unlike their imperative counterparts, a declarative model
captures a process under an “open world” assumption, such that everything is
allowed unless it is explicitly forbidden by a rule. In this context, a rule may
take the form of a binary relation between pairs of tasks that must be satisfied
in every execution of a process, like for example “task B can only be performed
if task A has been previously performed in the same case”.

More recently, it has been recognized that the boundary between imperative
and declarative process modeling is not crisp. Instead, mixtures of declarative
and imperative modeling styles are sometimes preferable, leading to proposals
for hybrid process modeling notations [6,21]. These developments raise the ques-
tion of whether completely new notations are needed to support hybrid process
modeling.

Given this question, this paper analyzes the possibility of seamlessly extend-
ing BPMN with declarative constructs. The main contribution of the paper is an
extension of BPMN, namely BPMN-D. BPMN-D is a conservative extension in
the sense that it only adds constructs, such that any BPMN model is a BPMN-
D model. Furthermore, BPMN-D is a macro-extension, i.e., it is designed so
that any BPMN-D model can be translated into a (larger and potentially less
readable) BPMN model. The paper also shows that any Declare model can be
translated into a readable BPMN-D model via constraint automata. More gen-
erally, any declarative process modeling language defined in terms of Linear
Temporal Logic over finite traces (ltlf) can be translated into BPMN-D using
the proposed translation method.

The paper is structured as follows. Section 2 provides an overview of declar-
ative process modeling – specifically the Declare notation – and discusses previ-
ous research on linking declarative and imperative process modeling approaches.
Section 3 introduces the BPMN-D notation and shows how the extended con-
structs of BPMN-D can be re-written into standard BPMN. Next, Section 4
outlines the translation from Declare to BPMN-D. Finally, Section 5 draws con-
clusions and outlines future work.

2 Background and Related Work

Declare [1,14] is a declarative process modeling language wherein a process is
specified via a set of constraints between activities, which must be satisfied by
every execution of the process. Declare constraints are captured based on tem-
plates. Templates are patterns that define parameterized classes of properties,
while constraints are their concrete instantiations. Herein, we write template

86 G. De Giacomo et al.

Table 1. Semantics for some Declare templates

Template ltlf semantics Activation

responded existence ♦A → ♦B

response �(A → ♦B)

alternate response �(A → ©(¬A � B))

chain response �(A → ©B)

precedence (¬B � A) ∨ �(¬B)

alternate precedence
(¬B � A) ∨ �(¬B)∧
�(B → ©((¬B � A) ∨ �(¬B)))

chain precedence �(©B → A)

parameters in upper-case and concrete activities in their instantiations in lower-
case. Constraints have a graphical representation. The semantics of templates
can be formalized using different logics [12], for example ltlf .

Table 1 summarizes some Declare templates and their corresponding formal-
ization in ltlf . (The reader can refer to [1] for a full description of the language.)
The ♦, ©, �, and � ltlf operators have the following intuitive meaning: for-
mula ♦φ1 means that φ1 holds sometime in the future, ©φ1 means that φ1 holds
in the next position, �φ1 says that φ1 holds forever, and, lastly, φ1 � φ2 means
that sometime in the future φ2 will hold and until that moment φ1 holds (with
φ1 and φ2 ltlf formulas).

Consider, for example, the response constraint �(a → ♦b). This constraint
indicates that if a occurs, b must eventually follow. Therefore, this constraint is
satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the second occurrence of a
is not followed by an occurrence of b. A constraint can define more than one
activity for each parameter specified in its template. In this case, we say that the
parameters branch out and, in the graphical representation, they are replaced by
multiple arcs to all branched activities. In the ltlf semantics, the parameters
are replaced by a disjunction of branching activities. For example, the ltlf

semantics of the response template with two branches on the target parameter
is �(A → ♦(B ∨ C)).

Example 1. Consider the Declare model that represents a fragment of a purchase
order process, as shown in Figure 1. The process is as follows:

– a payment cannot be done until the order is closed (precedence constraint);
– whenever a payment is done, then a receipt or an invoice must be produced

(branching response constraint).

Declarative Process Modeling in BPMN 87

Fig. 1. Example of a Declare model

Like any declarative model, this model should be interpreted according to an
“open-world” semantics: It is possible to send a receipt or an invoice without
paying beforehand and, also, to close an order without eventually paying. In
addition, an activity in the model can be executed several times. Closing an
order several times has no effect on the process execution, whereas it is possible
to pay several times (this is the case, for example, of installments) and, also, to
send invoices and receipts several times.

Besides Declare, other declarative process modeling notations include Con-
dition Response Graphs (DCR) graphs [8] and GSM [9]. DCR graphs rely on
binary relations between tasks (as in Declare) but employ a smaller set of five
core relations and support decomposition (nesting). GSM differs from Declare
and DCR in that it does not rely on binary relations. Instead it relies on three
core concepts: guard, stage and milestone. A stage is a phase in the execution
of a process where a certain number of tasks (or other stages) may occur in
any order and any number of times (similar to ad hoc activities in BPMN).
The opening of a stage is subject to one of its guards (event-condition rules)
becoming true. The stage is closed when one of its milestones is achieved (i.e.,
becomes true). A milestone is also defined by means of an event-condition rule.
The guards of a stage may refer to data associated to the process and/or to
the status of other stages or milestones (e.g., whether a given stage is currently
“open” or “closed”). Tasks are modeled as atomic stages and may have their
own guards and milestone(s). Several concepts proposed in the GSM notation
have made their way into the CMMN standard [11].

Initially, declarative process modeling notations were proposed as alterna-
tives to imperative ones. Recent research though has put into evidence synergies
between these two approaches [15,18]. Accordingly, hybrid process modeling
notations have been proposed. In particular, [21] proposes to extend Colored
Petri nets with the possibility of linking transitions to Declare constraints (in
the same model). The notion of transition enablement is extended to handle
declarative links between transitions. Meanwhile, [6,10] combine imperative and
declarative styles in the context of automated discovery of process models from
event logs. Specifically, the approach in [10] discovers hierarchical models with
sub-processes that can be either imperative (Petri nets) or declarative (Declare
constraints). Meanwhile, the method in [6] discovers a process model with two
types of arcs: imperative (sequence flows) and declarative (Declare constraints).

Another contribution that bridges declarative and imperative process mod-
eling styles is [16], which proposes a translation from Declare to Petri nets. The
idea is to first produce a Finite State Machine (FSM) from a Declare model
using standard techniques for mapping regular expressions to automata. The
FSM is then mapped into a sequential Petri net and methods related to “theory

88 G. De Giacomo et al.

of regions” [3] are used to rewrite the Petri net so that parallelism is explicitly
captured. The resulting Petri net can then be mapped into other imperative
process modeling notations (e.g., BPMN). A drawback of this approach is that
the resulting Petri net is large and complex relative to the initial declarative
model. This drawback is illustrated in [16] where a Declare model with 4 tasks
and 7 constraints leads to an FSM with 10 states and 24 arcs. This FSM in turn
leads to a Petri net with 25 transitions, 13 places and over 40 arcs. The issue at
stake is that a given constraint may be satisfied by a large number of distinct
possible execution paths. Capturing these paths in an imperative style leads to
significant amounts of task duplication (e.g., transitions with duplicate labels in
the case of Petri nets).

3 BPMN-D

This section introduces the BPMN-D notation and gives it a semantics by means
of a translation from BPMN-D to plain BPMN, for which different formal seman-
tics have been specified in previous work [7].

3.1 Overview

BPMN-D is an extension of BPMN partly inspired by BPMN-Q [2] – a language
previously proposed to capture queries over collections of BPMN models. Like
BPMN-Q, BPMN-D is a conservative (additive) extension of BPMN, implying
that any BPMN model is also a BPMN-D model. Fig. 2 shows an example of
a BPMN-D model. In particular, a BPMN-D model may have start and end
event nodes, with the same semantics as in standard BPMN. For instance, in
Fig. 2, there is one start event and two end events. Similarly, behavioral XOR
split/join represents (exclusive) alternative behaviors that are allowed during the
process execution, following the standard BPMN semantics of deferred choice
(i.e., choice freely taken by the resources responsible for the process execution).
As shown in Fig. 2, the graphical representation for a XOR gateway is the same
as in BPMN. In this paper, we only discuss XOR gateways as they are sufficient
to demonstrate the extensions proposed in BPMN-D and the translation from
Declare to BPMN-D. In the remainder of the paper, we denote by Σ the set of
all tasks that can be performed in a given business context.

Fig. 2. Example of a BPMN-D model

Declarative Process Modeling in BPMN 89

Table 2. Overview of BPMN-D activity nodes

Notation Name Semantics

Atomic task As in BPMN: perform t

Inclusive task Perform a task among t1, . . . , tn

Exclusive task Perform a task different from t1, . . . , tn

Any task Perform any task from those available in the business con-
text

BPMN-D extends only two constructs in BPMN, namely activity nodes and
sequence flows connectors. An activity node represents a task in the process, and
is represented as a labeled, rounded rectangle. As in standard BPMN, this in
turn corresponds to an execution step inside the process. Differently from BPMN,
though, a BPMN-D activity node can be labeled not only with a single task name
t ∈ Σ, but with a set T of multiple tasks, such that T is nonempty and does not
coincide with Σ. When the label denotes a single task t, the semantics coincides
with that of BPMN: the activity node is executed whenever t is performed. When
the label is instead a set T of tasks, the activity node is considered to be executed
whenever a task t is executed, such that either t ∈ T (inclusive task), or t /∈ T
(exclusive task). To distinguish between these two cases, a set-labeled BPMN-D
task is also annotated with a property in or ex, so as to indicate whether the task
is inclusive or exclusive. For example, in Fig. 2, the pay-labeled activity node
indicates that a payment must be done, whereas the set-labeled activity node
in({receipt , invoice}) indicates that one task between receipt or invoice must be
performed. In addition to these three types of activity nodes, we consider also
the case in which the process expects participants to do “something”, that is, to
engage in an execution step by freely choosing a task from the global set Σ. In
this case, we assume that the activity node is just labeled with label any. The
different BPMN-D activity nodes are summarized in Table 2.

A flow connector is a binary, directed relation between nodes in the process.
It indicates an ordering relationship between the connected nodes, and implicitly
also the state of the process when the process has traversed the source node but
has still to traverse the destination node. Differently from BPMN, in BPMN-D
sequence-flow connectors do not only represent a direct ordering relationship
(stating that the destination node comes next to the source one), but also a
“loose” ordering relationship, which indicates that the destination node will be
traversed after the source one, but that other BPMN-D tasks can be performed
in between. First of all, BPMN-D supports the ordinary BPMN sequence flow,
adopting its semantics and notation (a solid arrow from the source to the destina-
tion node). Loose flow connectors are instead visually depicted as an interrupted
solid arrow, and their specific semantics is defined by labeling and annotating

90 G. De Giacomo et al.

Table 3. Overview of BPMN-D flow connectors

Notation Name Semantics

Sequence flow As in BPMN: node B is traversed next to A

Inclusive flow B is traversed after A, with 0 or more repetitions of
tasks from t1, . . . , tn in between

Exclusive flow B is traversed after A, with 0 or more repetitions of
tasks different from t1, . . . , tn in between

Any flow B is traversed after A, with 0 or more repetitions of
tasks in between

the connector with additional information, similarly to the case of BPMN-D
activity nodes. As summarized in Table 3, three loose connectors are supported.
The first two, namely inclusive flow and exclusive flow, label the flow connectors
with a set of T of tasks, and indicate that while moving from the source to the
destination node along the flow connector, 0 or more repetitions of tasks respec-
tively from or not in T can be executed. To distinguish between the two cases,
the set T is also annotated with a property in or ex, so as to indicate whether
the flow connector is inclusive or exclusive. For example, in Fig. 2, the first flow
connector indicates that when the process starts, 0 or more repetitions of tasks
receipt and invoice may occur while moving to the first decision point. In addi-
tion, we consider also the case in which while moving from a node to another
node, 0 or more repeatitions of any task may occur. In this case, we assume that
the flow connector is just labeled with label any, and we consequently call it
any flow.

3.2 BPMN-D Models

We now turn to the formal definition of BPMN-D model, substantiating the
overview of the previous section. Given a set Σ of tasks, a BPMN-D model M
is a tuple 〈N, typeN , �N , F, typeF , �F 〉, where:

– N is a finite set of nodes, partitioned into activity nodes, event nodes, and
gateways.

– typeN is a total function from N to a finite set of node types; the following
types are considered in this paper:

• atomic-task, in-task, ex-task, and any-task for activity nodes
(cf. Table 2);

• start and end for event nodes;
• xor-split and xor-join for gateways.

We consequently define:
• the set A of activity nodes as

{n | n ∈ N and typeN (n) ∈ {atomic-task, in-task,ex-task,
any-task}};

Declarative Process Modeling in BPMN 91

• the set E of event nodes as {n | n ∈ N and typeN (n) ∈ {start,end}};
• the set G of gateways as {n | n ∈ N and typeN (n) ∈ {xor-split,

xor-join}};
Notice that N = A 	 E 	 G.

– �N : A −→ 2Σ is a function that assigns task names to activity nodes in N .
To guarantee that each activity node is mapped to a set of tasks consistently
with its specific type, �N must satisfy the following conditions:

• for every a ∈ A such that typeN (a) = atomic-task, |�N (a)| = 1;
• for everya ∈ A such that typeN (a) ∈ {in-task,ex-task},∅ ⊂ �N (a) ⊂ Σ;
• for every a ∈ A such that typeN (a) = any-task, �N (a) = ∅.

– F ⊆ N ×N is a set of flow connectors that obeys to the following restrictions:
(i) every start event node has no incoming sequence flow, and a single outgo-
ing sequence flow; (ii) every end event node has a single incoming sequence
flow, and no outgoing sequence flow; (iii) every activity node has a single
incoming and a single outgoing sequence flow; (iv) every XOR split gateway
has a single incoming and at least two outgoing sequence flows; (v) every
XOR join gateway has a single outgoing and at least two incoming sequence
flows.1

– typeF is a total function from F to the finite set of flow connector types
{seq-flow, in-flow,ex-flow,any-flow} (cf. Table 3).

– �F : F −→ 2Σ is a function that assigns task names to flow connectors
in F . To guarantee that each flow connector is mapped to a set of tasks
consistently with its specific type, �F must satisfy the following conditions:

• for every f ∈F such that typeF (f)∈{seq-flow,any-task}, �F (f) = ∅;
• for every f ∈F such that typeF (f)∈{in-task,ex-task}, ∅ ⊂ �F (f) ⊂ Σ.

3.3 Translating BPMN-D to Standard BPMN

Any BPMN-D diagram can be faithfully represented as a (trace-equivalent) cor-
responding standard BPMN diagram, at the price of conciseness. In this section,
we discuss this translation, which has a twofold purpose: (i) it shows that, in
principle, a BPMN-D process can be enacted on top of a standard BPMN engine;
(ii) it provides an implicit execution semantics for BPMN-D in terms of standard
BPMN.

For the translation, we assume that the overall set of tasks Σ is fixed. In
this respect, it is sufficient to discuss how elements annotated with in or any
have to be translated: each label of the kind ex(T) can be in fact equivalently
re-expressed as in(Σ \ T). As shown in Table 4 (top row), an inclusive task
with label {t1, . . . , tn} is translated into a deferred choice where one of the tasks
t1, . . . , tn is selected. An any-labeled task is translated in the same way, con-
sidering all tasks in Σ as possible alternatives. The translation of an inclusive
path sequence flow with label {t1, . . . , tn} is also depicted in Table 4 (bottom

1 Graphically, we sometimes collapse a XOR join, connected to a XOR split via a
standard BPMN sequence flow, into a single XOR gateway acting simultaneously as
split/join.

92 G. De Giacomo et al.

Table 4. Translation of the key BPMN-D elements into standard BPMN

BPMN-D Translation into BPMN

Fig. 3. Standard BPMN representation of the BPMN-D diagram of Figure 2

row). In this case, two alternative behaviors are obtained: either the inclusive
path sequence flow behaves as a normal sequence flow (thereby directly connect-
ing node A to node B), or it allows the executors to repeatedly execute tasks
t1, . . . , tn in between. As for tasks, also the case of a any-labeled sequence flow is
handled in the same way, just considering all tasks in Σ as possible alternatives.
Figure 3 shows the result obtained by applying this translation procedure to the
BPMN-D model shown in Figure 2.

4 From Declare to BPMN-D

We now propose a translation mechanism that, given a declarative, constraint-
based process model, produces a corresponding readable BPMN-D diagram that
faithfully represents the original intended behaviors. As source language, we
consider Linear Temporal Logic on finite traces (ltlf), which is the logic under-
pinning the Declare notation. However, it is worth noting that our approach can

Declarative Process Modeling in BPMN 93

be directly applied to the more expressive logic ldlf [5], which has been recently
adopted to formalize and monitor Declare constraints and meta-constraints [4].

The algorithm proceeds in two phases. In the first phase, the given Declare (or
ltlf/ldlf) specification is translated into a corresponding finite-state automa-
ton that employs a form of declarative labels, and can therefore represent the
given specification more compactly than for standard finite-state automata. In
the second phase, this so-called “constraint automaton” is translated into a corre-
sponding BPMN-D model. Both steps are such that the produced model accepts
exactly the same traces as the input model, in turn guaranteeing that the BPMN-
D model is a faithful, equivalent representation of the input Declare model.

In the remainder of this section, we provide a detailed account of these two
phases.

4.1 From Declare to Constraint Automata

It is well-known that a Declare model can be transformed into a corresponding
finite-state automaton that accepts exactly those traces that satisfy all the con-
straints present in the model [4,16,20]. A finite-state automaton (fsa) is a tuple
〈Σ,S, I, F, δ〉, where: (i) Σ is the alphabet of symbols; (ii) S is a finite set of
states; (iii) I ⊆ S is the set of initial states; (iv) F ⊆ S is the set of final states;
(v) δ : S × Σ → 2S is the state transition function, which maps each state and
symbol to a set of successor states. Hereby, we assume that symbols represent
atomic tasks, and consequently that the symbol alphabet is constituted by all
atomic tasks that can be executed in the targeted domain. The language of an
fsa A, written L(A), is the set of finite traces (i.e., words) over Σ that are
accepted by A. The notions of deterministic finite-state automaton (dfa) and of
minimal automaton are as usual.

Once the Declare model is translated into its corresponding fsa, the fsa
can be determinized and minimized using standard techniques. This minimal
dfa can be used to enact the Declare model [14]: at any time, the dfa states
whether the process can be terminated or not, and indicates which tasks that
can/must be executed next.

A drawback of this automata-based representation is that every transition of
the automaton is labeled with a single, atomic task. This means that the same
pair of states can be connected through several transitions, each associated to
a different task. All such transitions connect the same source state to the same
destination state, and hence express different ways to achieve the same “effect”
on the process. This closely resembles the notion of inclusive task in BPMN-D.
To fully exploit this analogy, and make the automaton closer to BPMN-D, we
introduce a variant of finite-state automata, called constraint automata. Differ-
ently from fsas, constraint automata are finite-state automata whose transitions
are associated to “declarative” labels, each of which acts as a constraint on the
possible atomic tasks that can navigate the transition. In particular, a constraint
automaton moves from one state to a successor state if the next symbol s to be
analyzed satisfies the constraint C attached to the corresponding transition.

94 G. De Giacomo et al.

Given a task alphabet Σ, we consider the following task constraints, which
are directly inspired from BPMN-D and consequently provide the basis for a
natural translation of constraint automata to BPMN-D:

– t, with t ∈ Σ; an atomic task t′ ∈ Σ satisfies t iff t = t′.
– in(T), with ∅ ⊂ T ⊂ Σ; an atomic task t ∈ Σ satisfies in(T) iff t ∈ T .
– ex(T), with ∅ ⊂ T ⊂ Σ; an atomic task t ∈ Σ satisfies ex(T) iff t /∈ T .
– any; every atomic task t ∈ Σ satisfies any.

Intuitively, t represents the execution of an atomic task, in(T) the execution
of a task belonging to the set T of alternatives, ex(T) the execution of a task
that does not fall inside the set T of forbidden tasks, and any the execution of
some task. Like for BPMN-D, the following correspondences hold, consistently
with the notion of satisfaction as defined above: (i) t = in({t}); (ii) in(T) =
ex(Σ \ T).

In the following, we denote by CΣ the set of all possible constraints that can
be expressed over Σ. Technically, a finite-state constraint automaton (fca) Ac is
a tuple 〈Σ,Sc, Ic, Fc, δc, �c〉, where: (i) Σ is the (task) alphabet; (ii) Sc is a finite
set of states; (iii) Ic ⊆ Sc is the set of initial states; (iv) Fc ⊆ Sc is the set of final
states; (v) δc ⊆ Sc × Sc is a transition relation between states; (vi) �c : δc → CΣ

is a labeling function that, given a transition in δc, returns a task constraint
over Σ.

Given a finite trace π = 〈t1, . . . , tn〉 over Σ, we say that π is accepted by
Ac if there exists a sequence of states 〈s1, . . . , sn+1〉 over Sc such that: (i) s1 ∈
Ic; (ii) sn ∈ Fc; (iii) 〈si, si+1〉 ∈ δc for i ∈ {1, n}; (iv) ti satisfies constraint
�c(〈si, si+1〉) for i ∈ {1, n}. As usual, the language of a constraint automaton
Ac, written L(Ac), is the set of finite traces over Σ that are accepted by Ac. We
say that Ac is a deterministic constraint automaton (dca) if |Ic| = 1 and, for
every state s ∈ Sc and every task t ∈ Σ, there exists at most one state s′ ∈ Sc

such that 〈s, s′〉 ∈ δc and t satisfies �(〈s, s′〉). If this is not the case, then Ac is a
nondeterministic constraint automaton (nca).

It is important to notice that in a constraint automaton, at most one transi-
tion can exist between a given pair of states. In fact, multiple simple transitions
connecting the same pair of states can be compacted into a unique transition
labeled with a constraint obtained from the combination of the original labels.
We make this intuition systematic by introducing a translation mechanism that,
given a standard finite-state automaton on Σ, produces a corresponding con-
straint automaton that employs the “most compact” constraints on arcs. In this
context, “most compact” means that the constraint explicitly refers to the min-
imum number of tasks in Σ. For example, if Σ = {a, b, c}, we prefer ex({a})
over the equivalent constraint in({b, c}).

The translation mechanism is defined in Algorithm 1, and it is straightfor-
ward to prove that it enjoys the following key properties:

Lemma 1. For every fsa A: (i) fsa2ca is correct, i.e., L(A) = L(fsa2ca(A));
(ii) fsa2ca preserves determinism, i.e., if A is a dfa, then fsa2ca(A) is a dca.

The mechanism of transition compaction shown in Algorithm 1 can be either
applied on-the-fly, during the construction of the automaton starting from the

Declarative Process Modeling in BPMN 95

Algorithm 1. Translation of a standard fsa to an equivalent fca

1: procedure fsa2ca
2: input fsa 〈Σ, S, I, F, δ〉
3: output fca 〈Σ, Sc, Ic, Fc, δc, �c〉
4: Sc := S, Ic := I, Fc := F , δc := ∅
5: for all s1, s2 ∈ S do
6: T := ∅
7: for all t ∈ Σ do
8: if s2 ∈ δ(s1, t) then T := T ∪ {t}
9: if T = Σ then δc := δc ∪ 〈s1, s2〉, �c(〈s1, s2〉) = any

10: else if |T | ≤ |Σ \ T | then δc := δc ∪ 〈s1, s2〉, �c(〈s1, s2〉) = in(T)
11: else if T �= ∅ then δc := δc ∪ 〈s1, s2〉, �c(〈s1, s2〉) = ex(Σ \ T)

Fig. 4. Minimal dca for the Declare model shown in Figure 1

Declare model, or as a final post-processing step (using fsa2ca itself). Both
strategies do not affect the computational complexity of the automaton construc-
tion, and do not interfere with determinization (cf. Lemma 1). Furthermore, the
correctness of fsa2ca guarantees that, after this first phase, the input Declare
model is transformed into a constraint automaton that accepts exactly the same
behaviors.

Figure 4 represents the minimal dca that corresponds to the Declare model
shown in Figure 1, assuming Σ = {close order , pay , receipt , invoice} as task
alphabet.

4.2 From Constraint Automata to BPMN-D

The algorithm for translating a constraint automaton Ac into a corresponding
BPMN-D specification M is described in this section. We assume that the input
constraint automaton is deterministic, and thus the unique initial state of Ac

corresponds to a single start event node in M. Consistently with the fact that
automata are centered around states, while BPMN (and hence also BPMN-D)
is centered around tasks, the translation maps states of Ac into flow connectors
of M, and transitions of Ac into activity nodes of M.

The full translation mechanism is provided in Algorithm 2. It is immediate
to see that the translation is linear in the size of the input automaton (measured
by considering the number of its states and transitions). Each state s of Ac

is handled according to the following rules: (1) State s is mapped to a flow
connector fs that connects a dedicated xor-join in(s) to a dedicated xor-split

96 G. De Giacomo et al.

out(s) (cf. lines 7-9 of Algorithm 2); in(s) accounts for the incoming transitions
in s, while out(s) accounts for the outgoing transitions from s. (2) If s has a
self-loop t, then the type and label of fs are set according to the constraint c
attached to t (cf. lines 10-13); this accounts for the fact that as long as tasks
satisfying c are executed, the process continues to stay in state s, which in turn
means that it is still flowing through fs. If instead s has no self-loop, fs is a
simple sequence flow connector (cf. line 14). (3) If s is an input state, then the
start event node of M is connected with a sequence flow to in(s) (cf. lines 15-16);
this models that when the process starts, it immediately flows through fs. (4) If
s is an output state, then out(s) is connected with a sequence flow to an end
event node in M (cf. lines 17-20); this models the fact that, while the process is
flowing through fs, the process executors can decide to terminate it.

Each transition 〈s1, s2〉 of Ac that is not a self-loop (i.e., such that s1 = s2),
is then simply managed by: (1) introducing a corresponding activity node in
M, whose type and label is determined according to the constraint attached to
the transition (cf. lines 24-27); (2) connecting out(s1) with a sequence flow to
the activity node, and the activity node with another sequence flow to in(s2),
reconstructing the state transition triggered by the constraint from which the
activity node is derived (cf. lines 28-30).

Obviously, the technique so presented may lead to introduce several “incon-
sistent” x-or split and join gateways with only one input and one output attached
sequence flow. To compensate for this issue, M is finally post-processed by
removing all such unnecessary gateways (cf. the remove-unnecessary-xor
procedure on line 31 of Algorithm 2). This is quite straightforward, hence its
actual code is omitted.

By considering the language of a dca, and by modularly applying the trans-
lation procedure from BPMN-D to BPMN of Section 3.3 to the BPMN-D frag-
ments produced by the different components of Algorithm 2, we have that:

Lemma 2. The fca2bpmnd procedure is correct: for every dca, fca2bpmnd
(dca) produces a proper BPMN-D model (according to the definition of Sec. 3.2),
which accepts all and only the traces in L(dca).

We close this section by illustrating, in Figure 5, the result of the fca2bpmnd
procedure the fca of Figure 4.

4.3 The Whole Translation Procedure

By combining the contributions of Sections 4.1 and 4.2, we can finally set up
the whole translation procedure declare2bpmnd, which transforms a Declare
model into BPMN-D, as shown in Algorithm 3. The following key result witnesses
the correctness of this transformation:

Theorem 1. declare2bpmnd is correct: for every Declare model D, the
BPMN-D model produced by declare2bpmnd accepts all and only the traces
accepted by D.

Declarative Process Modeling in BPMN 97

Algorithm 2. Translation of an fca to BPMN-D
1: procedure fca2bpmnd
2: input fca 〈Σ, Sc, Ic, Fc, δc, �c〉
3: output BPMN-D model M = 〈N, typeN , �N , F, typeF , �F 〉
4: pick fresh node se
5: F := ∅ N := {se}, typeN (se) := start
6: for all s ∈ Sc do
7: pick fresh nodes in(s) and out(s)
8: fs := 〈in(s), out(s)〉, N := N ∪ {in(s), out(s)}, F := F ∪ {fs}
9: typeN (in(s)) := xor-join, typeN (out(s)) := xor-split

10: if 〈s, s〉 ∈ δc and �c(〈s, s〉) = t then typeF (fs) := in-flow, �F (fs) := {t}
11: else if 〈s, s〉 ∈ δc and �c(〈s, s〉)= in(T) then typeF (fs) := in-flow, �F (fs) :=T
12: else if 〈s, s〉 ∈ δc and �c(〈s, s〉) = ex(T) then typeF (fs) := ex-flow,

�F (fs) := T
13: else if 〈s, s〉 ∈ δc and �c(〈s, s〉) = any then typeF (fs) := any-flow,

�F (fs) := ∅
14: else typeF (fs) := seq-flow, �F (fs) := ∅ � 〈s, s〉 /∈ δc

15: if s ∈ Ic then
16: F := F ∪{〈se, in(s)〉}, typeF (〈se, in(s)〉) := seq-flow, �F (〈se, in(s)〉) := ∅
17: if s ∈ Fc then
18: pick fresh node ees
19: N := N ∪ {ees}, typeN (ees) := end, F := F ∪ {〈out(s), ees〉}
20: typeF (〈out(s), ees〉) := seq-flow, �F (〈out(s), ees〉) := ∅
21: for all 〈s1, s2〉 ∈ δc such that s1 �= s2 do
22: pick fresh node a
23: N := N ∪ {a}
24: if �c(〈s1, s2〉) = t then typeN (a) := atomic-task, �N (a) := {t}
25: else if �c(〈s1, s2〉) = in(T) then typeN (a) := in-task, �N (a) := T
26: else if �c(〈s1, s2〉) = ex(T) then typeN (a) := ex-task, �N (a) := T
27: else typeN (a) := any-task, �N (a) := ∅ � �c(〈s1, s2〉) = any

28: F := F ∪ {〈out(s1), a〉, 〈a, in(s2)〉}
29: typeF (〈out(s1), a〉) := seq-flow, �F (〈out(s1), a〉) := ∅
30: typeF (〈a, in(s2)〉) := seq-flow, �F (〈a, in(s2)〉) := ∅
31: remove-unnecessary-xor(M)

Proof. First of all, by Lemma 1, since fsa2ca is applied on A after the deter-
minization, also the produced constraint automaton is actually an fca, and
hence it can be correctly fed into fca2bpmnd. The correctness of line 5 is
obtained from [4], and that of line 7 is obtained by applying Lemma 1 and 2.

5 Conclusion

We have provided elements to support a negative answer to the original question:
“Are completely new notations needed to support hybrid process modeling?”.
The definition of BPMN-D as a conservative extension to BPMN shows that

98 G. De Giacomo et al.

Fig. 5. Application of fca2bpmnd procedure to the fca of Fig. 4; the small, light xor
gateways are removed (cf. last line of the algorithm) leading to the diagram in Fig. 2

Algorithm 3. Translation of a Declare model to BPMN-D
1: procedure declare2bpmnd
2: input Declare model D
3: output BPMN-D model M
4: Φ :=

∧
c constraint of Dltlf (c) � Obtained from the ltlf formalization of Declare

5: A := ldlf2nfa(Φ) � A is an nfa produced using the technique in [4]
6: A := minimize(determinize(A)) � Standard automata operations
7: M := fca2bpmnd(fsa2ca(A))

“open-world” modeling constructs can be embedded into existing imperative
process modeling notations without fundamentally extending their semantics.
Indeed, the proposed BPMN-D notation is a macro-extension of BPMN. More-
over, we have shown that this notation can capture the range of constraints
present in the Declare notation in an intuitive manner.

In its present form, the translation from Declare to BPMN-D generates pro-
cess models with exclusive (XOR) gateways only, thus without parallelism. A
direction for future work is to extend this translation with the ability to gener-
ate BPMN-D models with inclusive and parallel gateways. A possible approach
is to adapt existing techniques from theory of regions [3], which extract paral-
lelism in the context of Petri nets. A direct application of this approach can lead
to unreadable process models as put into evidence in [16]. However, if we take
constraint automata as a basis – as in our translation approach – it may be pos-
sible to adapt techniques from theory of regions to produce simpler constraint-
annotated Petri nets that explicitly capture parallelism, and from there we could
generate a BPMN-D process model.

Acknowledgments. This research is partly by ERDF via the Estonian Centre of
Excellence in Computer Science and by the Estonian Research Council.

Declarative Process Modeling in BPMN 99

References

1. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science - Research and Development
23 (2009)

2. Awad, A., Sakr, S.: On efficient processing of BPMN-Q queries. Computers in
Industry 63(9) (2012)

3. Carmona, J.: Projection approaches to process mining using region-based tech-
niques. Data Min. Knowl. Discov. 24(1) (2012)

4. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.,
Soffer, P., Völzer, H. (eds.) Business Process Management. LNCS, vol. 8659, pp.
1–17. Springer, Heidelberg (2014)

5. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI). AAAI
(2013)

6. De Smedt, J., De Weerdt, J., Vanthienen, J.: Multi-paradigm process mining:
retrieving better models by combining rules and sequences. In: Meersman, R.,
Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T.
(eds.) OTM 2014. LNCS, vol. 8841, pp. 446–453. Springer, Heidelberg (2014)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

8. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350.
Springer, Heidelberg (2012)

9. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., Heath, F., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Noi Sukaviriya, P., Vacuĺın, R.: Business
artifacts with guard-stage-milestone lifecycles: managing artifact interactions with
conditions and events. In: 5th ACM Int. Conf. on Distributed Event-Based Systems
(DEBS). ACM (2011)

10. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid pro-
cesses. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp.
392–399. Springer, Heidelberg (2014)

11. Marin, M., Hull, R., Vacuĺın, R.: Data centric BPM and the emerging case manage-
ment standard: a short survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops
2012. LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013)

12. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on Information Systems (2010)

13. Object Management Group: Business Process Modeling Notation Version 2.0. Tech.
rep., Object Management Group Final Adopted Specification (2011)

14. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: EDOC 2007 (2007)

15. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383–394. Springer, Heidelberg (2012)

16. Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to impera-
tive models. In: 4th Int. Symp. on Data-Driven Process Discovery and Analysis
(SIMPDA). CEUR-WS.org (2014)

100 G. De Giacomo et al.

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

18. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or
the future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 307–322. Springer, Heidelberg (2013)

19. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Towards
a taxonomy of process flexibility. In: Forum at the CAiSE 2008 Conf., vol. 344.
CEUR-WS.org (2008)

20. Westergaard, M.: Better algorithms for analyzing and enacting declarative work-
flow languages using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)

21. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models.
In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290.
Springer, Heidelberg (2013)

	Declarative Process Modeling in BPMN
	1 Introduction
	2 Background and Related Work
	3 BPMN-D
	3.1 Overview
	3.2 BPMN-D Models
	3.3 Translating BPMN-D to Standard BPMN

	4 From Declare to BPMN-D
	4.1 From Declare to Constraint Automata
	4.2 From Constraint Automata to BPMN-D
	4.3 The Whole Translation Procedure

	5 Conclusion
	References

