
Monitoring Time-Aware Social Commitments
with Reactive Event Calculus

Federico Chesani, Paola Mello, Marco Montali, Paolo Torroni
DEIS - University of Bologna∗

V.le Risorgimento, 2
40136 Bologna - Italy

{federico.chesani, paola.mello, marco.montali, paolo.torroni}@unibo.it

Abstract

Despite their dynamic nature, social commit-
ments have been rarely used for monitoring
purposes, and few attention has been paid to
the relationship between commitments and
the temporal dimension and to the corre-
sponding run-time verification. Building on
previous work, we present a declarative ax-
iomatization of time-aware social commit-
ments, extending their basic life cycle with
time-related transitions and with compensa-
tion mechanisms. The formalization is based
on a reactive version of the Event Calculus,
which supports the monitoring of the com-
mitments evolution during a system’s execu-
tion, checking if the interacting agents are
honoring them or not.

1 Introduction

Social commitments have been increasingly applied to
capture normative aspects and interaction protocols
in open Multiagent Systems [Yolum and Singh, 2002]
and, more recently, to provide declarative abstractions
for modeling Business Protocols and Service Oriented
Systems [Singh et al., 2009]. The basic idea is to offer
the abstraction of commitment to model, at the social
level, the mutual obligations established by the inter-
acting parties: during the interaction, an agent be-
comes debtor towards a creditor agent to bring about
some property. Each execution of the system under
study can be characterized in terms of how the in-
volved commitments evolve over time due to the oc-
currence of events. Such events, generated by the in-
teracting agents, implicitly lead to manipulate com-
mitments, causing them to change state. The state
machine, containing the states in which a commit-
ment can be and the operations associated to state
transitions, is called commitment life cycle.

Despite their dynamic nature, social commitments
have been rarely used for run-time verification pur-
poses, i.e., for monitoring the system’s executions and
track the evolution of mutual obligations, checking if

∗This work has been partially supported by the FIRB
Project TOCAI.IT.

the interacting agents are honoring them or not. We
argue that this lack is mainly due to the absence of
monitoring frameworks able to capture the commit-
ment’s life cycle and, at the same time, to provide
formal guarantees about their operational functioning
(such as soundness, completeness and termination).

In the last few years, we have developed a compu-
tational logic-based reactive form of Event Calculus1,
called REC [Chesani et al., 2009], which supports the
modeling of Event Calculus specifications and carries
out run-time, dynamic reasoning, computing and re-
porting back to the user the evolution of fluents caused
by the events occurred so far. A REC specification is
obtained by composing a general specification formal-
izing the calculus with a user-specified knowledge base
KB, made up of a set of Horn clauses relating specific
events and fluents (modeling e.g. that a fluent is ini-
tiated by a certain event).

In [Chesani et al., 2009], we have discussed the for-
mal properties of REC, showing that it guarantees
soundness, completeness and termination (for the last
two properties, provided that KB is acyclic [K. R.
Apt and M. Bezem, 1990]), and that it generates ir-
revocable answers when employed for monitoring. We
have also described how REC can be exploited to per-
form run-time monitoring of commitment-based in-
teractions, relying on the Event Calculus-based for-
malization of the commitment life cycle proposed in
[Yolum and Singh, 2002].

Since commitments evolve over time, the temporal
dimension plays a key role and can be further inves-
tigated to extend their expressiveness, e.g. to intro-
duce the notion of a deadline by which some com-
mitment must be satisfied. The addition of quantita-
tive temporal aspects in commitments modeling has
been first addressed in [Mallya and Huhns, 2003] and
then in [Torroni et al., 2009], where REC is applied for
tracking commitments augmented with temporal con-
straints, handling their violation and compensation.

In this work, we further develop such a line of re-
search, reconciling the treatment of the time-aware
commitments proposed in [Mallya and Huhns, 2003;
Torroni et al., 2009] with the original commitment life

1We assume the reader is familiar with the Event
Calculus and its ontology [Kowalski and Sergot, 1986;
Shanahan, 1999].



base-level commitment

active

satisfied

violated

compensating 
commitment

active

discharge

cancel

cancel with
compensation

create

compensated

Figure 1: Base-level commitment life cycle extended
with compensation.

cycle formalized in [Yolum and Singh, 2002], suitably
extending it to handle the satisfaction and violation of
time-aware commitments and to accommodate com-
pensation mechanisms. The REC axiomatization of
the extended life cycle brings two main advantages: on
the one hand, all the formal properties proven forREC
are inherited; on the other hand, time-aware commit-
ment specifications can be directly monitored, relying
on the operational counterpart of REC.

The paper is organized as follows. In Section 2, we
introduce time-aware commitments and discuss how
the commitments life cycle can be extended to deal
with them. In Section 3, we propose a REC-based
formalization of the extended life cycle. The poten-
tialities and feasibility of our approach are shown in
Section 4, by means of an effective example. Conclu-
sion follows.

2 Extending the Commitment Life
Cycle

A (base-level) social commitment relates three differ-
ent entities: a debtor agent, which is committed to-
wards a creditor agent to bring about a property de-
sired by the creditor. By identifying these three enti-
ties with x, y and p respectively, this kind of commit-
ment is denoted by C(x, y, prop(p)), and will be called
basic commitment throughout the paper. During the
interaction, the events generated by the agents implic-
itly lead to execute operations on commitments, ma-
nipulating them by affecting their status. For the sake
of space, we will focus only on the three fundamental
operations of create, discharge and cancel applied to
base-level commitments. The other operations, as well
as the treatment of conditional commitments, can be
seamlessly introduced in our framework.

2.1 Life Cycle and Compensation
The commitment life cycle targeted in this work, tak-
ing inspiration from [Singh et al., 2009], is illustrated
in Figure 1. At the beginning of execution, the com-
mitment does not exist (or, alternatively, can be con-
sidered in a null state). The commitment starts to
exist when a create operation is executed, causing
a commitment’s transition to the active state: from
now on, the debtor agent becomes committed to bring
about the involved property. An active commitment

makes a further transition when it is manipulated by
a discharge or cancel operation. In the first case, the
commitment has been honored by the debtor, and the
new state is therefore satisfied ; in the latter case, a
problem or exception occurred, leading to a violation
of the commitment.

In addition to these “standard” transitions and
states, we also support a further situation, in which
the commitment is canceled but a new commitment
(called compensating commitment) is created to han-
dle (compensate) the violation, trying to recover it in-
side the interaction protocol. If the user defines that
commitment c2 represents a compensation for com-
mitment c1, the impact of canceling c1 is twofold: in-
stead of becoming violated, c1 makes a transition to
the compensated state while, at the same time, c2 is
created, becoming active2.

Let us now focus on the semantics of operations
in terms of events and commitments’ status. Oper-
ations are partly specified at the domain-dependent
level, and partly in a domain-independent fashion. In
particular, the creation of a compensating commit-
ment is always defined in terms of the cancelation
of the compensated commitment, while the creation
of a “normal” commitment is user-defined by means
of a domain-specific event. A similar dichotomy ex-
ists for the discharge and cancel operation. On the
one hand, the semantics of discharge is defined in a
domain-independent manner, and states that a com-
mitment is discharged by an event if such an event has
the effect of bringing about the commitment’s prop-
erty; on the other hand, the cancelation of a commit-
ment is caused by the generation of a specific domain-
dependent event during the interaction.

2.2 Time-Aware Commitments

This analysis points out a limitation of the presented
life cycle: an active commitment which is not explic-
itly canceled, and whose property is never made true
by the debtor agent, will continue to persist indefi-
nitely in the active status. It would be therefore desir-
able to provide suitable abstractions for modeling tem-
poral constraints regulating when the commitment’s
property must be made true by the debtor agent. To
realize this objective, the temporal dimension must be
introduced inside the specification of commitments,
making them time-aware.

By relying on [Mallya and Huhns, 2003; Torroni et
al., 2009], we propose two classes of time-aware com-
mitments:

• C(x, y, prop(e(t1, t2), p))) represents an existen-
tial commitment, where x is committed to bring
about p inside the time interval [t1, t2]3;

2Other choices could be taken to model the active-
compensated transition; for example, a violated commit-
ment could be considered compensated only when the com-
pensating commitment has been satisfied.

3A basic commitment can be therefore considered as
a special case of existential commitment, where t1 is the
time at which the commitment is created, and t2 =∞.



fluents & 
commitments

initial state

events Monitoring Framework

Domain-dependent Theory

Theory of Time-aware 
Commitments

Reactive Event Calculus

Figure 2: Monitoring Framework for Time-Aware
Commitments.

• C(x, y, prop(u(t1, t2), p))) represents an universal
commitment, where x is committed to maintain
p valid along the whole time interval [t1, t2].

Being the properties involved in such commitments
time-dependent, not only their discharge, but also
their cancelation, can be defined in a domain-
independent manner.

In particular, C(x, y, prop(e(t1, t2), p))) becomes
satisfied if x generates an event ev at a time t ∈ [t1, t2],
such that ev makes p true. Conversely, let us suppose
that the existential commitment is still active after t2;
this attests that x has not made p true inside [t1, t2],
and therefore the commitment must be canceled due
to a violation of the temporal constraints.

The case of an universal commitment is the oppo-
site. If C(x, y, prop(u(t1, t2), p))) is active at a time
t ∈ [t1, t2], and p is not true at time t, then the valid-
ity of p along the whole interval [t1, t2] has been “bro-
ken”, and the commitment is violated. Conversely,
let us suppose that the universal commitment is still
active after t2; this attests that the commitment has
not been canceled before, i.e., that the validity of p
has been maintained during [t1, t2], and therefore the
commitment is satisfied.

3 Formalizing the Life Cycle of
Time-Aware Commitments in REC

We now present how the commitment life cycle de-
scribed in Section 2 can be formalized in REC. As
pointed out in the introduction, a REC theory is a
knowledge base KB composed by a set of Horn clauses
which bind together events and fluents. It is worth
noting that such a KB relies on the “standard” Event
Calculus ontology, making other Event Calculus rea-
soners seamlessly applicable as well.

In the case of time-aware commitments, the theory
itself is composed by two different knowledge bases,
as shown in Figure 2:

1. The domain-independent theory formalizing the
life cycle of time-aware commitments. It relates
the initiation/termination of the commitments’
status with operations, and defines the domain-
independent semantics of operations.

2. The theory representing a specific domain. It
includes domain-dependent fluents and commit-
ments and their relationship with specific events.

In this Section, we will focus on the general formal-
ization of time-aware commitments. An example of
domain-dependent theory will be instead presented in
Section 4.

The REC-based axiomatization of time-aware com-
mitments is inspired by [Yolum and Singh, 2002],
where Event Calculus is employed to provide a for-
malization of the commitment life cycle. In the Event
Calculus setting, properties are represented by flu-
ents, whose validity evolve over time as event oc-
curs. Therefore, the central concept of “bringing
about some property p” is translated as “initiating
fluent p”, while the validity/truth of p at a given time
is expressed by stating that fluent p holds at that time.

There are two main differences between the for-
malization proposed by Yolum and Singh and ours.
First of all, while in [Yolum and Singh, 2002] com-
mitments are directly mapped onto fluents (initiated
through the create operation and terminated by the
cancel/discharge operations), we map each possible
commitment’s status to a separate fluent status/2,
where status(c, s) expresses that commitment c is in
state s. In this way, commitment’s states are reified
and can be explicitly reported to the user by the mon-
itoring framework, as well as involved in the domain-
dependent theory (e.g. to state that a commitment c
is created by event ev if another commitment c2 is cur-
rently active). The second main difference is that our
formalization also deal with time-aware commitments
and their compensation.

Since the knowledge base expressing the extended
life cycle is a general theory, all the involved events,
agents and properties are variable: their grounding
will be defined by the domain-dependent theory, to-
gether with the concrete events characterizing the
monitored execution of the system under study. The
first five axioms characterize the commitment’s life cy-
cle transitions depicted in Figure 1 in terms of the
corresponding operations, while the remaining axioms
capture the domain-independent semantics of opera-
tions, as informally described in Section 2.2.
Axiom 1 (Status query) A commitment C is ac-
tive/satisfied/violated/compensated at time T if the
corresponding status fluent holds at time T . For ex-
ample, for the active state we have:

active(C, T )← holds at(status(C, active), T ).

Axiom 2 (Active state) A commitment becomes
active when it is created by the debtor agent through
an event occurrence:

initiates(E, status(C(X, Y, P ), active), T )←
create(E, X, C(X, Y, P ), T ).

The active state is left when the commitment is dis-
charged or canceled by another event occurrence:

terminates(E, status(C(X, Y, P ), active), T )←
discharge(E, X, C(X, Y, P ), T ).

terminates(E, status(C(X, Y, P ), active), T )←
cancel(E, X, C(X, Y, P ), T ).

Axiom 3 (Active-discharged transition) A
commitment makes a transition from the active



status to the satisfied one when it is discharged by the
debtor agent through an event occurrence:

initiates(E, status(C(X, Y, P ), satisfied), T )←
discharge(E, X, C(X, Y, P ), T ).

Axiom 4 (Active-canceled transition) A com-
mitment C makes a transition from the active status
to the violated one if it is canceled by an event oc-
curring at time T , and no compensating commitment
has been defined for C at T :

initiates(E, status(C(X, Y, P ), violated), T )←
¬compens(C(X, Y, P ), , T ) ∧ cancel(E, X, C(X, Y, P ), T ).

It is worth noting that the definition of com-
pensating commitments is done at the domain-
dependent level through the compens/3 predicate,
where compens(C1, C2, T ) states that commitment C1

can be compensated by means of C2 at time T .
Axiom 5 (Compensation) A commitment C
makes a transition from the active status to the com-
pensated one if it is canceled by an event occurring
at time T , and a compensating commitment has been
defined for C at T :

initiates(E, status(C(X, Y, P ), compensated), T )←
compens(C(X, Y, P ), , T ) ∧ cancel(E, X, C(X, Y, P ), T ).

At the same time, the compensating commitment be-
comes active:

initiates(E, status(C(W, Z, P2), active), T )←
compens(C(X, Y, P ), C(W, Z, P2), T )

∧cancel(E, X, C(X, Y, P ), T ).

Axiom 6 (Discharge) An active basic commitment
C is discharged by the occurrence of an event if the
event brings about the C’s property:

discharge(E, X, C(X, Y, prop(P )), T )←
active(C(X, Y, prop(P )), T ) ∧ initiates(E, P, T ).

An active existential commitment C is discharged by
an event if the event occurs inside the time interval
targeted by C and brings about the commitment’s prop-
erty:

discharge(E, X, C(X, Y, prop(e(T1, T2), P ))), T )←
active(C(X, Y, prop(e(T1, T2), P ))), T ) ∧ T ≥ T1 ∧ T ≤ T2

∧initiates(E, P, T ).

A universal commitment is automatically discharged
after its targeted time interval if it is still active (this
means that it has not been canceled in between, at-
testing that the property has been maintained valid
throughout):

discharge(E, X, C(X, Y, prop(u(T1, T2), P ))), T )←
active(C(X, Y, prop(u(T1, T2), P ))), T ) ∧ T ≥ T2.

Axiom 7 (Cancel) The cancelation of a basic com-
mitment is user-defined. An existential commitment
is automatically canceled after its targeted time inter-
val if it is still active (this means that it has not been
discharged before, i.e. the debtor agent has not brought
about the property when expected):

cancel(E, X, C(X, Y, prop(e(T1, T2), P ))), T )←
active(C(X, Y, prop(e(T1, T2), P ))), T ) ∧ T ≥ T2.

An active universal commitment is canceled during its
targeted time interval as soon as it is detected that the
commitment’s property is not holding:

cancel(E, X, C(X, Y, prop(u(T1, T2), P ))), T )←
active(C(X, Y, prop(u(T1, T2), P ))), T ) ∧ T ≥ T1 ∧ T ≤ T2

∧¬holds at(P, T ).

4 A Car Rental Example

In this section, we introduce and discuss a simple but
effective example, which shows the potentialities of
time-aware commitments and of the underlying REC
monitoring framework.

A contract formalizes the mutual obligations be-
tween a customer and an agency when a car is rented.
In particular, the following statements are included in
the contract:

(S1) the customer is committed of taking the car
back to the car rental agency within the agreed
number of days;

(S2) the agency, in turn, guarantees that the rented
car will not break down for the first three days;

(S3) if the rented car breaks down before the third
day has elapsed, the agency promises a “1-day”
immediate replacement;

(S4) in case of a car replacement, the customer re-
ceives two more rental extra-days for free.

To formalize this contract in terms of (time-aware)
commitments and enable monitoring, the following
steps must be followed:

A. Identification of the events that can be extracted
from the car rental agency’s information system.

B. Elicitation of the fluents which characterize the
states of affairs of the running system.

C. Binding between events and fluents (i.e., defi-
nition of how the events affect fluents through
initiates and terminates predicates).

D. Elicitation of the commitments formalizing the
statements included in the contract

• using (some of the) fluents identified during
step B to represent the “property part”;

• introducing existential/universal temporal
constraints if needed;

• defining their operations (create, discharge,
cancel, compensation) in terms of the events
identified during step A.

A. Events Identification We suppose that the infor-
mation system of each car rental agency collects and
stores the relevant events characterizing the evolution
of each rental:

rent(C, A,Car, N) - customer C rents a car Car at
the agency A for N days;

drive back(C, Car, A) - customer C drives Car back
to the agency A;

break down(Car) - Car breaks down;



replace(A, C,Carold, Carnew) - agency A takes back
Carold from the customer C and substitutes it
with Carnew.

Beside these domain-dependent events, we also
suppose that three further events start, complete and
tick are delivered to the monitoring framework. The
first two events are used to respectively alert REC
that the execution has begun/finished; the tick event,
instead, is used to inform REC about the current
time: REC itself has no explicit notion of the time
flow - it reacts to each incoming event updating the
status of fluents and commitments and then waiting
until a new event occurs.

B. Fluents Elicitation The system is characterized
by the status of the cars owned by the agency:
in agency(A, Car) states that Car is parked inside

agency A;
great car(Car) states that Car is working;
hired(C, Car, D) states that Car is being rented by

customer C until date D;
car replaced(Car) states that Car has been replaced.

C. Events-Fluents Binding Fluents are affected by
the events in the following way. First of all, when a
customer rents a car, the car is no more in agency and
becomes hired until the date obtained by the current
date plus the chosen number of days:

terminates(rent(C, A, Car, N), in agency(A, Car), T ).

initiates(rent(C, A, Car, N), hired(C, Car, D), T )←
D is T + N.

When the customer drives back to the agency, then
the car is no more hired and it starts to be in agency
again:

terminates(drive back(C, Car, A),

hired until(C, Car, D), T ).

initiates(drive back(C, Car, A), in agency(A, C), T ).

When the car breaks down, it is no more a great car :

terminates(break down(Car), great car(Car), T ).

When the agency replaces a car, it becomes replaced :

initiates(replace(A, C, Car1, ), car replaced(Car1), T ).

Furthermore, the replaced car is brought back to the
agency, while the new one is carried out from the
agency and given to the customer:

initiates(replace(A, C, Car1, ), in agency(A, Car1), T ).

terminates(replace(A, C, , Car2), in agency(A, Car2), T ).

Finally, car’s replacement ceases the hiring of the old
car, and causes the new car to be hired. Following the
prescription of the contract Statement S4, the new car
is hired until the date fixed for the old one plus two
extra-days:

terminates(replace(A, C, Car1, ), hired(C, Car1, D), T ).

initiates(replace(A, C, Car1, Car2), hired(C, Car2, D), T )

← holds at(hired(C, Car1, Dold), T ), D is Dold + 2.

D. Commitments Elicitation We now rephrase
Statements S1, S2 and S3 in terms of time-aware com-
mitments. Statement S1 is a commitment which is
created when the customer rents a car, and is asso-
ciated to a deadline. The deadline can be expressed
by means of an existential temporal constraint impos-
ing that the commitment’s property – “bringing the
car back” – must be initiated by the customer be-
tween the time at which the commitment is created
and the agreed number of days. The property corre-
sponds to the in agency fluent, while the value of the
deadline can be obtained as done for the hired fluent.
We therefore have:

create(rent(C, A, Car, N), C,

C(C, A, prop(e(T, Te), in agency(A, Car)))), T )←
Te is T + N, holds at(in agency(A, C), T ).

Statement S2 can be represented by an universal com-
mitment, also created when the customer rents a car.
Indeed, guaranteeing that the rented car will not break
down for three days can be formalized by stating that
the great car fluent related to the car should contin-
uously hold for such three days:

create(rent(C, A, Car, N), A,

C(A, C, prop(u(T, Te), great car(Car)))), T )←
Te is T + 3.

Finally, Statement S3 refers to a situation in which the
commitment introduced by Statement S2 has been vi-
olated, and can be therefore formalized as a compen-
sating commitment. Such a commitment is existen-
tial, and states that the agency is committed to bring
about the car replaced fluent within one day from
the cancelation of the compensated commitment. The
compensation can then be expressed by relating these
two commitments with the compens/2 predicate:

compens(C(A, C, prop(u(Ts, Te), great car(Car)))),

C(A, C, prop(e(T, Tr), car replaced(Car)))), T )

← Tr is T + 1.

4.1 Monitoring Instance
Figure 3 depicts the result computed by REC when
reasoning upon the formalization of the presented ex-
ample in a specific case, which captures the interaction
between a car rental agency ag and customer ian. A
monitoring instance is characterized by a (growing)
execution trace collecting all the events occurred so
far, and by an initial state, describing which fluents
initially hold. In our case, ag has initially two cars in
the agency, the initial state is then described by:

initially holds(in agency(ag, bo123)).

initially holds(in agency(ag, bo124)).

As reported in the bottom part of Figure 3 (consider-
ing a day as the time unit), the execution under study
models a situation in which ian rents car bo123 from
ag, but the car breaks out during the guarantee; a
compensation must be therefore handled by ag, which
however misses the deadline, replacing the car only af-
ter 4 days and causing a violation of the compensating



Figure 3: Sample outcome shown by jREC.

commitment. The commitments having ian as debtor
are instead both satisfied: the first due to the replace-
ment of car bo123, the second because ian drives car
bo124 back to ag one day before the expected date.
REC took a total time of 2.85 seconds to reason

upon the entire execution trace on a MacBook Pro
Intel CoreDuo 2.66 GHz machine.

5 Conclusion

We have proposed an extended commitment life cycle
accommodating time-aware social commitments (com-
mitments whose involved property is associated to
temporal constraints) and dealing with their compen-
sation. We have formalized such an extended life cycle
as an Event Calculus theory, using a reactive version
of the Event Calculus, called REC, for monitoring the
executions of the system under study, tracking how the
status of commitments evolve as events occur. Since
the presented theory is acyclic, the fact that also the
domain-dependent theory is acyclic is a necessary and
sufficient condition for ensuring that the operational
counterpart of REC, used to effectively carry out the
monitoring task, is sound and complete and guaran-
tees termination [Chesani et al., 2009].

A Java-based tool called jREC is currently being
implemented to wrap REC, providing a generic event
acquisition module for delivering the occurring events
to the monitoring framework, and equipping it with a
GUI able to give a constantly updated snapshot about
the status of fluents and commitments. Figure 3 shows
how the outcome produced by REC when reasoning
upon the example described in Section 4 is graphically
reported to the user inside jREC.

Other ongoing work is concerned with an extensive
experimental evaluation of the proposed framework,
to compare its performance with other state of the
art Event Calculus reasoners. We are also investigat-
ing how commitment-based interaction models could
be integrated with declarative, constraint-based Busi-
ness Process specifications. A first investigation can
be found in [Chesani et al., 2010].

References
[Chesani et al., 2009] F. Chesani, P. Mello, M. Mon-

tali, and P. Torroni. Commitment tracking via the
reactive event calculus. In Proceedings of the 21st
International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 91–96, 2009.

[Chesani et al., 2010] F. Chesani, P. Mello, M. Mon-
tali, S. Storari, and P. Torroni. On the Integration
of Declarative Choreographies and Commitment-
based Agent Societies into the SCIFF Logic Pro-
gramming Framework. Special Issue of Multiagent
and Grid Systems, 6(2), 2010.

[K. R. Apt and M. Bezem, 1990] K. R. Apt and M.
Bezem. Acyclic Programs. In Logic Programming,
pages 617–633. MIT Press, 1990.

[Kowalski and Sergot, 1986] R. A. Kowalski and
M. Sergot. A Logic-Based Calculus of Events. New
Generation Computing, 4(1):67–95, 1986.

[Mallya and Huhns, 2003] A. U. Mallya and M. N.
Huhns. Commitments Among Agents. IEEE In-
ternet Computing, 7(4), 2003.

[Shanahan, 1999] M. Shanahan. The Event Calculus
Explained. In M. Wooldridge and M. M. Veloso, ed-
itors, Artificial Intelligence Today: Recent Trends
and Developments, volume 1600 of LNCS, pages
409–430. Springer Verlag, 1999.

[Singh et al., 2009] M. P. Singh, A. K. Chopra, and
N. Desai. Commitment-Based Service-Oriented Ar-
chitecture. IEEE Computer, 42(11), 2009.

[Torroni et al., 2009] P. Torroni, F. Chesani, P. Mello,
and M. Montali. Social Commitments in Time: Sat-
isfied or Compensated. In Post-proceedings of the
7th International Workshop on Declarative Agent
Languages and Technologies (DALT 2009), 2009.

[Yolum and Singh, 2002] P. Yolum and M. P. Singh.
Flexible Protocol Specification and Execution: Ap-
plying Event Calculus Planning Using Commit-
ments. In Proceedings of the First International
Joint Conference on Autonomous Agents & Multia-
gent Systems (AAMAS 2002), pages 527–534. ACM
Press, 2002.


