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Abstract Multiagent social commitments provide a principled basis for agent interactions,
and serve as a natural tool to resolve design ambiguities. Indeed, they have been the subject
of considerable research for more than a decade. However, the take-up of the social com-
mitments paradigm is yet to come. To explain this negative result, we pinpoint a number of
shortcomings, which this article aims to address. We extend current commitment modelling
languages, thus leveraging expressive possibilities that were precluded by previous formal-
izations. We propose a novel axiomatization of commitment operations in a first order Event
Calculus framework, that accommodates reasoning with data and metric time. Finally, we
illustrate how publicly available REC implementations can be exploited for commitment
monitoring purposes.

Keywords Social commitments ·On-line monitoring ·Multiagent systems · Event calculus

1 Introduction

Social commitments are made from one agent to another agent to bring about a certain prop-
erty. They have been originally proposed to model and reason upon agent social semantics
[12,56]. Representing the commitments that the agents have to one another and specify-
ing their expected interactions in terms of commitments provides a principled basis for
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agent interactions. Since their introduction in multiagent research, social commitments have
become a well-accepted modelling abstraction and engineering tool [22,33,57,58,66], and
they have been successfully applied to other research fields such as, e.g., (cross-organiza-
tional) business processes [24] and protocols [25,27], business contracts [26] and service-
oriented architectures [60].

The success of social commitments in these domains, characterized by heterogeneity and
distribution of active components, is due to a variety of reasons. Commitments are about
agent interaction, and abstract away from agent internals. Thus commitments support open-
ness and heterogeneity, enabling the seamless integration of different agent models and
implementations in the same application. Besides, commitments are declarative, i.e., they
focus on what social interaction, protocols and communication actions are about, without
specifying how interaction should be carried out. For this reason, they are flexible, since they
can capture many different interaction models under a single specification [66]. Commit-
ments are not linked to any specific framework, implementation or underlying formalism:
they can be used to model and reason upon any system with a focus on the interaction among
its components. Finally, social commitments offer solid ground for verification tasks, which
is also one of the main motivation of social semantics of agent interaction [57]. At design
time, they enable representing the consequences of agent actions on the system, and possibly
identifying otherwise unforeseen outcomes. At run time, they provide a reference model for
monitoring, thus determining if agents are behaving as prescribed, and what is expected of
them.

However, in spite of their popularity in multiagent research, commitments are yet to be
seen at work in concrete applications. We ascribe this to three reasons. The first one is
that current commitment models have strong limitations in terms of expressive possibilities:
existing proposals adopt propositional representations of commitments, thus precluding a
number of models where dynamic aspects influence commitments evolution, and data play
a fundamental role in the commitment-based modelling.

A second reason is that temporal aspects (such as, e.g., deadlines) have not yet been
explored enough. In [33] Fornara and Colombetti recognize the need for distinguishing
between achievement properties and maintenance properties. In [49,50] Mallya et al. pro-
pose ways to express and verify complex temporal properties by means of CT L and Allen’s
interval logic. Indeed, Temporal Logics such as LT L,CT L and their many variants, are par-
ticularly suited for expressing temporal properties. However, these logics’ main application
is static verification, i.e., to determine if the system will exhibit some properties. Dealing
with agent-based open environments, instead, also requires reasoning at run time, in a highly
dynamic environment, where a priori assumptions and models can represent only the static
part of the domain, but hardly accommodate the dynamic part.

The third reason is the lack of an effective framework for commitments and their imple-
mentation. In particular, monitoring tools, faithful to the commitment models and therefore
able to guarantee a sound and complete output, are still missing.

We believe then that the key to success for social commitments is in an operational frame-
work, which should be expressive enough to accommodate scenarios of practical utility. To
illustrate our desiderata for such a framework, let us consider a car rental scenario, where a
customer signs a rental contract with a car rental agency. Let us examine some key sentences
of a possible contract.

(S1) The Customer must return the car to the Agency on the agreed day. Should the car
be returned before the last rental day, no reimbursement is due.
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By signing the contract, the customer commits herself to returning the car. It is reasonable
to assume, however, that such obligation is established only if the customer picks up the car. It
would be nonsense to oblige a customer to return a car which she did not pick up. Hence, the
commitment depends on a dynamic context. Note also that there is a temporal requirement:
the customer should bring back the car within a certain time frame, established at the moment
of signing the contract. Such a time frame could be defined in relative terms (for instance,
within 10 days, as of the day the contract is signed), or in absolute terms, directly specified
in the contract (“the car should be returned by September 25th, 2011”).

Existing commitment frameworks generally abstract away from the property commitments
are about, which is usually defined as a proposition. A sentence such as “the car should be
returned by September 25th, 2010” could be represented by a proposition p, although it might
be difficult (if not impossible) to include into p a sensible temporal deadline, since that is
determined only at runtime.

(S2) The Customer is required to pay for the whole rental period. The payment can be
done by the Customer, or by anyone else on her behalf. Payment must be made at the
latest on the first rental day. The rental fee is calculated as the fee currently assigned
to the category the car belongs to, times the number of days.

Sentence (S2) describes an obligation, that can be naturally modelled as the commit-
ment that arises, upon contract signing, between the customer and the agency. Again, the
commitment must get satisfied within a temporal deadline. However, the payment can be
made by anyone (and not only by the customer). For example, a manager renting a car could
ask her secretary to pay, using the firm’s credit card. More importantly, the commitment is
about paying a rental fee that is not statically defined, but calculated, based on two different
parameters which will be instantiated only when the contract is signed.

Frameworks based on propositional approaches cannot provide a faithful and precise
account of such commitments. Besides the obvious problem of representing the (dynam-
ically calculated) fee, it is also difficult to specify that the property “payment” should be
brought about by the debtor “or by anyone else on her behalf.” One might be tempted to
represent (S2) as a commitment where the debtor is the customer, and the same customer
is allowed to delegate such commitment. Within the delegation, the debtor could keep the
responsibility or not. In any case, the delegation would establish another debtor, while the
business sentence calls for anyone. In real scenarios many different situations are possible,
where a commitment can be satisfied by the debtor (no delegation), by anyone else (unknown
until the commitment is satisfied), by a restrict group of agents (by a set identified by static
or dynamic conditions), or by a specific agent (delegation, with or without responsibility).

(S3) The Agency guarantees that the car will work properly for the whole rental period.
In the event of a breakdown:

(S3a) If the Customer informs the rental company of the breakdown in the last two
days of the rental period, the Agency will not substitute the broken car, but it
will withdraw it free of charge. All moneys paid for the remaining days will
reimbursed at the end of the rental period;

(S3b) In all other cases, the Agency will replace the broken car within two days of the
notification;

In all cases, as soon as the Customer informs the rental company of the breakdown,
200$ will be transferred to the Customer’s account for compensation.
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Several commitments can arise, as consequence of the same events (car breakdown and user
notification). However, depending on when such events occur, the outcomes can be com-
pletely different: withdrawal (and reimbursement) versus substitution of the car. Moreover,
while (S1) and (S2) are about seeing to it that a property is brought about at a point in time,
(S3) is about seeing to it that a property holds during a certain time interval (“…the car will
work properly for the whole rental period”).

Although recent research on commitments addresses the temporal dimension of commit-
ment properties, both for time points and for time intervals (see [50], by which this example
was inspired), they do not enable on-line verification (monitoring) tasks. On the other hand,
existing works on run-time verification of interaction protocols (see [1]) do model temporal
aspects, but only enable point-time event verifications.

(S4) If, as consequence of a breakdown, a substitution car is needed, and if the substitution
is made more than two days after the Customer’s notification, the Agency will reim-
burse 20$ for each day of delay with respect to the deadline written in the contract.
The Customer will be reimbursed within 30 days of the end of the rental period.

Sentence (S4) establishes a reimbursement policy. The amount of the reimbursement
depends on the number of days between an expected deadline (two days after the break-
down) and the day the car is actually substituted. Hence, until the car is substituted, it is not
possible to tell the amount of the reimbursement. Here a commitment is only partially spec-
ified. Existing commitment models do not accommodate partially specified commitments.

To summarize, real-life contracts establish mutual obligations among several parties. The
object of such obligations (e.g., the amount of a fee), are often determined at runtime, depend-
ing on the context. Moreover, obligations are often framed within temporal boundaries, and
can be about properties being brought about, or being maintained. Current commitment
frameworks based on propositional logics show many limits when dealing with such obliga-
tions, norms and situations, which demands more expressiveness.

If we formalize such contracts in a machine-readable format, we could also automatically
process relevant events, as they occur, and obtain an up-to-date picture of the situation. In
other words, we could monitor the state of commitments at runtime. Concrete applications
call for effective and sound monitoring tools.

However, existing monitoring tools are either inefficient, or not expressive enough for
practical use (e.g., they do not accommodate data variables and metric time), or they imple-
ment procedural monitoring routines that hardly match the language logic and the commit-
ment semantics, which may hinder the soundness of such implementations with respect to the
higher level reference framework. In order to support commitment monitoring in concrete
applications, monitoring tools must be expressive, efficient, and sound with respect to the
language used to define the monitored properties.

This article describes a framework for the definition of commitment-based interactions
patterns. It is based on the Event Calculus (EC, [45]) and is rich enough to model contracts
such as in the car rental example. Most significantly, it supports concepts of variables, data,
and metric temporal reasoning. Although some of these concepts are not new in the related
literature (e.g., achievement and maintenance properties are discussed in [33,50]), for the
first time all these different concepts are integrated within a single framework.

Besides giving a semantics to commitments in terms of EC fluents, we provide an axi-
omatization of commitment operations in terms of EC primitives. Such an axiomatization
thus serves two purposes: it provides both a formal semantics to commitments operations,
and an executable specification, which concretely enables commitment monitoring.
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To effectively perform the monitor task, we exploit the Reactive Event Calculus (REC
[15,11]), an implementation of EC that overcomes some limitations of previous proposals,
whose “reactive” behaviour makes it especially suitable for monitoring. The REC-based
commitment monitor is publicly available, packaged in the jREC Java archive [14] together
with a graphical user interface, or as a stand-alone pure-Prolog, YAP-based tool.

This article builds on and extends some of our previous work [13,16,17,62] on this topic.
In particular, in [62] we investigated for the first time the problem of time-aware properties
within commitments, and we proposed the extensions for dealing with temporal aspects,
although we did not discuss how to formally represent time-aware commitments. In [13] we
first introduced REC in relation with commitments. We presented a simple framework, less
expressive than the present one in terms of the treatment of data, variables and time. In [17],
we exploited REC for the first time for commitment monitoring, although conditional com-
mitments were not supported, and the focus was more on compensation mechanisms. Finally,
in [16], we used the results discussed in [17] to enhance agent-based simulation, but with
no support for conditional commitment. A retrospective on our research done on the REC
in relation with social commitments can be found in [63]. Here we present a comprehensive
axiomatization of the commitments, where significant extensions (some of them proposed
in previous works, while other newly introduced in this paper) have been taken into account,
and supported within the framework. Some extensions are about the expressiveness of the
language for defining commitments and properties; others directly address the commitment
life-cycle.

This work continues as follows. The next section gives the necessary background on
social commitments, and defines our extensions to the commitment model, operations, and
life-cycle. Section 3 introduces the EC and the REC, formalizes the theory of commitments
in the REC, and elaborates on some key technical aspects of such a formalization. Section
4 illustrates the approach using the car rental example and offers an experimental evaluation
of REC’s efficient YAP-based implementation. Section 5 discusses related work, and Sect.
6 concludes.

2 Social commitments

Social commitments are used in multiagent systems to model, at the social level, the mutual
obligations established by interacting agents. Messages exchanged, actions taken, or other
types of events related to agent interaction, could be reasons for an agent to become debtor
towards a creditor agent to bring about some property. A commitment is written as:

C(X, Y, P ),

where X is the debtor, Y the creditor, and P the property. Each execution of the system under
study can be characterized in terms of how the relevant commitments evolve over time, due
to the occurrence of events. Such events, generated by the interacting agents, (implicitly)
manipulate commitments, causing them to change state. The state machine, i.e. the states
in which a commitment can be, and the possible state transitions, is called commitment life
cycle. In Fig. 1 we report three different commitment life cycles from literature.

A commitment can be in one state at a time. Typically, each commitment model proposes
a different set of states and a different set of state transitions, also referred to as commitment
operations. All the approaches we are aware of assume that such operations are triggered
by events executed by the interacting agents. The domain modeller usually defines which
events trigger which commitment operations, under which conditions. For instance, suppose
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(a) (b)

(c)

(d)

(e)

Fig. 1 Some commitment life cycles from literature. a Fornara and Colombetti’s model, 2004 [33], b Singh
et al.’s model for SOA, 2009 [60], c Desai et al’s model for business processes, 2007 [24], d Fornara and
Colombetti’s model, 2009 [35], e El-Menshawy et al’s commitment model, 2009 [29] (Color figure online)
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that, in a given domain, if an agent a promises an agent b to complete a certain task, then
a has an “obligation” to complete that task. Such a situation can be modelled by means of
commitments, by saying that the event “a promises b” creates the commitment from a to
b to complete the task, by way of a commitment operation named create. With respect to
the models in Fig. 1, the commitment could enter the state “active (base)” of Fig. 1b, or the
state “active” of Fig. 1a. A domain modeller could specify the conditions for the creation of
a commitment as follows

create(promiseT askCompletion(a, b), C(a, b, completeT ask)).

where the first parameter of the term create is the event triggering the operation, and the
second one is the commitment that will possibly become active. Sometimes, instead of agent
names such as a and b, we will use variables to generalize the conditions, independently of
the agents involved.1 This is especially needed in an open setting, where the participating
agents as well as the actual content of the occurring events are not known at design time.

Traditionally, an agent becomes committed to another agent only as a consequence of
its own actions. This corresponds to the idea that an agent cannot become the debtor of
a commitment, if not by its own choice. Other commitment operations are also subject to
implicit restrictions on who should act: for example [67] clearly states that a commitment
can be “assigned” to a new creditor only by the current creditor. The rationale behind such
assumptions is to preserve the agents’ freedom and autonomy, in particular when considering
open MAS. However, in more closed multi-agent based systems, such as for example those
where power structures and relations hold between the participants [28], such autonomy is
not always a requirement. Thus, a commitment model that obliges to the assumptions cited
above, might result to be of limited usage.

Besides commitments, many authors have introduced conditional commitments, in the
following form:

CC(X, Y,Q,P )

meaning that if a property Q (also called “antecedent” as opposed to the “consequent” P )
is brought about, then a commitment C(X, Y, P ) is established (becomes active). Here Q is
intended as the condition that must hold for the commitment to become active. For instance,
suppose to model a business contract where if a customer pays for an item, then a seller will
provide certain items. Such a contract can easily be represented by the conditional commit-
ment:

CC(seller, customer, payment, deliver(item))

Of course, seller becomes committed towards to customer only if the latter pays for the
item; no commitment is established otherwise. Some earlier works [33,58,67] distinguished
between conditional commitments and base-level commitments. More recent work consid-
ered only conditional commitments, treating base-level commitments as their special case,
where the condition Q is true [6,60] from the beginning. We agree with such a view. Nev-
ertheless, for the sake of clarity, we will distinguish between base-level and conditional
commitments by using two different notations: C(. . .) and CC(. . .).

1 We adopt a Prolog-like notation, where terms starting with lower case indicate constants, and terms starting
with a capital letter indicate variables. For instance, x is the name of a specific agent, while X is a variable,
which may stand for a generic agent.
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Our framework extends the state of the art in several directions:

(a) it enables modelling the temporal extension of commitment properties, quantitatively
and with support for existential and universal quantification of temporal properties;

(b) it increases the expressive possibilities of the domain modeller, by accommodating data
variables, which enables defining custom commitment structures and context-dependent
commitment properties;

(c) it accommodates in a single framework different commitment states proposed in differ-
ent approaches, such as for example in [33], in particular for what regards the idea of
violation strictly related to some temporal property.

The motivations for such improvements stem from a need to apply commitment models to
real-life business contracts, rather than to overly simplified case studies. Essential improve-
ments to the state of the art should be such as to accommodate: support for data variables,
quantitative (metric) temporal deadlines, run-time monitoring, static specification of proper-
ties and their verification. The following sections illustrate the proposed extensions and our
commitment model.

2.1 Time-aware commitments

Let us consider the notation C(X, Y, P ) and CC(X, Y,Q,P ) we introduced above. In the tra-
ditional understanding of C(X, Y, P ),X is committed to bringing about P , where P describes
a certain situation, desired state or property. Few approaches consider P to be some temporal
logic formula, like in [50], where P is a CT L∗ formula. More frequently, P is considered
to be a propositional formula. However, in real life situations, metric temporal aspects are
frequently taken into account. For instance, a tax-payer is expected (is committed) to pay
the taxes within a certain date; a fast delivery service is expected to deliver the items within
three working days from the expedition; a consumer electronics producer guarantees that the
device will work properly for 1 year, starting from the day the device was acquired.

We identify two different types of properties with respect to the temporal dimension:
(i) properties about something that should be brought about within an interval (achieving
properties); and (ii) properties about something that should hold during an interval (main-
tenance properties). For instance, the commitment of a researcher to submit a paper within
a conference deadline belongs to the first type. A commitment for a poster author to stay
near its poster during the whole poster presentation session belongs to the second type of
commitment.

In [33] the need for taking into account property deadlines is acknowledged, and also exis-
tential and universal quantifications over time interval is suggested. However, such aspects
are not investigated, and they are left to future work. A more closely related work is the one
by Mallya et al. [49,50], where the concepts of properties that should be brought about and/or
properties that should be maintained is explored in a structured way. However, as pointed out
in [62], the model proposed has limited expressivity, due to the simplified domain variables
model adopted for the temporal dimension.

With respect to the temporal dimension of the properties that commitments are about, we
adopt the following notation:

– C(X, Y, property(P )) represents a commitment about a simple property, where X is
committed to bring about P at some time. Since there is no temporal deadline for achiev-
ing the commitment property P , ideally there is infinite available time for satisfying the
commitment.
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– C(X, Y, property(e(T1, T2), P )) represents a commitment about an existentially-quan-
tified property, where X is committed to bring about P within the time interval [T1, T2].2
The commitment is satisfied when the property P is brought about in any time instant
within the interval [T1, . . . , T2].

– C(X, Y, property(u(T1, T2), P )) represents a universally-quantified property, where X

is committed to maintaining P valid during the whole time interval [T1, T2].
We call existentially-quantified and universally-quantified properties “temporal properties,”
to distinguish them from the “simple properties.”

We introduce temporal aspects also in the commitment operations. Traditionally, the cre-
ation of a commitment only depends on specific events; thus create operations are defined
as:

create(Event, C(X, Y, P )).

In our framework, commitment operations also specify the time T at which the event occurs:

create(Event, C(X, Y, P ), T ).

T is thus reified, and as such it can also be used within the definition of P . For example,
it is possible to define existentially-related properties whose deadline depends on when the
commitment is created. Suppose the following situation: if an agent X accepts to do a task,
then X has 5 time units to accomplish that task. This can easily be modelled by a creation
operation3:

create(accept, C(X, Y, property(e(T1, T2), taskDone)), T )←
T1 = T + 1, T2 = T + 5.

Conditional commitments too can be about simple or temporal properties. In particu-
lar, both the property and the condition can be temporal properties. Hence, we can have
commitments such as:

CC(X, Y, property(e(T1, T2),Q), property(e(T3, T4), P )).

Finally, we adopt a time model where time is discrete. In order to provide a correct axi-
omatization of commitments, we further assume that no two events can happen at the same
time instant.

2.2 Commitment fulfillment, cancelation, and violation

A commitment may fails to get satisfied. Literature work addresses this issue in various
ways. In [66,67], the debtor can cancel the commitment, which may lead to the creation
of a compensation commitment. The commitment then becomes violated (see also [60]).
In [33], commitments are about properties whose truth value is initially unknown: then a
property can be brought about (hence the commitment gets satisfied) or its holding can be
interrupted (hence the commitment gets violated). Moreover, a commitment can also get

2 A commitment about a simple property can be therefore considered as a special case of a commitment about
an existentially quantified property where, given T as the time instant the commitment is created, then it holds
T1 = T + 1, and T2 = ∞.
3 Here, as well in the rest of the paper, we use a Prolog-like notation to specify rules, fact and conditions.
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canceled. Note that cancelling is also the result of failing to bring about the commitment’s
property before a deadline.4

In our model, unless stated otherwise, all the properties are initially false (as we adopt
an underlying two-valued logic). Moreover, we distinguish between the cancelation of a
commitment, and its violation. The cancellation of a commitment is the result of an action
(usually performed by the debtor), while a “violation” is a consequence of a failure to get a
property verified. In the former case an agent takes an active role in the process, by performing
an action that leads to cancelling the commitment. In the latter case, an agent responsible to
bring about the property (usually the debtor), does not act in that sense, somehow playing a
“passive” role. The expiration of a deadline in our model brings the commitment in a state
of violation, if meanwhile the property has not been brought about.

Note that commitments about simple properties cannot get violated at runtime: since there
is no deadline associated to the property, the debtor has infinite time to satisfy the commit-
ment. Therefore, we cannot assert that the commitment got violated at a certain point in
time, because there is still time to satisfy it. On the other hand, commitments about simple
properties can be satisfied at runtime, that is, as soon as the property is brought about. Thus
this type of commitments may be of interest if we wish to track which parts of a contract have
been successfully executed, and which ones are still pending. Note however, that typically,
interactions do have an (implicit or explicit) timeout, and however long lived they may be,
they will terminate at some point. Thus we can foresee that the practical need for commit-
ments about simple properties will be of limited extent. They are a part of our framework,
mainly for compatibility with other proposals in the literature, which do not deal with time.

Commitments about existentially-related properties are violated as soon as the deadline
expires. Let us suppose that C(x, y, property(e(t1, t2), p)) is still active at a time t3 > t2.
This implies that p has not been brought about inside [t1, t2], and hence the commitment
is violated. More specifically, we can detect a violation without [t1, t2], i.e., as soon as we
become aware that t2 has passed, and p has remained false all along.

Commitments about universally-quantified properties instead get violated within the time
interval they refer to, as soon as we become aware that p is false. Let us suppose that
C(x, y, property(u(t1, t2), p)) is active at time t3, being t3 ∈ [t1, t2] the first time a new
event occurs such that p does not hold. This implies that the validity of p during [t1, t2] has
been “broken”, and therefore the commitment gets violated at time t3.

Dually, a commitment C(x, y, property(e(t1, t2), p)) is fulfilled as soon as an event
ev occurs at a time t ∈ [t1, t2], such that ev brings about p, and a commitment
C(x, y, property(u(t1, t2), p)) is fulfilled if the commitment is still active right after t2;
which implies that the commitment has not been cancelled before, i.e., that the validity of p

has been maintained during [t1, t2].
2.3 Which commitment operations is an agent entitled to?

Commitment operations are traditionally associated with either the debtor or the creditor of
the commitment. For example, in [67] a commitment can be created and discharged only by
the debtor. Such association has been formalized in terms of the conditions about occurring
events that trigger the commitment operation. For example, a commitment gets discharged
if the discharging event is performed (or generated) by the debtor agent. To enforce such

4 More recent work by Fornara and Colombetti also discusses sanctions as a tool for norm enforcement [34].
Commitment monitoring in our view is necessary for enforcement, however, the scope of this paper does not
include uses of monitoring tools but only their realization.
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constraint, previous definitions of the commitment operations usually included both the
event and the originator of such event.

We deem such approach too restrictive in the general case. There might be situations
where restrictions about which agent is entailed to perform which operations are unjustified
and even counterproductive. Consider the semantics of the discharge operation. There are
cases where the commitment is about a property that must get satisfied by none other than
the debtor of the commitment. There are other cases where the commitment should be con-
sidered to be satisfied independently of who brought about its property. In the latter case, the
intended meaning of commitments is slightly different: a debtor is responsible for seeing to
it that the property gets satisfied, but it is not strictly necessary that the property is brought
about by the debtor. The domain modeller, when specifying the interaction patterns by means
of commitments, should be allowed to distinguish between the two above cases. Note that
such requirement has been recognized, discussed and partially supported by Mallya, Yolum
and Singh in [50].

A second operation that demands for some flexibility is create. The state of the art rec-
ognizes that an agent becomes debtor of a commitment only as a consequence of its own
actions. This design constraint is motivated by the idea of using commitments for modelling
open multiagent systems. We fully agree with this vision: in an open system it should not
be possible that an agent becomes debtor of a commitment against its will. However, things
might be different when considering more structured MAS. For example, MAS organized on
power relations, institutional norms and other organizational constraints [28], define a-priori
duties and rights of their members. Indeed, in such systems, agents may become debtors
because of the role they are enacting, and without their express will.

Conditional commitments have been used in the past to models situations of this type:
e.g., the fact of enacting a certain role has been used as a condition for a conditional commit-
ment, to automatically endorse an agent of the responsibility of the commitment. Another
solution is to have the agent vowing to always accept any commitment it will be asked for
(it commits to become committed). Then, such vow can be exploited as a condition of a
conditional commitment. Both solutions works from a practical viewpoint, although they do
not faithfully model the real situation. Indeed, these solutions preserve the principle of an
agent becoming debtor on its own will: such principle however is not always accepted in
hierarchically organized multiagent systems. Moreover, in our understanding, conditions of
conditional commitments capture “conditions”, i.e., dynamically changing situations, upon
which the commitments become established. Using conditional commitments to represents
also structural organizations, norms and duties is not, in our view, the best way to address
the problem.

Let us make all these consideration more practical by means of a simple example. Con-
sider a father ordering his son to do the homework. In our view, the child becomes committed
as the consequence of the order, and because of the power relation existing between him and
his father. In this case, the commitment’s creation is not due to the debtor, but to the creditor.
Moreover, the power relation existing between the father and the son does not depend on the
son’s will. Of course, the child still maintains its independence, and he is free to disobey the
order, thus violating the commitment.

As an alternative to our approach, it is possible to imagine the son promising to the father
he will always obey, and use such event within a conditional commitment. Such solution
would preserve the agent freedom, but also means that there is no way to ensure the child
will commit to anything.

Summing up, both the aspects are equally important: on one side the freedom and auton-
omy of the agents are a fundamental requirements in open multi-agent systems. On the other
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side, less open systems would need to impose commitments: in this case commitments would
resemble obligations.

Being aware that more flexibility would allow more risks, we opted to leave the domain
modeller to choose the preferred approach. Hence our framework allows to model both cases
where commitment operations are permitted only to certain agent roles, and those where
operations are permitted to all roles. To this end, we explicitly model occurring events with
the couple:

EventDescription, T

where the first term describes the event, and the second term is a variable specifying the time
instant the event occurs. When needed, we extend the EventDescription term with all the
needed parameters: among them the originator of the event. For instance, a father issuing a
“do your homework” order to his son at time instant 5 could be:

order(f ather, son, doHomeWork), 5.

Then we specify the commitment operations by defining conditions on the variables. For
example, the creation operation takes three inputs: the event that generates the commitment,
the commitment to be generated, and the time the event occurs. Besides, we can define a
context (e.g., f ather(Father ,Son)). The following definition:

create(order(Father, Son, doHomeWork),

C(Son, Father, property(doHomeWork)),

T )←
f ather(Father, Son).

means that a commitment for agent Son is established if agent Father orders it (the triggering
event), and if we are in the context of a father-son relation.

The former behavior, where agents become committed only as consequence of their own
actions, can be simply achieved by using the same variable for the originator of the event, and
the debtor of the commitment. In this way, the domain modeller can explicitly impose that
the commitment is created only when the debtor perform a certain action, thus preserving
agents autonomy.

2.4 Commitment operations and life cycle

Our commitment model uses eight distinct operations:

Create. A (base-level or conditional) commitment is created when certain events occur. The
domain modeller can specify those events using statements in the form create(E, C
(X, Y, )P, T ), where E defines the event triggering the creation of the commitment,
C(X, Y, P ) is the commitment to be created, and T is the time when E occurs.

Discharge. A (base-level) commitment is discharged (and gets satisfied) when the property
it refers to has been brought about. The domain modeller defines the events that bring
about the property. The commitment discharge is an immediate consequence of bringing
about such a property. The domain modeller decides if the debtor is the only agent entitled
to bringing about the property, or if the property can be brought about by any agent, in
order for the commitment to become satisfied.

Cancel. A (base-level) commitment is canceled as a consequence of an act performed
by some agent. The user defines which events cause C(X, Y, P ) to get canceled,
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Fig. 2 Commitment life cycle (Color figure online)

via cancel(E, C(X, Y, P ), T ) statements, where E defines the event that causes
C(X, Y, P )’s cancelation, and T the time when E occurs.

Violate. A (base-level) commitment about a temporal property is violated when the property
is not brought about (or not maintained) within the specified time interval. Note that only
commitments about temporal properties can be violated. Commitments about simple
properties could remain active indefinitely.

Release. Any agent can release a debtor agent from its own (base-level) commitments.
This is done via release(E, C(X, Y, P ), T ) statements, where E is the event releasing
C(X, Y, P ) and T is the time then E occurs.

Replace. The replace operation corresponds to traditional (base-level) commitment opera-
tions assign and delegate. This is specified via statements in the form replace(E,Cold ,

Cnew, T ), where Cold is the commitment that has to be substituted by Cnew, if events E

occurs at time T . If the debtor changes from the old to the new commitment, we have a
delegation; otherwise, we have an assignment.

Detach. A (conditional) commitment is detached when its condition is brought about, and a
base level commitment is created as a consequence.

Expire. A (conditional) commitment expires when the deadline for bringing about the con-
dition expires. In that case, no base-level commitment is created.

We thus have five possible states in a commitment’s life cycle: one for conditional com-
mitments, which can only be active, and four for base-level commitments, which can be
active, violated, satisfied, or canceled. Moreover, null indicates the state of a (base-level
or conditional) commitment before or after its life cycle. The operations listed above cause
commitments to change state.

The commitment life cycle is illustrated by Fig. 2 as a labelled graph, where the nodes
are possible commitment states, solid arcs represent the transitions of a commitment from
a state to another one, and dashed arcs represent the creation of a new commitment caused
by an operation on an existing commitment. It is worthwhile noticing that the commitment
life cycle proposed in Fig. 2 inherits its fundamental structure from previous works, such as
those shown in Fig. 1. The replace operation is instead new.

Initially, any possible commitment is in the null state. Upon creation, a (conditional or
base-level) commitment becomes active. An active base-level commitment can successfully
get discharged (hence it becomes satisfied) or it can get canceled/violated; cancel and vio-
lation are captured by two different states. Usual operations like release and replace move the
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commitment to the null state (solid arc), and establish the creation of a new, active base-level
commitment (dashed arc).

An active conditional commitment can instead expire, or get detached, terminating in
either case its life cycle and entering the null state (solid arc). A detached commitment will
establish the creation of a new, active base-level commitment (dashed arc).

3 Social commitments modelling in the event calculus

We formalize our commitment model using the Event Calculus (EC) [45]: a logic formalism
for representing and reasoning upon the effects of events in time. In Sect. 3.1 we briefly recall
the EC, while in Sects. 3.2 and 3.3 we present the formalization of base-level and conditional
commitments, respectively. Finally, in Sect. 3.4 we discuss some effects of unbound variables
and in Sect. 3.5 we show how to express complex conditions about temporal constraints.

3.1 The Event Calculus

The EC was proposed by Kowalski and Sergot [45] as a logic programming framework for
representing and reasoning about the effects events have on properties of the world (“flu-
ents”) [45]. Events occur at points in time, while fluents hold during intervals of time, and are
initiated/terminated by events. Given a set of events (“narrative”), the EC theory and domain-
specific axioms together (“EC axioms”) define which fluents hold at each time. There are
many different formulations of these axioms [20]. One possibility is given by axioms ec1

and ec2, where P stands for Fluent, E for Event, and T represents time instants. Predicates
holds_at and clipped capture, respectively, the notion of a fluent that holds at time T, and
a fluent that switched from true to false during an interval [T1, T3].

holds_at (P, T )← initiates(E, P, TStart )

∧ TStart < T ∧ ¬clipped(TStart , P , T ).
(ec1)

clipped(T1, P , T3)← terminates(E, P, T2)

∧ T1 < T2 ∧ T2 < T3.
(ec2)

initiates(E, P, T )← happens(E, T ) ∧ holds_at (P1, T )

∧ . . . ∧ holds_at (PM, T ).
(ec3)

terminates(E, P, T )← happens(E, T ) ∧ holds_at (P1, T )

∧ . . . ∧ holds_at (PN, T ).
(ec4)

Axioms ((ec3), (ec4)) are instead schemas for defining the domain-specific axioms: a cer-
tain fluent P is initiated/terminated at time T if an event E occurred at the same time, while
some other fluents Pi hold. In other words, a certain event E initiates/terminates a fluent when
the event happens and a certain context holds. Within EC, contexts are naturally represented
by means of (conjunction of) fluents: since their truthiness values change along time, they are
suitable for representing dynamically changing contexts. Summing up, fluents P1, . . . , Pn

represent particular conditions/situations, and their conjunction represent a specific context.
By means of predicates holds_at , it is possible to check if a particular context holds. In
general, the context can be any conjunction of literals (defined within the Knowledge Base)
and EC related predicates (such as holds_at).
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Table 1 The EC ontology
happens(Ev, T ) Event Ev occurs at time T

holds_at (F, T ) Fluent F holds at time T

holds_f or(F, [T1, T2]) Fluent F holds during the interval [T1, T2]
initially(F ) Fluent F holds at the beginning of time

initiates(Ev, F, T ) Event Ev initiates fluent F at time T

terminates(Ev, F, T ) Event Ev terminates fluent F at time T

To say that a fluent holds at the beginning of time we can use the shorthand initially(P ).
Dual axioms and predicates can be added to define when fluents do/do not hold [55]: e.g., an
axiom can be added to define declipped/3 (an event caused a certain fluent to switch from
false to true). The EC formalization above is called simple EC and uses the Horn fragment
of first order logic, augmented with negation as failure.

An EC theory is a knowledge base KB composed by a set of clauses (initiates, terminates,
…) that relate events and fluents. The set of all EC predicates that will be used throughout
the paper is listed in Table 1.

Besides EC predicates, KB can include any number of logic programming clauses defin-
ing any number of predicates. Such clauses enable to model the context, at the desired degree
of detail. For example, KB is the place to define organizational roles and relations and
domain-specific knowledge.

Let us consider the following illustration, taken from literature. A fluent light_on toggles
between true and false at every touch of the light switch. To tell whether the light is on or
off, we need to know how the light is at the beginning of time, and what is the effect of using
the switch. That depends on the current state: if the light is on, then the effect is to switch it
off, and vice versa. A possible EC theory describing the light switch world is the one below:

initially(light_on).

initiates(switch_pressed, light_on, T )← happens(switch_pressed, T )

∧ ¬holds_at (light_on, T ).

terminates(switch_pressed, light_on, T )← happens(switch_pressed, T )

∧ holds_at (light_on, T ).

3.2 Base-level commitments

The theory of commitments consists of two different theories, as shown in Fig. 3: a domain-
independent theory, that formalizes the life cycle of time-aware commitments, and a theory
that describes a specific domain. The domain-independent part relates the initiation/termina-
tion of commitment-related fluents by commitments operations, and by doing so it gives a
semantics to such operations. The domain-dependent part instead defines the links between
the specific events and fluents/commitments. In the following, we present the domain-inde-
pendent axioms, and provide some illustrations of them.

Our starting point is Yolum and Singh’s axiomatization of commitment operations [66,67],
also based on the EC. The authors set a correspondence between “bringing about some
property p” and “initiating fluent p,” and model commitments by way of fluents (hence a
commitment either holds or does not hold).

Our formalization differs form the one proposed by Yolum and Singh in two key aspects.
First, we map each possible commitment state to a fluent state/2, where state(c, s) expresses
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Fig. 3 Layered architecture of the monitoring framework (Color figure online)

that commitment c is in state s. By reifying the commitment state, we can explicitly refer to
the state in the domain dependent theory. For instance, we can state that a commitment c is
created by event ev if another commitment c2 is currently active. Second, we explicitly deal
with data, variables, and temporal aspects.

Axiom 1 (State of a commitment) A commitment C is active (respectively satisfied, vio-
lated, …) at time T if the corresponding state fluent holds at time T .

active(C, T )← holds_at (state(C, active), T ).

canceled(C, T )← holds_at (state(C, canceled), T ).

satisf ied(C, T )← holds_at (state(C, satisf ied), T ).

. . .

(1)

Axiom (1) can be trivially extended to accommodate as many other states as needed.

3.2.1 Creating base-level commitments

A commitment is created as a consequence of the occurrence of events. The user specifies
such events in the domain-dependent KB, by means of facts like create(E, C(X, Y, P ), T ),
where E stands for a particular event, T stands for the time when E occurs, and C(X, Y, P )

has the usual meaning. The commitment enters the active state, and a proper state fluent is
initiated.

Axiom 2 (Create/Base-level Commitment)

initiates(E, state(C(X, Y, property(P )), active), T )←
create(E, C(X, Y, property(P )), T ).

(2.1)

initiates(E, state(C(X, Y, property(e(T1, T2), P ))), active), T )←
create(E, C(X, Y, property(e(T1, T2), P ))), T ),

T < T1, T1 < T2.

(2.2)

initiates(E, state(C(X, Y, property(u(T1, T2), P ))), active), T )←
create(E, C(X, Y, property(u(T 1, T 2), P ))), T ),

T < T1, T1 < T2.

(2.3)
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Axioms (2.1)–(2.3) define the conditions for initiating a state fluent for the specified com-
mitment. These axioms, as well all the axioms defined in the paper, are Prolog-like rules.
For example, Axiom (2.1) should be read in the following way: a fluent state(C(…), active)
should be initiated at the happening of event E at time instant T if the evaluation of a predi-
cate create(…) is successful. The predicate create(…) is defined by the domain modeller: in
this way, she/he can decide which are the conditions for the commitment to be established.
In Example 1 it is shown a create(…) predicate defined by the user/domain modeller.

Note that while for a simple property there are no time constraints (Axiom (2.1)), things
change if we consider temporal properties. In particular, we explicitly require for both exis-
tentially- and universally-quantified properties that the time intervals attached to the property
are both about time instants later than the time of the event (Axiom (2.2) and (2.3), respec-
tively). An event occurring at a time T triggers only those commitments about existential
(universal) properties that are expected to be brought about (hold for an interval of time,
respectively) in the future. It is not possible that an event occurring at time T generates a
commitment that could be satisfied only by past events.

Example 1 Let us consider a home rule. Whomever promises to prepare the dinner, becomes
committed to preparing it in no longer than 2 hours:

create(promise(P1, P2, prepareDinner),

C(P1, P2, property(e(T1, T2), dinnerReady)),

T )←
T1 is T + 1, T2 is T + 2.

Now suppose that we observe the following event:

promise(john,mike, prepareDinner) 32

The happened event matches with the description given in the create(…), and in particular
P1 unifies with john, P2 with mike, and the time instant 32 unifies with T . As a consequence
of such unification, John becomes committed to prepare the dinner between time 33 and time
34:

C(john,mike, property(e(33, 34), dinnerReady)).

Hence, John is expected to take an action at a time point in the interval [33, 34], whose
consequence is to bring about the property dinnerReady. ��

3.2.2 Discharging commitments

Traditionally, a commitment about a generic property is discharged when the debtor brings
about such a property [66,67]. The effect of a discharge operation on a commitment is that the
commitment state changes from active to satisfied. In our formalization this means that the
fluent representing the active state is terminated, and a new fluent representing the satisfied
state is initiated. Axioms (3.1) and (3.2) define such state transition.

Axiom 3 (Discharge)

terminates(E, state(Commitment, active), T )←
discharge(E,Commitment, T ).

(3.1)

123



Auton Agent Multi-Agent Syst

initiates(E, state(Commitment, satisf ied), T )←
discharge(E,Commitment, T ).

(3.2)

discharge(E, C(X, Y, property(P )), T )←
active(C(X, Y, property(P )), T ),

initiates(E, P, T ).

(3.3)

discharge(E, C(X, Y, property(e(T1, T2), P ))), T )←
active(C(X, Y, property(e(T1, T2), P ))), T ),

T ≥ T1, T ≤ T2,

initiates(E, P, T ).

(3.4)

discharge(_, C(X, Y, property(u(T1, T2), P ))), T )←
active(C(X, Y, property(u(T1, T2), P ))), T ),

holds_f or(P, [T1, T2]),
T ≥ T2.

(3.5)

Axiom (3.3) defines the condition for discharging a commitment about a simple property,
i.e., an event occurs, which initiates P . The only requirement is that when the event occurs,
the commitment should be active (i.e., already established). Axiom (3.4) instead focuses on
commitments about existential properties. Such commitments are discharged if an event that
brings about P occurs at a time instant within the time interval specified in the commitment.

A commitment about a universal property (see Axiom (3.5)) can get discharged only when
it is possible to determine that the property P has held for the entire specified time interval.
If such interval is [T1, T2], we need to wait until T2 before saying that P has held during the
whole interval. Axiom (3.5) states that the commitment can get discharged (hence its state
becomes satisfied) if, when any event5 occurs at time T , the following conditions hold: (i)
the commitment is still active at time T ; (ii) the property P held for the entire interval; and
(iii) T is equal or greater than the end of the interval, i.e., T2.

A interesting possible extension arises if we consider in detail Axioms (3.3) and (3.4). To
discharge the commitment, they require that something occurs that brings about the property.
What if, instead, the property already holds? Governatori and Rotolo, in [39], when explain-
ing the different types of obligations in deontic logic, distinguish this case by referring to
non-preemptive vs. preemptive obligations. If we borrow their definition, we can say that
commitments whose property must be brought about after the commitment is established,
are non-preemptive. Otherwise, commitments whose property is considered satisfied also
by events occurred before the commitment has been established, are preemptive. These two
situations correspond to two different notions of commitment satisfaction. Interestingly, we
are not aware of previous work that makes distinction about these two different notions.
Our model and framework, in their current version, support only the former notion, i.e.
non-preemptive commitments. However, thanks to the declarative nature of our approach,
the commitment model can be easily extended to support preemptive commitments. E.g., it
would be enough to modify Axiom (2.1), and to add a new one. The new semantics would
be the following: if a property is already satisfied when generating a commitment about a

5 Note the use of the underscore in the position reserved to the event description, meaning that any event can
trigger the axiom.
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simple property, the commitment would not be created, but rather immediately get satisfied
(Axiom (2.1)). A further Axiom would be needed to establish that such commitments has
been satisfied (as if it would have been discharged).

3.2.3 Canceling and violating commitments

As we discussed in Sect. 2.2, the case in which the debtor (or another agent) decides to cancel
the commitment differs from the case in which the debtor does not satisfy the commitment by
not bringing about/maintaining the property. We say in the former case that the commitment
got canceled, in the latter case that it got violated. Axioms (4.1)–(4.6) model cancellation,
while Axioms (5.1)–(5.4) model violation.

Axiom 4 (Cancel)

terminates(E, state(C(X, Y, P ), active), T )←
active(C(X, Y, P ), T ),

cancel(E, C(X, Y, P ), T ),

on_t ime(T , P ).

(4.1)

initiates(E, C(X, Y, P ), canceled), T )←
active(C(X, Y, P ), T ),

cancel(E, C(X, Y, P ), T ),

on_t ime(T , P ).

(4.2)

on_t ime(_, property(_)). (4.3)

on_t ime(T , property(e(_, T2), _))← T ≤ T2. (4.4)

on_t ime(T , property(u(T1, T2), _))← T ≤ T1. (4.5)

on_t ime(T , property(u(T1, T2), P ))← T ≤ T2, T ≥ T1, holds_f or(P, T1, T ). (4.6)

Axioms (4.3)–(4.5) address all types of properties defined earlier. A commitment about a
simple property can be canceled at any time. Instead, a commitment about a temporal prop-
erty can get cancelled only if it is active, and in any case before the deadline expires. After
that, the commitment gets violated and as such it cannot get cancelled any more. Note that,
in case of universally quantified properties, cancellation can occur at time T if T is before
the time interval [T1, T2] (Axiom (4.5)), or if the property hold up to time T (Axiom (4.6)).

Axiom 5 (Violate)

terminates(_, state(C(X, Y, property(e(T1, T2), P ))), active), T )←
active(C(X, Y, property(e(T1, T2), P ))), T ),

T > T2.

(5.1)

initiates(_, state(C(X, Y, property(e(T1, T2), P ))), violated), T )←
active(C(X, Y, property(e(T1, T2), P ))), T ),

T > T2.

(5.2)
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terminates(_, state(C(X, Y, property(u(T1, T2), P ))), active), T )←
active(C(X, Y, property(u(T1, T2), P ))), T ),

T ≥ T1, T ≤ T2,

not_holdsat (P, T ).

(5.3)

initiates(_, state(C(X, Y, property(u(T1, T2), P ))), violated), T )←
active(C(X, Y, property(u(T1, T2), P ))), T ),

T ≥ T1, T ≤ T2,

not_holdsat (P, T ).

(5.4)

Axioms (5.1) and (5.2) specify when a commitment about an existential property gets vio-
lated. Since the property is expected to be brought about at some point within an interval
[T1, T2], only after T2 can we tell that the commitment has been violated. After T2, by the
time (T ) any event occurs, if the commitment is still active then the property has not been
brought about (otherwise the commitment would be in the satisfied state). Hence, the active
state is terminated (5.1) and the violated state is initiated (5.2).6

Axioms (5.3) and (5.4) specify when a commitment about a universal property is violated:
whenever any event occurs at a time instant T , such that T ∈ [T1, T2], and the property does
not hold in T , then the commitment is violated. Note that Axioms (5.3) and (5.4) are quite
inefficient, since they check for the validity of property P every time any event happens at
a time instant T ∈ [T1, T2]. The rationale behind these Axioms is to detect the violation as
soon as possible. Better performance could be obtained by releasing such desiderata.

Example 2 Let us consider a Traffic Agent (TA), a car identified by its Plate number, and
the car’s Owner. TA presents Owner with a traffic ticket, thus Owner is now expected to pay
the fine, by a deadline, or, by the same deadline, to refute the traffic violation:

create(issueF ine(T A,Owner, f ine(P late, Amount)),

C(Owner, city, property(e(T1, T2), f inePaid(P late, Amount))),

T )←
T1 is T + 1,

T2 is T + 30.

initiates(payment (Owner, city, f ine(P late, Amount)),

f inePaid(P late, Amount)),

T ).

cancel(ref utation(Owner, city, f ine(P late, Amount)),

C(Owner, city, property(e(T1, T2), f inePaid(P late, Amount))),

T ).

When TA issues a fine, Owner becomes committed to paying the fine. Note that the creditor
of such a commitment is the City Council (just “city” in the axioms above), and not TA, who
has in fact generated the commitment. The commitment gets discharged when the owner

6 This in fact depends on our ability to observe a system’s evolution. We can ensure that a state of violation is
flagged in the moment we become aware of the time, by either registering events at the time they occur, or for
example by setting a special “alarm” event to fire at exactly one instant after T2 (in which case, T = T2 + 1).
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pays the Amount indicated in the fine ticket. However, Owner can decide not to pay the fine.
The cancelation of the commitment is a consequence of a refutation event, performed by
Owner, provided that the refutation is made before the payment deadline.

Some authors have stressed the need for establishing “compensation” commitments in
the case of cancelation [60]. In our example, the City Council requires the citizen to provide
evidence for refuting the fine, within the next 5 days, as of the refutation. The following
formula defines how a new commitment is created as a consequence of the refutation:

create(ref utation(Owner, city, f ine(P late, Amount)),

C(Owner, city, property(e(T1, T2), provideEvidence(P late, Amount))),

T )←
T1 is T + 1,

T2 is T + 5.

Now suppose that we observe the following events, involving agent john (the Owner) and
agent ta51 (the TA), and happening at time instants 31 and 40, respectively:

issueF ine(ta51, john, f ine(ac123, 100$)) 31

ref utation(john, city, f ine(ac123, 100$)) 40

When TA fines John, at time 31, the following commitment is established:

C(john, city, property(e(32, 61), f inePaid(ac123, 100$)))

However, John refutes the fine at time 40. As a consequence, the previous commitment is
canceled, and at the same time, a new commitment is created for John:

C(john, city, property(e(41, 45), provideEvidence(ac123, 100$)))

If John fails to provide evidence against the fine, this commitment’s violation may be detected
at any time after 45. ��

3.2.4 Releasing commitments

The creditor of a commitment (or any other agent, if allowed) can release the debtor from
such a commitment. As a consequence, the commitment is removed. The release operation
can be performed only when a commitment is active. Moreover, we add a further constraint
for commitments about temporal properties: if a property is defined over a time interval
[T1, T2], the corresponding release operation can be performed only before or at T2. Hence
we rely on the on_t ime predicate defined in Axioms (4.3)–(4.6).

Axiom 6 (Release)

terminates(E, state(C(X, Y, P )), active), T )←
active(C(X, Y, P ), T ),

release(E, C(X, Y, P ), T ),

on_t ime(T , P ).

(6.1)

Axiom (6.1) defines the conditions for a commitment to be released: (i) the commitment
must be still in the active state; (ii) a proper release(. . .) fact be in the KB; and (iii) if all
possible time constraints are satisfied.
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3.2.5 Replacing commitments: assignment and delegation

As we discussed in Sect. 2.3, our approach extends traditional commitments by relaxing the
constraint on who is allowed to perform certain operations. Such an improvement has a great
impact on the traditional operations of assign and delegate: from the formal viewpoint, they
differ only because the first operation is about changing the creditor, while the second one is
about changing the debtor of a commitment. Our approach lets the domain modeller define
which one of the involved roles has to be substituted, hence a single replace operation suffices
to accommodate both assignment and delegation. Depending on how the user defines it, it
can assume the behaviour of assignment, delegation, or both.

Note also that since assignment, delegation, and replacement operations lead to the crea-
tion of a new commitment, all the temporal constraints, if any, will have to be propagated to
the new commitment.

A replace specification defined by the user is in the form:

replace(E,Cold , Cnew, T ),

where E is the event, occurring at time T , that fires the replacement of commitment Cold , by
which a new commitment Cnew will be created. Axioms 7.1 and 7.2 define the behaviour of
the replace operation in the case of commitments about simple properties; Axioms 7.3 and
7.4 refer to commitments about existential properties, while 7.5 and 7.6 refer to commitments
about universal properties.

Axiom 7 (Replace)

terminates(E, state(C(X, Y, property(P ))), active), T )←
active(C(X, Y, property(P )), T ),

replace(E, C(X, Y, property(P )), C(_, _, property(P )), T ).

(7.1)

initiates(E, state(C(X1, Y1, property(P ))), active), T )←
active(C(X, Y, property(P )), T ),

replace(E, C(X, Y, property(P )), C(X1, Y1, property(P )), T ).

(7.2)

terminates(E, state(C(X, Y, property(e(T1, T2), P ))), active), T )←
active(C(X, Y, property(e(T1, T2), P ))), T ),

T ≤ T2,

replace(E, C(X, Y, property(e(T1, T2), P ))), C(_, _, property(e(_, _), P ))), T ).

(7.3)

initiates(E, state(C(X1, Y1, property(e(T3, T4), P ))), active), T )←
active(C(X, Y, property(e(T1, T2), P ))), T ),

T ≤ T2,

replace(E, C(X, Y, property(e(T1, T2), P ))), C(X1, Y1, property(e(T3, T4), P ))), T ),

T < T3, T3 < T4.

(7.4)
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terminates(E, state(C(X, Y, property(u(T1, T2), P ))), active), T )←
active(C(X, Y, property(u(T1, T2), P ))), T ),

T ≤ T2,

replace(E, C(X, Y, property(u(T1, T2), P ))), C(_, _, property(u(_, _), P ))), T ),

(7.5)

initiates(E, state(C(X1, Y1, property(u(T3, T4), P ))), active), T )←
active(C(X, Y, property(u(T1, T2), P ))), T ),

T ≤ T2,

replace(E, C(X, Y, property(u(T1, T2), P ))), C(X1, Y1, property(u(T3, T4), P ))), T ),

T < T3, T3 < T4.

(7.6)

We impose that P is the same in the new commitment as it used to be in the old one, while
debtor, creditor and the time intervals can change on the needs of the user. An assignment
is a special case of replacement, in which the debtor does not change (X = X1), whereas a
delegation is a special case of replacement, in which the creditor does not change (Y = Y1).

Note that replacement is a valid option only if the commitment is still active. Therefore,
we impose that, in case of commitments about temporal properties, a replacement can be
done only if the firing event occurs before the end of the time interval associated with P (con-
dition T ≤ T2 in Axioms 7.3–7.6). Moreover, the newly created commitment must always
be about temporal properties over a time interval that follows T (condition T < T3, T3 < T4

in Axioms 7.4 and 7.6).

Example 3 Let us now consider a conference proceedings preparation scenario. The confer-
ence has strict deadlines for paper submission. All accepted papers’ corresponding authors
are committed to sending the camera ready copy of their paper to the Editor, within a certain
deadline:

create(paper_accepted(Editor, Auth, PaperID),

C(Auth,Editor, property(e(T1, 39), submitCRC(PaperID)),

T )←
T < 30, T1 is T + 1.

The intended meaning is that if the Editor communicates within a fixed deadline (before
time instant 30) that the paper has been accepted, then the author is committed to providing
the camera-ready copy any time after the notification, but before time 39 (a fixed temporal
deadline). Now suppose that we observe the following event happening at time 24, in which
agent John is Editor:

paper_accepted(john, david, paper51) 24

As a consequence of John’s communication to David that paper51 has been accepted,
david is committed to providing the paper’s CRC any time before the deadline:

C(david, john, property(e(25, 39), submitCRC(paper51))

Now suppose that John decides to resign from the role of Editor. We can accommodate such
a situation, using a replace(. . .) statement. The change of editor does not have any impact
on the deadline, therefore the authors are still committed to providing the work within the
same deadline as before.

123



Auton Agent Multi-Agent Syst

replace(editorChanged(OldChair,NewChair),

C(Auth,OldChair, property(e(T1, T2), submitCRC(PaperID)),

C(Auth,NewChair, property(e(T3, T2), submitCRC(PaperID)),

T )←
T3 = T + 1, T3 < T2.

The intended meaning is that upon the notification that the Editor has changed, the old com-
mitment is substituted with a new one with a new creditor, and the time interval to submit
the paper has been slightly changed: the deadline is always the same, but now the lower limit
is after the occurrence of the event. Suppose to observe the fact:

editor_changed(john,marc) 31

If, by now, David has already sent his CRC to John, David is not affected by the change of
editor; otherwise, he will be committed to sending the CRC to Marc:

C(david,marc, property(e(32, 39), submitCRC(paper51))

��
Example 3 has shown an assignment, in which the deadline for bringing about a property

remains unchanged. In similar ways we can model delegations and deadline extensions.
Note that in [21] the authors refer to the notion of delegation with/without retaining

responsibility. In the presented formalization we opt for delegation without retaining respon-
sibility. In order to accommodate the delegation with retaining responsibility, we may either
remove Axioms (7.3) and (7.5), or else we may extend the replace(. . . ) term, by including
conditions that distinguish among different types of delegation.

3.3 Conditional commitments

Conditional Commitments are created as a consequence of a certain event, and similarly to
commitments, they are active upon creation. In a conditional commitment

CC(X, Y,Q,P )

Q and P can be simple or temporal properties. When Q holds, the following base-level
commitment enters the active state:

C(X, Y, P )

If P is a temporal property, it should always refer to time intervals that start after the base-level
commitment is created.

Axiom 8 (Create/Conditional Commitment)

initiates(E, state(CC(X, Y,Q,P ), active), T )←
create(E, CC(X, Y,Q,P ), T ),

impose_t ime_constraint (T ,Q).

(8.1)

impose_t ime_constraint (T , property(_)).

impose_t ime_constraint (T , property(e(Ts, Te), _))← T < Ts, Ts < Te.

impose_t ime_constraint (T , property(u(Ts, Te), _))← T < Ts, Ts < Te.

(8.2)
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In order to simplify the definition of Axiom (8.1), we introduced another predicate, im-
pose_time_constraint/2 (Axiom (8.2)), which checks if Q is a temporal property and, if it is
the case, imposes the constraint that Q should be related to a time interval following the time
the conditional commitment is created.

The detachment of a conditional commitment CC(X, Y,Q,P ) to a base-level commit-
ment happens when Q holds. Similarly to what happens for the discharging of base-level
commitments (see Sect. 3.2.2), a) a conditional commitment is detached as soon as Q holds,
if Q is a simple or an existentially-quantified property; or b) it is detached as soon as it is pos-
sible to verify that Q held for the whole specified time interval, if Q is a universally-quantified
property.

Axiom 9 (Detach)

terminates(E, state(CC(X, Y,Q,P ), active), T )←
detach(E, CC(X, Y,Q,P ), T ).

(9.1)

initiates(E, state(C(X, Y, P ), active), T )←
detach(E, CC(X, Y,Q,P ), T ).

(9.2)

detach(E, CC(X, Y, property(Q), P ), T )←
active(CC(X, Y, property(Q), P ), T ),

initiates(E,Q, T ),

impose_t ime_constraint (T , P ).

(9.3)

detach(E, CC(X, Y, property(e(T1, T2),Q), P ), T )←
active(CC(X, Y, property(e(T1, T2),Q), P ), T ),

initiates(E,Q, T ),

T1 ≤ T , T ≤ T2,

impose_t ime_constraint (T , P ).

(9.4)

detach(E, CC(X, Y, property(u(T1, T2),Q), P ), T )←
active(CC(X, Y, property(u(T1, T2),Q), P ), T ),

holds_f or(Q, [T1, T2]), T > T2,

impose_t ime_constraint (T , P ).

(9.5)

Axioms (9.1) and (9.2) define the effects of the detachment operation: the fluent represent-
ing the active state of the conditional commitment is terminated, while a new (base-level)
commitment enters the active state. Axioms (9.3), (9.4), and (9.5) instead define the condi-
tions for the detachment to happen. In particular, depending on the type of property Q, we
can have the following cases:

– Q is a simple property: the conditional commitment is detached if E initiates Q, and if it
is possible to impose temporal constraints to the property P , as specified in Axiom (9.3)
(the latter operation is done by the predicate impose_time_constraint/2, that imposes
constraints only if P is effectively a temporal constraint);
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– Q is an existentially quantified property: the commitment is detached if an event E occurs
such that E initiates Q. E must occur within the time interval linked to Q, and a proper
temporal constraint is added between the time instant the detachment happens, and the
property P , by means of the predicate impose_time_constraint/2 (see Axiom (9.4));

– Q is a universally quantified property: the commitment is detached as soon as it is pos-
sible to verify that the property Q held during the whole time interval associated with
Q; again, a proper temporal constraint is added between the time instant the detachment
happens, and the property P , by means of the predicate impose_time_constraint/2(see
Axiom (9.5)).

Axiom 10 (Expire)

Not unlike the violation of a commitment about temporal properties, expiration too regards
only commitments with temporal conditions. The axioms for deciding the expirations are
similar to those for detecting a violation: when the deadline for bringing about the condition
has passed, then the conditional commitment cannot be detached any more. However, this
situation does not cause a violation, but the mere elimination of the conditional commitment.

We do not report here the axioms concerning the expiration, because they are very similar
to the ones of violation in Sect. 3.2.3. They are, however, in the implementation (see Sect. 4).

3.4 Commitment monitoring and irrevocability

Our formalization of the commitment models is based on a first order EC framework. Thanks
to first order logic, we could use variables to define axioms in a very general form. However,
in the context of online monitoring, the use of variables could lead to undesired effects. Such
effects become an issue when using logics for modelling real-world situations. In the real
world, we cannot “retract” or “backtrack” from the effects of actions. Logic-based models
instead may very well accommodate such a behaviour.

Example 4 Suppose a husband is committed towards his wife to having some (otherwise
unspecified) food ready for dinner:

C(husband,wif e, haveFood(X)).

Note that the property is only partially specified: we do not know in advance which food
is to be obtained (X is unbound). Although this is a “strange” situation, where an agent is
committed to something that is (partially) unknown, in the EC framework (in first order logic)
this is perfectly well allowed, thanks to the variables.

The husband buys some pizzas, but then he remembers his wife does not really like it, and
so he decides to buy also some chicken. We could observe the following facts happening at
time 20 and 30, respectively:

buy(husband, f ood(pizza)) 20

buy(husband, f ood(chicken)) 30

Suppose that the KB also defines that the act of buying food satisfies the property have-
Food(X):

initiates(buy(husband, f ood(X)), haveFood(X), _).

From the viewpoint of logic and EC, this situation has two immediate solutions: either
the husband was committed to buying some pizza, and he fulfilled such obligation at time
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20 (X = pizza); or the husband was committed to buying some chicken, and he achieved
the task at time 30 (X = chicken). There is also a third option, by which the husband was
committed to the property haveFood(X) ∧ (X �= pizza) ∧ (X �= chicken). In that case,
the husband did not fulfilled his commitment. ��

A sound and complete implementation of the EC, such as REC [15], computes all the
three answers above. However, in a run-time monitoring scenario, having so many answers
could represent an issue. Suppose that the wife is using our monitoring facility to check her
husband’s behaviour. At time 20 the husband buys the pizza, and the monitor facility signals
that the commitment got satisfied (discharged). Unfortunately, the wife does not like the
pizza, and immediately starts complaining to her husband. Then the monitor facility, at time
30, detects that the husband has also bought some chicken, and then it provides a second
analysis (together with the previous one): the commitment got satisfied, in one case with
pizza, in the other with chicken. It is clear that any action taken by the wife between time 20
and 30 must be rethought in the light of the new events.

In an on-line monitoring setting, outputs must always be irrevocable, i.e., come what may,
the answer computed so far by the monitoring facility (by our implementation of EC) will
not change [15]. The irrevocability issue is intrinsic in the EC based on first order logic.
Many previous implementations of EC could ignore this issue, because they were restricted
to propositional fluents. In REC we accommodate variables in fluents, and we leave it to the
user to decide whether an irrevocable behaviour is required or not. In [15], we discuss the
notion of irrevocability in detail, and provide some conditions to ensure it.

3.5 Specifying complex conditions involving temporal information

In Sects. 3.2 and 3.3 we introduced a possible formalization of the commitment operations
seen in Sect. 2.4, with all the extensions proposed in our model. However, the use of the EC
as underlying framework enables representing and reasoning upon more complex situations,
in particular with respect to temporal aspects.

Example 5 Suppose that, because of a “sanction” event, a car driver has to pay a fine, whose
amount depends on the day the fine is paid, e.g., if the payment occurs at day 5, the amount
is 5$. A commitment for the driver should be created, as the “sanction” event occurs:

create(sanction(Driver),

C(Driver, cityCouncil, property(payF ine)),

T ).

However, at the time of creation, we cannot express the amount to be paid, because that
depends on the time of the “payment” event. Thanks to theEC, one can define such a constraint
via the conditions on initiation/termination of property payFine:

initiates(payment (X), payF ine, X).

��
Example 6 A tax payer did not pay the taxes within the deadline. The tax payer can still
pay the taxes within 30 days. In that case, she must also pay a surcharge equal to the delay.
Suppose that the deadline for paying the taxes was day 60:

C(taxPayer, country, property(e(61, 90), payT axesWithDelay)).
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In this example the amount that must be paid depends on two values: the day of the pay-
ment, and the first day of the period in which the payment is expected. We can model this
situation, by defining a special discharge operation:

discharge(pay(T axPayer, X),

C(T axPayer, taxOffice, property(e(T1, T2), payT axesWithDelay)),

T )←
active(C(T axPayer,

taxOffice,

property(e(T1, T2), payT axesWithDelay), T ),

T ≥ T1, T ≤ T2,

initiates(pay(T axPayer, X), payT axesWithDelay, T ),

X = T − T1.

This means that the event of paying X (when we observe the event, X will be ground) dis-
charge the commitment if the following conditions hold: (i) the commitment is currently
in the active state; (ii) the payment occurs within the specified temporal interval; (iii) the
payment brings about the property payT axesWithDelay; and (iv) the amount paid X is
exactly the difference between the time instant T (when the payment occurs) and the lower
bound T1 of the interval. The difference with respect to Axiom (3.4), is that here we added
the link (the equality constraint) between the variable X and the time of the event. ��

The examples discussed so far show that commitments are about properties satisfied at
certain time instants. It might be necessary to refer to such time instants when defining the
properties. This is particularly true for conditional commitments, where beside the property
P interested by the commitment, there is also the condition Q that triggers the commitment
detachment.

4 An illustration

In this section we show how to use our monitor framework to represent and monitor the car
rental example discussed in the introduction. All the examples discussed in this paper, as
well as the application illustrated in this section, have been executed using our reactive EC
implementations: jREC [14,15] and a pure Prolog REC version. In both versions, reactivity
is what really enables monitoring applications.

The jREC tool, presented in [15], is based on the formal framework SCIFF [1,2,64]. Being
this implementation based on SCIFF, it inherits all the SCIFF formal properties. Moreover,
in [15] we also proved some important formal properties, such as the irrevocability property
and the formal conditions to be fulfilled in order to have such property guaranteed. On a
more down-to-earth note, jREC also features a graphical interface, which displays the evo-
lution of commitments during the execution of the modelled system. Moreover, thanks to its
embedding in a Java archive, jREC could be seamlessly integrated with other applications
that need monitoring the state of commitments or other properties of the domain.

The pure Prolog REC implementation exploits ideas introduced by Chittaro and Monta-
nari [18]. It can be proven that this second version is equivalent to the first version, i.e., given
the same input, the outputs of the two implementations are the same.
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We evaluated both implementations empirically. By our initial experiments, it is apparent
that the second one outperforms the first one, in terms of runtime. Hence this second ver-
sion may be preferable to the first one for event-intensive monitoring tasks. All the runtimes
presented in this article are based on this second version. A distribution of jREC is pub-
licly available, which is equipped with the sources and the example trace illustrated in this
section.7

4.1 Modelling the car rental example

We start by defining the context that must hold to consider the contract sentences as applica-
ble. We can easily represent such context by means of a fluent contract(…), that will report
all the interesting information for the contract.8 The contract will be established when both
the involved parties sign the contract, and will be terminated (by any event) as soon as the
rental period is passed.

initiates(sign(X, contract (C, A, CarP late, Start, End)),

contract (C, A, CarP late, Start, End),

T )←
all_signatures_done(sign(X, contract (C, A, CarP late, Start, End)), T ).

(ex1)

all_signatures_done(sign( X, contract ( C, S, CarP late, Start, End)), T )←
(X = C ; X = S),

happens(sign( C, contract ( C, S, CarP late, Start, End)), T1), T1 ≤ T ,

happens(sign( S, contract ( C, S, CarP late, Start, End)), T2), T2 ≤ T .

terminates(_,

contract (C, A, CarP late, Start, End),

T )← T > End.

(ex2)

In Axioms (ex1)–(ex2) the intended meaning of the parameters is the following: C is the
customer, A is the car rental agency; and CarP late is the plate of car that will be rented,
from the day Start to the day End (the rental period is given in absolute terms). In particular,
(ex1) specify that upon the happening of an event of signing a contract, the fluent contract(…)
is initiated if all the signatures have been done. This condition is checked by means of the
auxiliary predicate all_signatures_done: this predicate checks only if both the parties have
signed the contract, independently of the order they signed. It would be easy to add further
conditions, such as for example assuring the customer has a valid driving license, by simply
extending this predicate.

The first sentence (S1) can be easily represented as a base-level commitment about a
temporal related property. In particular, the property is about to bring back the car within a
certain deadline, thus it is an existentially-related property. Axiom (ex3) specify the condi-
tions for creating the commitment: the contract should hold, and the customer should retire

7 jREC with the commitment model, the example model and the trace example can be obtained from http://
ai.unibo.it/projects/comMon.
8 To keep the example easy to understand, we consider as important information the peers signing the contract
(the Customer C and the agency A), the plate of the car being rented, and the starting/ending days of the rental.
Other information, such as a contract’s ID, can be easily added if needed.
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the car any day within the rental period. Moreover, the act of returning a car initiates the
fluent return(…), that is the property specified within the commitment.

create(withdraw(C, CarP late),

C(C, A, property(e(T1, T2), return(CarP late))),

T )←
holds_at (contract (C, A, CarP late, Start, End), T ),

T ≥ Start, T < End,

T1 = T + 1, T2 = End.

initiates(return(CarP late), return(CarP late), _).

(ex3)

Also sentence (S2) can be represented by a base-level commitment. However, in this case
we need to model more information. First of all, we need to represent the categories of the
cars that can be rented at the agency, with the price. For example, we could say that the agency
rents cars of category medium or category small, together with the daily rental price for each
category (price in$, Axiom (ex4)). Secondly, we should represent some cars available at the
rental agency, together with the category they belongs to. In Axiom (ex5) we represented
three different cars, identified by the plate (the first parameter).

category(small, 35).

category(medium, 50).
(ex4)

car(ab123cd,medium).

car(ef 555ef,medium).

car(ga999t t, small).

(ex5)

And then we can represent the obligation to pay by means of a base-level commitment, about
a temporal-related property: the payment must be made no later than the first rental day
(Axiom (ex6)). The commitment is created as the consequence of an event of signing. Note
that this commitment is created independently that the customer will ever withdraw the car.
Instead, the commitment is established only when both the parties have signed

create(sign(X, contract (C, A, CarP late, Start, End)),

C(C, A, property(e(T1, T2), pay(Amount))),

T )←
all_signatures_done(sign(X, contract (C, A, CarP late, Start, End)), T ),

car(CarP late, T ype),

category(T ype, DailyFee),

RentT ime = End − Start,

Amount = DailyFee ∗ RentT ime,

T1 = T + 1, T2 = Start.

(ex6)

The commitment to pay is satisfied if any agent will pay (payment event) the same amount
specified by the commitment, as in Axiom (ex7):

initiates(payment(_, X), pay(X), _). (ex7)
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Note that Axiom (ex7) defines the conditions for which the property pay(…) is initiated
(fulfilled). Our commitment axiomatization then takes care of discharging the commitment
(the commitment becomes satisfied).

Sentences (S3) is about maintaining a certain property, i.e. to guarantee that the car works.
We can represent this condition using a base-level commitment, but this time the property
is temporally related universally with respect to the time interval. Again, the commitment
is established both the parties have signed, as stated in Axiom (ex8). Moreover, we must
state that the cars initially work properly: we will use the fluent works(CarPlate) to state this
initial condition (Axiom (ex9)).

create(sign(X, contract (A, CarP late, Start, End)),

C(C, A, property(u(T1, T2), works(CarP late))),

T )←
all_signatures_done(sign(X, contract (C, A, CarP late, Start, End)), T ),

T1 = Start, T2 = End.

(ex8)

initially(works(ab123cd)).

initially(works(ef 555ef )).

initially(works(ga999t t)).

(ex9)

The notification of a car breakdown terminates the property works(…), as stated in Axiom
(ex10):

terminates(notify(C, A, broken(CarP late)), works(CarP late), _). (ex10)

In the case of breakdown, a first compensation (a reimbursement of 200$) is established:

create(notify(C, A, broken(CarP late)),

C(A, C, property(e(T1, T1), reimbursement (A, C, 200.0))),

T )←
holds_at (contract (C, A, CarP late, Start, End), T ),

active(c(C, A, property(u(T c1, T c2), works(CarP late))), T ),

terminates(notify(C, A, broken(CarP late)), works(CarP late), T ),

T >= Start, T <= End,

T1 = T + 1.

(ex11)

initiates(payment(A, C, X), reimbursement (A, C, X), _). (ex12)

Axiom (ex11) is a little bit more complex: the rental agency wants to be really sure that it
owes a reimbursement to the customer. In fact, the following conditions are checked before
creating a commitment for the reimbursement: (i) the contract holds; (ii) the commitment for
maintaining the car working properly is active; (iii) the event notify(…) terminates exactly
the property that the commitment of condition (ii) is about; and finally (iv) the breakdown
occurs within the rental interval. Axiom (ex12) simply asserts that the act of payment X$
makes the property reimbursement(…) to hold.

Sentence (S3)-a amount to establish two commitments, if the conditions are met: a com-
mitment to retire the broken car (Axioms (ex13) and (ex14)) and a commitment to reimburse
the client for the remaining days (Axiom (ex15)).
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create(notify(C, A, broken(CarP late)),

C(A, C, property(e(T1, T1), retire(CarP late))),

T )←
holds_at (contract (C, A, CarP late, Start, End), T ),

T ≥ End − 1, T ≤ End, T1 = T + 1.

(ex13)

initiates(retire(CarP late), retire(CarP late), _). (ex14)

create(notify(C, A, broken(CarP late)),

C(A, C, property(e(T1, T1), reimbursement (A, C, Amount))),

T )←
holds_at (contract (C, A, CarP late, Start, End), T ),

T ≥ End − 1, T ≤ End, T1 = End + 1,

RentDays = End − T + 1,

car(CarP late, T ype), category(T ype, Fee),

Amount = Fee ∗ RentDays.

(ex15)

Sentence (S3)-b instead establishes only one commitment, to substitute the car within
two days from the user notification. Sentence (S4) however adds a further constraint: if the
substitution happens later than the two days specified in (S3)-b, the agency will compensate
with a further reimbursement. Axioms (ex16) and (ex17) capture the obligation of substi-
tuting the car by means of a commitment, while Axiom (ex18) focuses on the additional
reimbursement.

create(notify(C, A, broken(CarP late)),

c(A, C, property(e(T1, T2), sub(CarP late))),

T )←
holds_at (contract (C, A, CarP late, Start, End), T ),

T ≥ Start, T ≤ End − 2,

T1 = T + 1, T2 = T + 2.

(ex16)

initiates(change(Broken, Newer), sub(Broken), _). (ex17)

create(change(Broken, Newer),

c(A, C, property(e(T1, T2), reimbursement (A, C, Amount))),

T )←
holds_at (contract (C, A, Broken, Start, End), T ),

violated(c(A, C, property(e(T3, T4), sub(Broken))), T ),

Delay = T − T4, Amount = 20 ∗Delay,

T1 = End + 1, T2 = End + 30.

(ex18)
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Table 2 A possible observed
interaction

Event Time

sign( ag, contract(john, ag, ab123cd, 10.0, 20.0)) 3

sign( john, contract(john, ag, ab123cd, 10.0, 20.0)) 5

payment(marge, 500.0) 9

withdraw(john, ab123cd) 10

notify(john, ag, broken(ab123cd)) 13

payment(ag, john, 200.0) 14

change(ab123cd,ga999tt) 18

return(ga999tt) 20

payment(ag, john, 60.0) 30

Finally, although the example does not hint anything about, it appears reasonable to con-
sider the following: if a car breaks down and it is changed with another one, then the commit-
ment to return back the former broken car should be released. Moreover, a new commitment
to bring back the latter car should be established. Axioms (ex19) and (ex20) capture such
intuition.

release(change(Broken, Newer),

c(C, A, property(e(T1, T2), return(Broken))),

_).

(ex19)

create(change(Broken, Newer),

c(C, A, property(e(T1, T2), return(Newer))),

T )←
holds_at (contract (C, A, Broken, Start, End), T ),

active(c(C, A, property(e(T b1, End), return(Broken))), T ),

T < End, T1 = T + 1, T2 = End.

(ex20)

4.2 Monitoring the car rental example

We show in Fig. 4 a screenshot of the output of an observed interaction between John, a
customer, and a car rental agency. The output has been computed using the Axioms defined
in 4, while the observed interaction is summarized in Table 2. In particular, the agency and
John sign (at time 3 and 5, respectively) a contract for renting a medium size car from time
10 to time 20, hence generating the commitment to pay the fee of 500$ (Axiom (ex6)): his
secretary Marge pays for him the rental fee at time 9, hence satisfying the commitment.
Contextually with the sign of the contract, the agency becomes committed to guarantee that
the rented car will work properly for the duration of the contract (Axiom (ex8)), i.e. from
time 6 to time 20 (end of the rent). At time 10 John withdraws the car, becoming committed
to bringing it back within time 20 (Axiom (ex3)).

Unfortunately, at time 13 the car breaks, and John immediately informs the agency. The
agency becomes committed to paying a fixed reimbursement (Axiom (ex11)) of 200$, and
becomes also committed to substituting the car within two days (Axiom (ex16)). The agency
pays the fixed reimbursement at time 14. However, it does not manage to substitute the car in
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Fig. 4 Outcome shown by jREC (Color figure online)
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two days, and John has to wait till time 18 for having a working car. Hence the commitment
about the substitution gets violated (as well as the commitment to maintain the car working).
In turn, this generates a further commitment for the agency to pay a variable reimbursement
for the breaking of the car, that depends on how many days later the car has been substituted
(Axiom (ex18)). In our case, the variable reimbursement amount to 60$. Moreover, since the
car has been changed, the previous commitment to bring back the first car is released, and a
new one to return the newer car is created.

Finally, John returns the car back to the agency at time 20, thus fulfilling the commitment
to bring back the (new) car in time, and few days later the agency pays him also the variable
reimbursement due to the car rupture, at time 30. So also the commitment about the variable
reimbursement is satisfied.

Summing up, only two commitments get violated (the reader can see them in red colour
in Fig. 4): the commitment to maintain the car working, and the commitment to substitute it
in two days.

4.3 Experiments

We run experiments, based on the car rental illustration, to determine whether REC could
actually be used for monitoring multi-agent systems at run-time. We did not resort to existing
benchmarks for commitment monitoring tools because to the best of our knowledge there
exist no such benchmarks. At least we could not find any benchmark or experimental evalu-
ation among the works we surveyed (see Sect. 5). The only work we found with an empirical
evaluation of a commitment modelling framework was done by El-Menshawy et al. [29,31],
but such a framework is not concerned with online monitoring.

In particular, El-Menshawy et al. show that off-the-shelf symbolic model checkers can
be used to verify properties of the NetBill protocol (e.g., reachability, safety, liveness, and
fulfillment/violation of commitment) in about 18 minutes when the protocol involves up to
20 agents. It is well known that state-of-the-art model checkers can manage huge state spaces.
However, it is also true that the number of states in the model generally grows very quickly.
Thus 1 second is enough to verify said properties, against a commitment-based specification
of the NetBill protocol involving 10 agents, producing a model with 11545 states, while to
verify the same properties against a specification with twice as many agents requires about
18 minutes, and a model with over 400 million states. No results are shown for more than 20
agents, but execution time and number of reachable states increase exponentially when the
number of agents increases. Moreover, the verified properties do not include metric time.

While the model checking approach is acceptable for static verification tasks, where pro-
tocols are defined once and for all and the roles of participants are but a few, and known
a priori, a different level of scalability is needed for monitoring open multi-agent systems
at run-time. Here we need to cope with a potentially unbound number of participants and
actions, performed at specific points in time, and the time granularity may be such that the
number of possible time points we need to represent is very large. In the same context, several
types of contracts may coexist, some relevant to some actions performed by some agents,
others irrelevant. The description of the world, accounting for all relevant information, may
also be very large. For example, if we model a rental car scenario, we may have to deal with a
very high number of available rental cars, potential customers, and types of rental contracts.

Thus we decided to test REC’s performance along three different dimensions:

1. number of events occurring at runtime,
2. number of contract clauses, as a measure of the number of commitments/commitment

state transitions per transaction, and
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Table 3 REC performance in
the car rental scenario for 6,000
events

N. cars Total processing time (s) lept(ms)

200 277 294

1,000 367 310

5,000 920 653

20,000 3,467 2,488

3. number of cars available to the rental agency, as a measure of the size of the description
of the world at time zero.

Our performance metric of choice is the longest time needed to process an event (lept, for
longest event processing time), i.e., the worst case. This measure is arguably better than, e.g.,
the mean event processing time, because it determines the flow of events that can be success-
fully handled by the monitoring tool. It turns out that, under the assumption of total recall,
the leptgrows as the number of events grows, i.e., as time goes by. That is so, because each
new event is added to the knowledge base, and may generate new fluents, which add to the
complexity of reasoning. Hopefully, suitable garbage collection techniques, implementing
a concept of limited recall or “statute of limitations,” may be able to restrict the scope of
relevant events for run-time monitoring to a given time window of limited size. We did not
investigate this direction yet, which is subject for future work. Thus in a sense the results we
show represent a worst-case scenario’s upper bound.

We performed experiments on a MacBook Pro 2 GHz Intel Core i7 with 8 GB RAM,
running Mac OS X 10.6 and YAP Prolog 6.2.2 (i386-darwin10.8.0).9 The tables below show
the lept, with respect to the number of events, number of contract types, and number of
cars.10

Number of events. Our first experiment considers a single contract type, corresponding to
the car rental scenario. The rental agency serves up to 200 customers. For each customer,
a trace of events is generated. In total, in addition to the commitment model and the world
model, the scenario consists of 15 contract clauses and 6000 events. The total processing
time is below 5 minutes. The lept is 294 ms.

Number of contract clauses. We repeated the same scenario, by considering more contract
types (i.e., slightly modifications of the contract type used for the first experiment). In par-
ticular we run the experiments by extending the number of contract clauses by a factor of
5, 10, and 50, and by keeping the same number of customers (200) and events (6,000). We
registered no statistically significant variation of the total processing time, which stays in all
cases below 5 minutes, and of the lept, which ranges in all cases between 281 and 304 ms.
Thus in this setting the runtime depends on the number of events, but not on the size of the
contract specification.

Number of cars. Finally, we repeated the first scenario, by keeping the same contract specifi-
cations, while increasing the number of cars from 200 to 20,000. The results are summarized
in Table 3.

9 http://www.dcc.fc.up.pt/~vsc/Yap/.
10 The dataset we used is available from http://ai.unibo.it/projects/comMon.
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Fig. 5 Processing time of individual events with respect of the total number of events (Color figure online)

In this setting, we observe a sublinear increase in the total processing time and lept with
respect to the increase of the size of the world model at time zero.

Figure 5 shows how the event processing time grows as the total number of events increases
(x axis) for different sizes of the description of the work at time zero.

These experiments are by no means intended to be exhaustive. However they demonstrate
that REC can be used for monitoring multi-agent systems at run-time, not only in theory, but
also in practice.

5 Related work

The work presented here is mainly related to multiagent systems research on commitments.
The commitment operations presented in this work are largely inspired by the ones intro-

duced by Singh [58]. We extend the commitment language by allowing properties that are
related to temporal aspects and, more in general, to data. Moreover, with respect to [58], we
relax some constraints regarding which agent can perform which operation.

The need for extending the commitment language with temporal aspects has been first
recognized by Fornara and Colombetti [33], whose formalization includes time intervals,
temporal quantifications and timeouts in the commitment language, but it does not formally
propose a semantics, nor a reasoning procedure for reasoning about time. A more focussed
discussion of temporal aspects attached to commitments can be found in [49,50], where Mal-
lya et al. present the concepts of existentially and universally temporal-related properties,
together with a formal declarative semantics in CT L∗. Besides some issues on the semantics,
thoroughly discussed in [62], we greatly differ form those works in two fundamental aspects.
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First, we give the commitment operations and the temporal constraints a unified semantics,
based on the EC, while [49,50] do not specify a particular semantics for the commitment,
and propose CT L∗ for the temporal propositions. Second, we provide and implement a
proof-procedure, which we exploit to perform on-line monitoring based on the commitment
models, whereas the cited approach does not address on-line reasoning, nor does it propose
concrete automated procedures for temporal reasoning. Again with a CT L-based commit-
ment language, Venkatraman and Singh [65] present an approach to run-time compliance
verification. However, the representation of time is a simple ordering of events, i.e., a tran-
sition time, not a metric time, and as such it cannot be used to formalize deadlines because
the timestamps of events are not absolute, but instead depend on the timestamps assigned to
previous events.

Baldoni et al. [6,7] distinguish between the constitutive aspects of a protocol, and the
regulative ones. The authors argue that the constitutive aspects are perfectly covered by the
commitment paradigm, while the regulative aspects are not. Hence, they propose the new
language 2CL that can be used to augment the commitment model with further information,
such as the fact that a commitment can start to hold only after another one holds. Regula-
tive aspects then are resolved to be expressed in terms of constraints about the existence of
commitments, and in terms of constraints on the temporal ordering of the commitments. In
a sense, also this work extends the commitment paradigm towards the temporal dimension,
but in a orthogonal direction with respect to our framework. While Baldoni et al. focus on
temporal properties about the commitments, we focus on temporal properties inside the com-
mitments. The semantics of the temporal constraints is given in term of LT L, while we use
EC. In [5] a tool for supporting 2CL-based protocol specifications is presented: it aims to
support static, a-priori analysis of the possible/allowed protocols interactions and outcomes
envisaged by the 2CL specification.

Additional semantical considerations are proposed by Singh [59], who distinguishes
between dialectical and practical commitments, and defines a number of reasoning pos-
tulates that reflect common reasoning patterns that apply to commitments. Some of these
postulates are deemed natural for typical modelling situations, others less so. Our framework
could be confronted with such postulates, although such an analysis is outside of the scope
of this work. We conjecture that most of the “natural” postulates (e.g., B1 to B6, and B8)
apply–at least as far as simple properties– whereas some do not. Among the latter, B7 (strong
consistency) and B9 (chain) do not seem to apply. It would be interesting to investigate how
Singh’s postulates could be extended to accommodate metric time, which does not appear to
be a trivial task. Lorini [46] instead addresses the dynamic dimension of commitments, but
only for a restricted commitment model.

The idea of using the EC as a formal semantics for the commitment paradigm is not
new: Yolum and Singh proposed it in [66,67]. However, our formalization of commitments
operations in terms of EC axioms is different for several reasons. We do not represent the
commitments by fluents, but rather we represent the state of commitments by fluents, thus
reifying such information. We provide extensions to the commitment model with respect to
the treatment of temporal properties, which Yolum and Singh do not deal with. Moreover,
our framework includes a reactive proof-procedure that enables run-time monitoring.

To the best of our knowledge, at the time of writing ours is the only framework comprising
both a declarative semantics and a sound operational counterpart that can effectively be used
at runtime. Fornara and Colombetti [35] use a well-known automated reasoning tool (the
Discrete Event Calculus, [54]) to formalize a repertoire of abstract concepts like commit-
ment, institutional power, role and norm, useful for the specification of artificial institutions.
Monitoring is mentioned as a possible application but it is not explored. In fact, reasoning is

123



Auton Agent Multi-Agent Syst

deductive, and the irrevocability issue is not even raised. In more recent work [36], Fornara
and Colombetti propose a method for commitment monitoring based on a loop, where at
every step, all assertions that can be inferred are deduced, ontological information is updated
(by closure), and the time of simulation is incremented by 1 unit to prepare the next itera-
tion. This method should produce significant performance improvements with respect to the
previous EC-based solution, however its reasoning efficiency has not been evaluated yet.

Other relevant work addressing artificial institutions was carried out inside the ALFEBi-
iTE project11 by Artikis et al. [4]. Though not directly dealing with social commitments, but
rather with executable specifications of agent societies and on related normative aspects, that
body of work is relevant because it also uses the EC, alongside the C+ language. However,
it is worthwhile noticing that in spite of the plethora of very expressive EC dialects already
been proposed in the literature [51], there has been so far a lack of logic-based and reactive
EC frameworks. The survey of EC applications presented by Miller and Shanahan [51] only
mentions deductive and abductive reasoning (for planning). The EC variations they illustrate
are surely expressive, but do not lend themselves well to runtime monitoring.

In more recent years, ad-hoc implementations, lacking an underlying formal basis, have
been developed in order to target the run-time verification and monitoring of EC-based speci-
fications. For example, Chittaro and Montanari’s Cached Event Calculus (CEC) [18,19] relies
on extra-logical features (assert and retract predicates in particular) to efficiently implement
a reactive form of the EC. We use some of the CEC concepts in the REC implementation dis-
cussed in Sect. 4.3. In [47], Mahbub and Spanoudakis present a framework for monitoring the
compliance of a BPEL-based service composition with assumptions expressed by the user, or
with behavioral properties automatically extracted from the composition process. The EC is
exploited to monitor the actual behavior of interacting services and to report different kinds of
violations. The approach is further investigated in [48], where the authors use an extension of
WS-Agreement [3] to specify requirements. The monitoring framework relies on an ad-hoc
event processing algorithm implemented in JAVA, which fetches the occurring events and
updates the state of the affected fluents. Another JAVA-based ad-hoc implementation of the
EC, used to dynamically track the normative state of contracts, has been proposed by Farrel
et al. in [32]. The common drawback of all these approaches is that they are not tailored to an
underlying declarative semantics. That makes it impossible, or at least very hard, to assess
important formal properties such as soundness, completeness, termination and irrevocability.

In [13] we discuss at length the need for reactive EC axiomatizations, as opposed to clas-
sical deductive ones, in the context of commitment monitoring. More about REC can be
found in [11,15].

The run-time verification of event-based systems using logic-based approaches has been
tackled not only by means of the EC, but also using temporal logics, propositional linear
temporal logic (LT L) in particular. Beside expressiveness issues (propositional LT L does
not suffice to formalize the extended commitment machine presented in this paper) the con-
struction of suitable monitors starting from an LT L formula poses a twofold challenge. First,
the standard semantics of LT L must be modified to reflect that, during the execution, the
reasoning process cannot always provide a definitive answer, but must be open to the acqui-
sition of new knowledge, i.e., of new event occurrences. Let us for example consider a partial
trace, which does not contain the execution of activity pay. A liveness property such as ♦pay

should not lead to evaluate the instance as noncompliant: there is still the possibility to meet

11 ALFEBiiTE was a European project, whose goals included explaining the creation of trust, understanding
the links between actions, contexts, social commitments and legal consequences, and how interactions between
individuals and/or organizations are empowered by third party institutions (source: http://www.iis.ee.ic.ac.uk/
~alfebiite/).
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the property, by eventually executing the payment. To overcome this issue, Bauer et al. pro-
pose to switch to a three-valued semantics for the logic [8]; under a three-valued semantics, a
run-time verifier would evaluate ♦pay as unknown. Another possibility is to revise the LT L

semantics so as to account for finite (partial) execution traces. Because partial ongoing exe-
cutions are finite, Giannakopoulou and Havelund introduce a finite-trace semantics for LT L

[41,37]. Their semantics would state that ♦pay is violated, but in their setting the concept
of violation is limited to the portion of execution observed so far. For a survey of the use
of LT L for run-time verification, the interested reader can refer to [9]. The second critical
aspect is related to the generation of a suitable run-time verifier. Automata-based techniques
are usually employed, but they cannot take advantage from the standard transformations onto
Büchi automata, because of the non standard three-valued or finite trace semantics. The auto-
mata generation algorithms require ad-hoc modifications, making it again difficult to prove
the formal properties of the resulting approach. Among others, Spoletini and Verdicchio use
automata to build a monitoring module aimed to support an agent during its life in a multi-
agent system [61]. The method is not reactive (a new automaton is built every time an event
deemed relevant is “sniffed” from the environment). We do not know how efficient such a
method would be, if implemented, however we suspect scalability may be an issue.

The need for on-line monitoring facilities in multiagent systems was a major motivation
behind the CONTRACT effort.12 However, the on-line monitoring tool proposed in [52]
implements a procedural monitoring control loop whose link with the semantics of the con-
tract/commitment specification language is not easily proven, and therefore, to the best of
our knowledge, no formal property has been proved so far in that respect. Our approach is
based on the standpoint that soundness, completeness, and irrevocability, are fundamental
conditions for the successful dissemination and acceptance of commitment technologies.

In the more general context of commitment frameworks, not addressing monitoring, many
other authors considered the use of commitments to represent, model and verify protocols.
Numerous commitment life cycles have been proposed, such as those cited in Sect. 2, includ-
ing violation, cancelation, and other operations. Among them, Bentahar et al. [10] and El-
Menshawy et al. propose several methods for commitment-based protocol verification using
model checking [29–31]. In Sect. 4.3 we argued against the suitability of model checking
approaches for run-time monitoring. In [53] we show evidence that in some domains, charac-
terized by openness, top-down approaches can compete with model checking also for static
verification. One thing we have in common with El-Menshawy et al.’s approach is instead
the stance we take that clear, practical and verifiable semantics should be defined both for
commitments, and for the operations used to manipulated commitments [29]. In particular,
in this article we define the semantics for commitment operations in terms of EC axioms,
and the semantics of commitments in terms of fluents with an underlying logic programming
framework extended with the EC theory and CLP13 constraints to represent metric time.
El-Menshawy et al. instead use CT L∗sc, i.e., CT L∗ extended with modalities for social
commitments.

Another approach related to our framework is presented by Desai et al. in a number of
works that apply commitment models to business processes [23,24]. There, the authors use
the CCALC language [38] for modelling dynamics of commitments, in relation with the
events occurring in the world (actions executed, in CCALC). CCALC is a very expressive

12 CONTRACT was an European project, with a mixed academic/industrial consortium. Among its primary
objectives was the synthesis of on-line monitoring systems that observe a trace of Web service behaviour
generated at runtime and infer whether the service satisfies a contractual specification (source: Web, http://
www.ist-contract.org/).
13 CLP stands for Constraint Logic Programming [42].
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system for representing commonsense knowledge about action and change, which also allows
data variables.

However, Desai et al.’s aim is quite different from ours. Like other authors (see above),
they are concerned with static verification of protocol properties, which we do not address.
Conversely, there is no evidence that CCALC could be effectively used for run-time com-
mitment monitoring.

Our commitment specification language is not exempt from shortcomings. Let us dis-
cuss them here as well. Because of the requirement that a commitment’s property should be
brought about strictly after the commitment is created (see Sect. 3, e.g., Axioms (2.1)–(2.3)),
and not at the same time, we cannot express commitments where antecedent and consequent
overlap (“I will stay quiet if you also stay quiet!”). The semantics of such commitments is also
not straightforward and should be investigated. Similarly, we cannot model a commitment
about a property that has to be brought about “as of now.” For example, we cannot say “you
have time until tomorrow,” but we should instead choose a suitable time granularity and say
“you have time as of the next second/minute/hour, until tomorrow.” This is so, because of the
EC’s representation of time intervals: open on the left and closed on the right.

Another limitation of our approach is that we assume events to occur one at a time, and
the time model underlying the framework is discrete. Dealing with multiple events at a time
causes non-trivial problems (see Chopra and Singh, [21]). The difficulties here are not of
a technical nature, but rather stem out directly from the semantics of commitments. Let us
suppose, for example, that two events happens at the same time: one of them one cancels
an active commitment, while the other satisfies the same active commitment. What would
the “right” commitment state be, cancelled or satisfied? Once this question is answered, to
extend our framework towards one or the other behavior can be easily accomplished. Desai et
al. solve this problem by defining a overriding relationship between concurrent commitment
operations [24]. Should two events happen at the same time (and in distributed environments,
this is likely to happen), the overriding relationship specifies which commitment operation
dominates. We are not fully convinced that such solution is the best in every application
domain. Thus, in the current implementation we preferred to leave this problem open, and to
add a constraint that prohibits concurrent events occurrences. It is worthwhile noticing, how-
ever, that the overriding relationship may be accommodated, by adding a further condition in
all the axioms. Such a condition would check for concurrent events and, in case, would check
the overriding relationship to establish which axioms to enable and which ones to inhibit.
We consider this further extension out of the scope of this work, and leave it to future works.

Finally, since we rely on CLP libraries to express temporal expressions, we cannot easily
express periodic commitments, such as “gates close every day at 8pm and open every morn-
ing at 7am,” and other expressions that go beyond interval-based temporal reasoning. These
are all open issues, to which we could not find an answer in the relevant literature. We believe
that they deserve further investigation as they would improve the usability of a commitment
language.

To conclude this section, fundamental considerations may be made about our choice of a
first order logic framework with variable and fluents, as opposed to more limited, proposi-
tional languages and logics, e.g., the variations of CTL and LTL that we have mentioned in
relation with other influential work on social commitments. The trade off is as usual between
computational complexity and expressiveness. Thus with our logic of choice, static verifica-
tion of protocol properties is possible but of limited applicability, because first order logic is
undecidable. In particular, while some properties, under certain conditions, could effectively
be verified using a first order logic programming framework such as SCIFF [1,53], it would
be very hard if not utterly impossible to prove reachability, safety, and liveness properties typ-
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ically studied using model checking approaches [29]. For the same reason, model checking
seems to loose its effectiveness when a metric time representation is a domain requirement.

On the other hand, when the problem is run-time monitoring, our solution seems to have
a potential to outperform other proposed solutions that use model checking using a proposi-
tional language. Thus in the commitment monitoring domain the trade off between expres-
siveness and complexity would be less of a problem, since a very expressive language, such
as the one we propose, is also quite efficient in practice. This conjecture of ours is based on
practical experience and empirical evidence, but clearly we can not make a definite statement,
given the lack of practical experience and empirical evidence on the other side.

6 Conclusions

Given the wide popularity of the social commitments paradigm in multiagent research, the
adoption of such a paradigm in practical agent applications is surprisingly limited. Our work-
ing hypothesis was that existing commitment frameworks lack appeal because of language
limitations and/or because of technological shortcomings. In particular, commitments should
be very interesting for concrete applications because they lend themselves well to external
inspection and monitoring [57], but in concrete terms, effective monitoring tools are still
missing, and simple though ubiquitous specifications such as those involving a deadline may
represent a point where a gap is created between models and tools exploiting them.

In this article we proposed a solution to these issues. On the modelling side, we proposed
a commitment modelling language that enables metric temporal reasoning, and allow the
domain modeller to freely specify which roles the debtor and creditor agents shall play in the
manipulation of commitments. We enabled reasoning with data variables and domains, thus
opening up modelling possibilities that were precluded by previous formalizations grounded
on propositional logics. We defined new commitment operations, and a new commitment
life-cycle. Building on state of the art work, mainly Yolum and Singh’s proposal, we adopted
the EC to define a semantics for commitment operations, and a logic programming framework
extended with the EC theory and CLP constraints to define the semantics of commitments.

On the technological side, we proposed and implemented the REC: a reactive version of
the EC, designed to be used on-line, with a dynamically growing narrative of events. Empir-
ical evidence suggests that REC can effectively be used to implement run-time monitoring
services, exhibiting an unprecedented level of scalability.

We are currently extending the framework, to address the aspects as we discussed in
Sect. 5 and throughout the paper. We hope that REC will be considered by researchers and
practitioners interested in commitment monitoring as a simple and expressive enough model-
ling language, with and an effective operational tool to build upon. We and other authors are
already using REC for detecting conflicts in commitments [40], for commitment exception
diagnosis [43,44], and for monitoring commitment evolutions during simulated multiagent
system executions [16].
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