
Verification of Relational Multiagent Systems with Data Types

Diego Calvanese Marco Montali
Free University of Bozen-Bolzano

Piazza Domenicani 3, 39100 Bolzano, Italy
{calvanese,montali}@inf.unibz.it

Giorgio Delzanno
University of Genova

Via Dodecaneso 35, 16146 Genova, Italy
giorgio.delzanno@unige.it

Abstract

We study the extension of relational multiagent systems
(RMASs), where agents manipulate full-fledged relational
databases, with data types and facets equipped with domain-
specific, rigid relations (such as total orders). Specifically, we
focus on design-time verification of RMASs against rich first-
order temporal properties expressed in a variant of first-order
µ-calculus with quantification across states. We build on pre-
vious decidability results under the state-bounded assump-
tion, i.e., in each single state only a bounded number of data
objects is stored in the agent databases, while unboundedly
many can be encountered over time. We recast this condition,
showing decidability in presence of dense, linear orders, and
facets defined on top of them. Our approach is based on the
construction of a finite-state, sound and complete abstraction
of the original system, in which dense linear orders are refor-
mulated as non-rigid relations working on the active domain
of the system only. We also show undecidability when includ-
ing a data type equipped with the successor relation.

1 Introduction
We study relational multiagent systems (RMASs), taking
inspiration from the recently defined framework of data-
aware commitment-based multiagent systems (DACMASs)
(Chopra and Singh 2013; Montali, Calvanese, and De Gia-
como 2014). Broadly speaking, an RMAS is constituted by
agents that maintain data in an internal fully fledged rela-
tional database, apply proactive and reactive rules to update
their own data, and exchange messages with other agents.
Messages have an associated payload, which is used to move
data from one agent to another. When updating their internal
database, agents may also inject fresh data into the system,
by invoking external services. This abstraction serves as a
metaphor for any kind of interaction with the external world,
such as interaction with web services, or humans.

From the data perspective, previous research has mainly
focused on a single, countably infinite data domain, whose
elements can only be compared for equality and inequality.
This assumption is highly restrictive, since data types used
in applications are typically equipped with domain-specific,
rigid relations (such as total orders), and might be special-
ized through the use of facets (ISO/IEC 11404:2007 2007;

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Savkovic and Calvanese 2012).
The focus of this work is on design-time verification of

RMASs against rich first-order temporal properties, allow-
ing for quantification across states. By considering only a
countably infinite domain with equality, it has been shown
in (Belardinelli, Lomuscio, and Patrizi 2012; Bagheri Hariri
et al. 2013; Montali, Calvanese, and De Giacomo 2014)
that decidability of verification holds for variants of first-
order temporal logics under the assumption that the sys-
tem is state-bounded, i.e., unboundedly many data objects
can be encountered over time, provided that in each single
state only a bounded number of them is stored in the agent
databases (Bagheri Hariri et al. 2014). We recast this con-
dition by considering different options for the data types.
Specifically, by exploiting an encoding of two-counter ma-
chines, we show that decidability of verification even of
propositional reachability properties is lost when one of the
data types is equipped with the successor relation. Our main
technical result is showing decidability for a variant of first-
order µ-calculus in presence of dense, linear orders, and
facets defined on top of them. In this case, we provide an
explicit technique to construct a finite-state, faithful abstrac-
tion of the original system, in which dense linear orders are
reformulated as non-rigid relations working on the active do-
main of the system only. This allows us to model and ver-
ify state-bounded RMASs that include coordination mecha-
nisms such as ticket-based mutual exclusion protocols.

Major details about the framework and its execution se-
mantics, as well as full proofs and examples, can be found
in an extended version of this work (Calvanese, Delzanno,
and Montali 2014).

2 Relational Multiagent Systems
RMASs are data-aware multiagent systems constituted by
agents that exchange and update data. Beside generic agents,
an RMAS is equipped with a so-called institutional agent,
which exists from the initial system state, and can be con-
tacted by the other agents as a sort of “white-page” agent,
i.e., to: (i) get information about the system as a whole;
(ii) obtain names of other agents so as to establish an inter-
action with them; and (iii) create and remove agents.

At a surface level, RMASs and DACMASs share many as-
pects. There are however two key differences in the way they
model data. On the one hand, while DACMASs consider

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2031

only a single, abstract data domain equipped with equality
only, in RMASs data are typed and enriched with domain-
specific relations. This deeply impacts the modeling power
of the system (see Section 3). On the other hand, while
agents in DACMASs operate with incomplete knowledge
about the data, and use a description logic ontology as a
semantic interface for queries, RMASs employ standard re-
lational technology for storage and querying services. This
is done to simplify the treatment and isolate the core issues
that arise when incorporating data types and facets, but we
believe our results can be transferred to DACMASs as well.

An RMAS X is a tuple 〈T ,F ,∆0,F ,S,M,G, I〉, where:
(1) T is a finite set of data types; (2)F is a finite set of facets
over T ; (3) ∆0,F is the initial data domain of X ; (4) S is a
finite set of F-typed service calls; (5) M is a finite set of
F-typed relations denoting messages with payload; (6) G is
a finite set of F-typed agent specifications; and (7) I is the
F-typed specification of the institutional agent.

2.1 Data Types and Their Facets

Data types and facets provide the backbone for modeling
real-world objects manipulated by the RMAS agents. A data
type T is a pair 〈∆T ,RT 〉, where ∆T is an infinite set1,
and RT is a set of relation schemas. Each relation schema
R/n ∈ RT with name R and arity n is associated with an
n-ary predicate RT ⊆ ∆n

T . Given a set T of data types,
we denote by RT all domain-specific relations mentioned
in T . Similarly, ∆T groups all the (pairwise disjoint) data
domains of the data types in T . The interaction between data
types is orthogonal to our work and is left for the future.

Example 2.1. We consider the following, well-known data do-
mains, whose relations retain the usual meaning:
• Dense total orders such as 〈Q, {<,=}〉 and 〈R, {<,=}〉.
• Total orders with successor, like: 〈Z, {<,=, succ}〉.

We assume that every RMAS has two special datatypes:
(i) 〈A, {=}〉 for agent names that, as in mobile calculi, be-
have as pure names (Needham 1989; Montanari and Pistore
2005) and can only be tested for (in)equality. (ii) 〈B, {=}〉
for agent specification names (see Section 2.4).

Facets are introduced to restrict data types. A facet F is
a pair 〈T, ϕ(x)〉 where T = 〈∆T ,RT 〉 is a data type, and
ϕ(x) is a monadic facet formula built as:

ϕ(x) := true | P (~v) | ¬ϕ(x) | ϕ1(x) ∨ ϕ2(x)

where P (~v) is a relation whose schema belongs to RT , and
whose terms ~v are either variable x or data objects in ∆T .
We use the standard abbreviations false and ϕ1(x) ∧ ϕ2(x).
Given a set F of facets, we useRF and ∆F as a shortcut for
RT and ∆T respectively, where T is the set of data types
on which facets in F are defined.

Given a facet F = 〈T, ϕ(x)〉 with T = 〈∆T ,RT 〉, a
data object d belongs to F if: (i) d ∈ ∆T ; (ii) ϕ(x) holds
in F under substitution [x/d], written F, [x/d] |= ϕ(x). In
turn, given substitution σ = [x/d], relation F, σ |= ϕ(x) is

1Facets can be used to model finite sets (cf. below).

inductively defined as follows:
F, σ |= true
F, σ |= R(~v)σ if R(~v)σ is true in T
F, σ |= ¬ϕ(x) if F, σ 6|= ϕ(x)
F, σ |= ϕ1(x) ∧ ϕ2(x) if F, σ |= ϕ1(x) and F, σ |= ϕ2(x)

Notice that a base facet that simply ranges over all data
objects of a data type can be encoded with true as its facet
formula. In particular, we use AF = 〈〈A, {=}〉, true〉 and
SF = 〈〈B, {=}〉, true〉 to refer to two base facets for agent
and specification names respectively.
Example 2.2. 〈〈R, {>,=}〉, (x > 0 ∧ 18 > x) ∨ x > 65〉
denotes ages of junior or senior people.

Facets are used as relation types. Given a set F of facets,
an F-typed relation schema R is a pair 〈R/n,FR〉, where
R/n is a relation schema with name R and arity n, and FR
is an n-tuple 〈F1, . . . , Fn〉 of facets in F .

An F-typed database schema D is a finite set of F-typed
relation schemas, such that no two typed relations inD share
the same name. Obviously, since relations are typed, it is
important to define when their tuples agree with their facets.
Let R = 〈R/n,FR〉 be a relation schema. We say that a fact
R(o1, . . . , on) conforms to R if for every i ∈ {1, . . . , n},
we have that oi belongs to Fi. Let F be a set of facets, and
D be an F-typed database schema. A database instance I
conforms to D if every tuple R(o1, . . . , on) ∈ I conforms to
its corresponding relation schema R ∈ D.

2.2 Initial Data Domain
Given a data type T = 〈∆T ,RT 〉, we isolate a finite sub-
set ∆0,T ⊂ ∆T of initial data objects for T . This subset
explicitly enumerates those data objects that can be used in
the initial states of the agent specifications (cf. Section 2.4),
plus specific “control data objects” that are explicitly men-
tioned in the agent specifications themselves, and conse-
quently contribute to determine the possible executions.

We extend this notion to cover also those objects used in
the definition of facets. Giving a facet F = 〈T, ϕ(x)〉 with
T = 〈∆T ,RT 〉, the set of initial data objects for F is a
finite subset of ∆T that contains all data objects explicitly
mentioned in ϕ(x). The initial data domain of an RMAS
with set F of facets, written ∆0,F , is then defined as the
(disjoint) union of initial data objects for each facet in F .

2.3 Typed Service Calls
Typed service calls provide an abstract mechanism for
agents to incorporate new data objects when updating their
own databases. As argued in (Bagheri Hariri et al. 2013;
Montali, Calvanese, and De Giacomo 2014; Bagheri Hariri
et al. 2014), this is crucial to make the system “open” to
the external world, and accounts for a variety of interaction
modes, such as interaction with services or humans. We ex-
ploit this mechanism to model in particular the agent ability
to inject new data according to internal decisions taken by
the agent itself, but still external to its specification.

Given a set F of facets, an F-typed service f is a triple
〈f/n,F in, F out〉, where (i) f/n is a function schema with
name f and arity n; (ii) F in is an n-tuple 〈F1, . . . , Fn〉 of

2032

facets in F representing the input types of the service call;
(iii) F out is a facet in F representing the output facet of the
service call. As for typed relations, in S there are no two
typed services that share the same name. Intuitively, when
invoked with a tuple of ground data objects belonging to
their input facets, the service non-deterministically returns
a data object that belongs to the output facet.

Example 2.3. Service getPrice = 〈getPrice/0, {SF}, PF 〉
gets a string in SF = 〈〈S, {=}〉, true〉 referring to a product, and
returns a rational price PF = 〈〈Q, {<,=}〉, x > 0〉 .

2.4 Agent Specifications
In RMASs, agent specifications consist of three main com-
ponents. The first is the data component, whose intensional
part is a typed database schema with constraints; every agent
adopting the same specification starts with the same initial
extensional data, but during the execution it autonomously
evolves by interacting with other agents and services. The
second is a proactive behavior, constituted by a set of
condition-action communicative rules that determine which
messages can be emitted by the agent, together with their
actual payload and target agent. The third is a reactive be-
havior, constituted by ECA-like update rules that determine
how the agent updates its own data when a certain message
with payload is received from or sent to another agent.

Given a set F of facets with initial data domain ∆0,F , an
F-typed agent specification is a tuple 〈n,D,Γ, D0, C,A,U〉,
where: (1) n ∈ B ∩ ∆0,F is the specification name, which
is assumed to be also part of the initial data domain. (2)D is
an F-typed database schema. (3) Γ is a finite set of database
constraints over D, i.e., of domain-independent first-order
formulae over D and RF , using only constants from ∆0,F .
(4) D0 is the initial agent state, i.e., a database instance that
conforms to D, satisfies all constraints in Γ, and uses only
constants fromD0. (5) C is a set of communicative rules, de-
fined below. (6) A and U are sets of update actions and up-
date rules, defined below. When clear from the context, we
use the name of a component with the specification name as
superscript, to extract that component from the specification
tuple. For example, Dn denotes the database schema above.
Communicative rules. These rules are used to determine
which messages with payload are enabled to be sent by the
agent to other agents, depending on the current configuration
of the agent database. When multiple ground messages with
payload are enabled, the agent nondeterministically chooses
one of them, according to an internal, black-box policy.

A communicative rule is a rule of the form

Q(t, ~x) enables M(~x) to t

where: (i) Q is a domain-independent FO query over D and
RF , whose terms are variables t and ~x, as well as data ob-
jects in ∆0,F ; (ii) M(~x) is a message, i.e., a typed relation
whose schema belongs toM.

Let F be a set facets, D a F-typed database schema, D a
database instance that conforms to D, and Q(x1, . . . , xn) a
FO query over D and RF that uses only constants in ∆0,F .
The answer ans (Q,D) toQ overD is the set of assignments
θ from the free variables ~x ofQ to data objects in ∆0,F , such

that D |= Qθ. We treat Qθ as a boolean query, and we say
ans (Qθ,D) ≡ true if and only if D |= Qθ.

In the following, we use the special query LIVET (x) as a
shortcut for the query that returns all data objects in the cur-
rent active domain that belong to data type T . Given schema
D, such a query can be easily expressed as the union of con-
junctive queries checking whether x belongs to a component
of some relation in D, such that the component has type T .
In this respect, notice that any query can be relativized to the
active domain through LIVE atoms.

We also make use to the anonymous variable “ ” to signify
an existentially quantified variable not used elsewhere.

Update actions. These are parametric actions used to update
the agent current database instance, possibly injecting new
data objects by interacting with typed services.

An update action is a pair 〈α, αspec〉, where: (i) α is the
action schema, i.e., a typed relation accounting for the action
name and for the number of action parameters, together with
their types; (ii) αspec is the action specification and has the
form α(~p) : {e1, . . . , en}, where {e1, . . . , en} are update
effects. Each update effect has the form

Q(~p, ~x) add A,del D

where (i) Q is a domain-independent FO query over D and
RF , whose terms are parameters ~p, variables ~x, and data
objects in ∆0,F ; (ii) A is a set of “add” facts over D that
include as terms: free variables ~x of Q, parameters ~p and
terms f(~x,~p), with f in S; (iii) D is a set of “del” facts that
include as terms free variables ~x and parameters ~p.

An update action is applied by grounding its parameters ~p
with data objects ~o. This results in partially grounding each
of its effects. The effects are then applied in parallel over the
agent database, as follows. For each partially grounded ef-
fect Q(~o, ~x) add A,del D, Q(~o, ~x) is evaluated over the
current database and for each obtained answer θ, the fully
ground facts Aθ (resp., Dθ) are obtained. All the ground
facts inDθ are deleted from the agent database. Facts inAθ,
instead, could contain (ground) typed service calls. In this
case, every service call is issued, obtaining back a (possibly
fresh) data object belonging to the output facet of the ser-
vice. The instantiated facts in Aθ obtained by replacing the
ground service calls with the corresponding results are then
added to the current database, giving priority to additions.

Update rules. These are conditional, ECA-like rules used
by the agent to invoke an update action on its own data when
a message with payload is exchanged with another agent.

An update rule is a rule of the form
• on MSG(~x) to t if Q(t, ~x) then α(d, ~x) (on-send), or
• on MSG(~x) from s if Q(t, ~x) then α(s, ~x) (on-receive)
where: (i) M(~x) is a message, i.e., a typed relation whose
schema belongs toM; (ii) Q is a FO query over D, whose
terms are variables t (resp., s) and ~x, as well as constants in
∆0,F ; (iii) α is an update action in A, whose parameters are
bound to variables ~x and t (resp., s).

Institutional Agent Specification. In an RMAS, an institu-
tional agent is dedicated to the management of the system as
a whole. Differently from DACMASs (Montali, Calvanese,

2033

and De Giacomo 2014), we do not assume here that the insti-
tutional agent has full visibility of the messages exchanged
by all agents acting into the system. It is simply an agent
that is always active in the system and whose name, inst in
the following, is known by all agents. Still, we assume that
the institutional agent has special duties, such as in particular
management of agent creation and removal from the system,
and maintainance of agent-related information, like names
names of all active agents together with their specifications.

Technically, the institutional agent specification I
is a standard agent specification named ispec, par-
tially grounded as follows. To keep track of agents
and their specifications, Di contains three dedicated
typed relations: (i) 〈Agent/1, 〈AF 〉〉, to store agent
names; (ii) 〈Spec/1, 〈SF 〉〉, to store specification names;
(iii) 〈hasSpec/2, 〈AF, SF 〉〉, to store the relationship be-
tween agents and their specifications. Given these special re-
lations, inst can also play the role of agent registry, support-
ing agents in finding names of other agents to communicate
with. Additional system-level relations, such as agent roles,
duties, commitments (Montali, Calvanese, and De Giacomo
2014), can be insterted into Dinst depending on the specific
domain under study. To properly enforce that hasSpec/2 re-
lates agent to specification names, foreign keys can be added
to Γispec. Futhermore, we properly initialize Dinst

0 as fol-
lows: (i) Agent(inst) ∈ Dispec

0 ; (ii) Spec(si) ∈ Dispec
0 for

every agent specification that is part of the RMAS, i.e., for
specification name ispec and all specification names men-
tioned in G; (iii) hasSpec(inst, instSpec) ∈ Dispec

0 . Obvi-
ously, inst may have other initial data, and specific rules and
actions. Of particular interest is the possibility for inst to dy-
namically create and remove agents. This can be encoded by
readapting (Montali, Calvanese, and De Giacomo 2014), as
shown in (Calvanese, Delzanno, and Montali 2014).

Well-Formed Specifications. In an RMAS, every piece of
information is typed. This calls for a suitable notion of well-
formedness that checks the compatibility of types inside
agent specifications (see (Calvanese, Delzanno, and Montali
2014)). Intuitively, an RMAS X is well-formed if: (1) ev-
ery query appearing in X consistently use variables, that is,
if a variable appears in multiple components, they all have
the same data type; (2) every proactive rule instantiates the
message payload with compatible data objects, and the des-
tination agent with an agent name; (3) every reactive rule
correctly relates the data types of the message payload with
those of the query and of the update action; (4) each action
effect uses parameters in a compatible way with the action
type; (5) each action effect instantiates the facts in the head
in a compatible way with their types; (6) each service call
correctly binds its inputs and output. From now on, we al-
ways assume well-formedness. Notice that well-formedness
does not guarantee that the restrictions imposed by facets are
always satisfied, but only that the agent specification consis-
tently use data types. Consistency with facets is dynamically
managed at runtime (cf. Section 4).

3 Modeling with RMAS
We sketch how RMASs can be easily accommodate com-
plex data-aware interaction protocols, leveraging on data
types. We take inspiration from ticket-based mutual exclu-
sion protocols (Bultan, Gerber, and Pugh 1999; Baier and
Katoen 2008; Delzanno and Podelski 1999). This can be
used, in our setting, to guarantee the possibility for an agent
to engage in a complex, critical interaction with the in-
stitutional agent. Another interesting example, modeling a
form of contract net in RMASs, is provided in (Calvanese,
Delzanno, and Montali 2014). The interested reader can also
refer to (Montali, Calvanese, and De Giacomo 2014) for
commitment-based interactions.

From now on, we assume that interaction in RMAS is
synchronous. This assumption is without loss of generality.
Asynchronous communication can be simulated via an en-
coding of (un)ordered buffer operations as queries and up-
dates on typed relations.
Theorem 3.1. Asynchronous RMASs based on message
queues/buffers can be simulated by synchronous RMASs.

The idea behind ticket-based mutual exclusion protocols
is that, when a process wants to access a critical section, it
must get a ticket, and wait until its turn arrives. We model
tickets using the base facet RF = 〈〈R, {<,=}〉, true〉 for
real numbers, and exploit the domain-specific relation < to
compare agent tickets. In our formulation, the critical sec-
tion consists of a (possibly complex) interaction with the
inst, excluding the possibility for other agents to concur-
rently engage in the same kind of interaction with inst.

We focus on the realization of the inst agent, in such a
way that mutual exclusion is guaranteed no matter how the
other agents behave. First of all, inst gives top priority to
handle ticket requests by the agents. A ticket request is is-
sued by another agent using a 0-ary message ASKTICKET.
Agent inst reacts by invoking a ticket generation action, pro-
vided that the sender agent is not already owner of a ticket,
and the Assigned relation is empty (see below):

on ASKTICKET() from a
if ¬HasTicket(a,) ∧ ¬Assigned(,) then GENTICKET(a)

Action GENTICKET takes as input an agent name, and uses a
typed service getTicket = 〈getTicket/0, ∅, RF 〉 to get
a numerical ticket. The result is stored in the temporary rela-
tion Assigned , tracing that the ticket has been assigned but
the corresponding agent still needs to be informed.

GENTICKET(a) :{true add{Assigned(a,getTicket())}}

To guarantee that every agent will have the possibility of en-
gaging the critical interaction with inst, every time a ticket
is assigned to an agent, inst must ensure that such agent will
be served after those already possessing a ticket. This is
enforced through the following database constraint, which
leverages on the domain-specific relation > for tickets:

∀tnew, t.Assigned(, tnew) ∧HasTicket(, t)→ tnew > t

An assigned ticket must be sent to the requestor agent:

Assigned(t, a) enables GIVETICKET(t) to a

2034

to which inst itself reacts by moving the tuple from the tem-
porary relation Assigned to hasTicket :

on GIVETICKET(t) to a if true then BINDTICKET(a, t)

BINDTICKET(a, t) :

{
true del {Assigned(a, t)}
true add{hasTicket(a, t)}

}
Now, let CMSG be a critical message. To engage in the crit-
ical interaction with inst triggered by message CMSG, the
agent provides the payload and the ticket. Agent inst posi-
tively react to the request provided that the ticket indeed cor-
responds to the agent, and that the ticket is now to be served
(i.e., it is smaller than any other ticket):

on CMSG(~p, t) from a
if hasTicket(a, t) ∧ ¬(∃a′, t′.hasTicket(a′, t′) ∧ t > t′)
then CACT(a, ~p)

This pattern can be replicated for any other critical interac-
tion. Additional state relations can be added to discipline the
orderings among critical message exchanges.

4 Verification
We now focus on the verification of RMASs against rich
first-order temporal properties. The execution semantics of
RMAS X = 〈T ,F ,∆0,F ,S,M,G, I〉 is captured by a re-
lational transition system ΥX = 〈∆T ,DX ,Σ, s0, db,→〉,
where: (i) DX is the union of typed schemas in the specifi-
cations of G and I; (ii) Σ is a possibly infinite sets of states;
(iii) s0 ∈ Σ is the initial state; (iv) db is a function that, given
a state s ∈ Σ and the name n of an agent active in s, returns
the database of n in state s, written s.db(n), which must be
Dspecn -conformant (where specn is the specification of n).
(v)→ ⊆ Σ× Σ is a transition relation between states.

The full ΥX construction starting from the initial state is
detailed in (Calvanese, Delzanno, and Montali 2014). We
report the main steps in the following. The initial state s0 is
constructed by assigning s0.db(inst) to the initial database
instance Dispec

0 of I , and the initial database of each agent
mentioned in Dispec

0 taking from its specification. The con-
struction then proceeds by mutual induction over Σ and→,
repeating the following steps forever: (1) A state s is picked
from Σ. (2) An active agent a is nondeterministically picked
selecting its name from s.db(inst). (3) The communicative
rules of a are evaluated, extracting all enabled messages
with their ground payloads and destination agents. (4) An
enabled messages is nondeterministically picked. (5) The
on-send/on-receive rules of the two involved agents are trig-
gered, fetching all actions to be applied. (6) The actions
are applied over the respective databases. If there are ser-
vice calls involved, they are nondeterminstically substituted
with resulting data objects, consistently with the service out-
put facets. (7) Each agent updates its own database provided
that the database resulting from the parallel application of
the actions is compatible with the schema and satisfies all
constraints. Otherwise the old database is maintained, so as
to model a sort of “transaction rollback”. (8) If one of the
involved agents is inst and the update leads to the introduc-
tion of a new agent into the system, its database is initialized

in accordance to its specification. (9) The global state so ob-
tained is declared to be successor of the state picked at step
1.

Interestingly, ΥX is in general infinite-branching, because
of the substitution of service calls with their results, and infi-
nite runs, because of the storage of such data objects in time.

The µL@
p Verification Logic. To specify sophisticated

properties over RMASs we employ the µL@
p logic. This

logic combines the salient features of those introduced in
(Bagheri Hariri et al. 2013) and (Montali, Calvanese, and
De Giacomo 2014). µL@

p supports the full µ-calculus to
predicate over the system dynamics. Recall that the µ-
calculus is virtually the most expressive temporal logics: it
subsumes LTL and CTL∗. To query possibly different agent
databases, µL@

p adopts FO queries extended with location
arguments (Montali, Calvanese, and De Giacomo 2014),
which are dynamically bound to agents. Furthermore, to
track the temporal evolution of data objects, µL@

p adopts a
controlled form of FO quantification across time: quantifica-
tion is limited to those objects that persist in the system:

Φ ::= Q` | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVET (x) ∧ Φ | Z | µZ.Φ |∧
i∈{1,...,n} LIVETi(~xi) ∧ 〈−〉Φ |

∧
i∈{1,...,n} LIVETi(~xi) ∧ [−]Φ

where Q` is a (possibly open) FO query with location ar-
guments, in which the only constants that may appear are
those in ∆0,F , and Z is a second order predicate variable
(of arity 0). Furthermore, the following assumption holds:
in the 〈−〉 and [−] cases, the variables x1, . . . , xn are exactly
the free variables of Φ, once we substitute to each bounded
predicate variable Z in Φ its bounding formula µZ.Φ′. We
adopt the usual abbreviations, including νZ.Φ for greatest
fixpoints. Notice that the usage of LIVE can be safely substi-
tuted by an atomic positive query.

The semantics of µL@
p is defined over a relational

transition system similarly to the semantics of µLp in
(Bagheri Hariri et al. 2013). The most peculiar aspect is con-
stituted by Q`, which allows one to dynamically inspect the
databases maintained by active agents. In particular, Q` is
a standard (typed) FO query, whose atoms have the form
R(~x)@a, where R is a (typed) relation, and a denotes an
agent name. The evaluation of the atomic query R(~x)@a
over a relational transition system Υ with substitution θ re-
turns those states s of Υ such that:
• aθ is an active agent in s, that is, Agent(aθ) ∈ s.db(inst);
• the atomic query R(~x)θ evaluates to true in the

database instance that agent aθ has in state s, i.e.,
ans (R(~x)θ, s.db(aθ)) ≡ true.

Example 4.1. Consider the protocol in Section 3, assuming that
inst uses a unary typed relation inCritical to store the agent that is
currently in the critical interaction. Given:

First(a) = ∃t.hasTicket@inst(a, t)∧
¬∃a′, t′.hasTicket@inst(a′, t′) ∧ a′ 6= a ∧ t′ < t,

νZ.(∀a.Agent@inst(a) ∧ First(a)→
µY.(inCritical@inst(a) ∨ (Agent@inst(a) ∧ 〈−〉Y)) ∧ [−]Z

models that when an agent is “first”, there will be a run in which it
persists into the system until it enters the critical interaction.

2035

5 Decidability of Verification
We now study different aspects of the following verifica-
tion problem: given a closed µL@

p property Φ and an RMAS
X , check whether Φ holds over the relational transition sys-
tem ΥX , written ΥX |= Φ. Unsurprisingly, this problem in
general is undecidable. In a recent series of works, verifica-
tion of data-aware dynamic systems has been studied under
the notion of state-boundedness (Bagheri Hariri et al. 2014),
which, in the context of RMASs, can be phrased as follows.
An RMASX is state-bounded if, for every state s of ΥX , the
number of data objects stored in each agent database does
not exceed a pre-defined bound.

As shown in previous work, state-boundedness still allows
one to model systems that encounter infinitely many differ-
ent data objects (and even agents) along their runs, provided
that they do not accumulate in the same state. In our setting,
this means that infinitely many different agents can interact,
provided that at each time point only a bounded number of
them is active (Montali, Calvanese, and De Giacomo 2014).
In the asynchronous case, the boundedness assumption re-
quires to put a threshold also on the maximum size of each
message queue/buffer. In fact, by Theorem 3.1 we know that
message queues/buffers can be encoded through special ac-
cessory relations in the agent databases, and state bounded-
ness applies to such accessory relations as well.

(Montali, Calvanese, and De Giacomo 2014) have shown
that verification of state-bounded DACMASs is decidable.
We study now how data types impact on this.
Compilation of Facets. Facets can be eliminated, getting a
shallow-typed RMAS, i.e., one using base facets only.
Theorem 5.1. For every RMAS X , there exists a corre-
sponding shallow-typed RMAS X̂ such that, for every µL@

p

property Φ, we have ΥX |= Φ if and only if ΥX̂ |= Φ.
The crux of the proof is as follows. Whenever there is an

n-ary typed relation R whose i-th component is typed with
facet F = 〈T, ϕ(x)〉, we proceed by reducing F to the base
facet 〈T, true〉, and compiling the typing into a dedicated
constraint: ∀xi.R(, . . . , xi, . . . ,)→ ϕ(xi).
RMASs with the Successor Relation. We now show that
including at least one data type with the successor relation
compromises decidability:
Theorem 5.2. Verification of a propositional reachability
property over state-bounded, shallow-typed RMASs that use
a single data type equipped with the successor relation is
undecidable, even when the RMAS contains a single agent
that uses unary relations only.

The proof is by reduction from the halting problem of
two-counter machines. Intuitively, a counter can be encoded
in a simple state-bounded RMAS that employs a unary,
typed relation C to store the integer value of the counter,
and a 0-ary service call input to insert a new value into the
counter. Increment can be captured by the update action:

INC-C() :

{
C(x) del{C(x)}, add{Cold(x), C(input())}
Op(x) del{Op(x)}, add{Op(0)}

}
that copies the old counter into relationCold, and inserts into
C the result of a service call.Op(0) signifies that the current

operation is an increment. Increment is ensured by adding
the following constraint: ∀x, y.Op(0) ∧ Cold(x) ∧ C(y) →
succ(y, x). Decrement can be captured symmetrically, en-
coding the counter program as self-directed rules.
Densely-Ordered RMASs. Given the previous undecid-
ability result, we focus on dense orders. A densely-ordered
RMAS only relies on data types equipped with domain-
specific equality = and, possibly, total dense orders, as well
as corresponding facets. For this class of RMASs, we have:

Theorem 5.3. Verification of closed µL@
p properties over

state-bounded, densely-ordered RMASs is decidable, and re-
ducible to conventional, finite-state model checking.

We informally discuss the proof. First, we reformulate the
input RMAS X into the shallow-typed version X̂ of Theo-
rem 5.1. We then consider the infinite-state transition system
ΥX̂ , and seek a faithful (sound and complete) finite state ab-
straction of it. To do so, we proceed in two phases.

First of all, we get rid of the infinite-branching in ΥX̂ ,
by introducing a pruned transition system ΛX̂ that obeys
the following properties: (i) ΛX̂ is finite-branching; (ii) for
every closed µL@

p property Φ, ΥX̂ |= Φ if and only if
ΛX̂ |= Φ. To produce ΛX̂ , we extend the notion of equal-
ity commitment exploited in (Bagheri Hariri et al. 2013) so
as to account for dense linear orders. We call the extension
densely-ordered commitment. The intuition is as follows.
Consider e.g., an agent database with two active data objects
1 and 2.3, with the usual ordering 1 < 2.3. Now consider
the insertion of a service call result d. Noticing that d is ob-
tained nondeterministically, and that< is a dense total order,
we have 5 possible densely-ordered commitments, according
to all possible domain-specific relations holding between d
and the two existing active values: (1) d is such that d < 1;
(2) d = 1; (3) d is such that 1 < d < 2.3 (this is always
possible, thanks to density); (4) d = 2.3; (5) d is such that
2.3 < d. If more service calls are issued at the same time, all
combinations must be considered, also accounting for how
the service call results relate to each other. Obviously, there
are in general infinitely many different concrete results that
fall inside the same densely-ordered commitment. However,
due to the fact that RMASs are constructed using domain-
independent queries, and the observation that µL@

p proper-
ties only quantify over the active domain, such properties are
not able to distinguish different configurations of data ob-
jects that fall inside the same densely-ordered commitment.
In the example above, no µL@

p property would distinguish
the cases where the service returns 1.5 from the one where
the result is 2: both cases would fall inside the third commit-
ment. Since in a given state the number of densely-ordered
commitments is bounded by the agent specification and data,
ΛX̂ is finite-branching.

Notice that ΛX̂ may still contain runs visiting infinitely
many different states. The second phase consists therefore in
producing a folded transition system ΘX̂ that is finite-state,
and such that for every closed µL@

p property Φ, ΛX̂ |= Φ
if and only if ΘX̂ |= Φ. The idea behind the construction
of ΘX̂ resembles the notion of value recycling introduced
in (Bagheri Hariri et al. 2013). In spite of the fact that µL@

p

2036

can employ domain-specific relations, it still can only apply
them over data objects present in the active domain of the
system. Furthermore, due to the persistent nature of µL@

p , it
is also not possible to compare currently active data objects
with objects that were encountered in the past, but are not
active anymore. Therefore, starting from ΛX̂ we can col-
lapse each rigid, domain-specific dense total order < into
a non-rigid lessThan relation defined over the active data
objects only, ensuring that all the initial finitely many data
objects in ∆0,F are explicitly accounted and maintained ac-
tive during the system execution. At the same time, when
possible, a previously encountered data object old that is
not active anymore can be recycled and used in place of a
fresh data object new, but defining lessThan over old as if
it was new. This makes µL@

p unable to distinguish old from
new in the current state. By applying the recycling technique
in (Bagheri Hariri et al. 2013) it can be shown that, when
the RMAS is state-bounded, then only a bounded number of
new data objects must be inserted before recycling makes it
not necessary anymore to consider fresh values. Hence, the
procedure always terminates, producing the finite transition
system ΘX̂ that satisfies the same µL@

p properties as ΥX .

6 Conclusion
RMASs constitute a very rich modeling framework for data-
aware multiagent systems. The presence of concrete data
types and their facets greatly empowers its modeling capa-
bilities, making it, e.g., apt to capture mutual exclusion pro-
tocols, asynchronous interactions with bounded queues, and
price-based protocols. Our key result, namely that densely-
order, state-bounded RMASs are verifiable with standard
model checking techniques, paves the way towards concrete
verification algorithms for this class of systems (Lomuscio,
Qu, and Raimondi 2009; Cavada et al. 2014). In this respect,
a major obstacle is the exponentiality in the data slots that
can be changed over time, which is inherent in all data-aware
dynamic systems (Deutsch, Sui, and Vianu 2007). We intend
to attack this by proposing data modularization techniques to
decompose the system into smaller components.

From a foundational perspective, our work is related to
(Belardinelli 2014), which extends the framework in (Be-
lardinelli, Lomuscio, and Patrizi 2012) with types, so as
to model and verify auctions. Our setting is incomparable
with (Belardinelli 2014) w.r.t. the framework and the ver-
ification logic, and we intend to cross-transfer results be-
tween them. Finally, we plan to investigate connections be-
tween the considered framework and parameterized verifi-
cation techniques for concurrent systems with data as those
studied in (Delzanno and Rosa-Velardo 2013).

Acknowledgments
This research has been partially supported by the EU FP7-
318338 IP project Optique (Scalable End-user Access to Big
Data), and by the project MAGIC: Managing Completeness
of Data, funded by the province of Bozen-Bolzano.

References
Bagheri Hariri, B.; Calvanese, D.; De Giacomo, G.; Deutsch, A.;
and Montali, M. 2013. Verification of relational data-centric dy-

namic systems with external services. In Proc. of the 32nd ACM
SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems
(PODS), 163–174.
Bagheri Hariri, B.; Calvanese, D.; Deutsch, A.; and Montali, M.
2014. State-boundedness in data-aware dynamic systems. In Proc.
of the 14th Int. Conf. on the Principles of Knowledge Representa-
tion and Reasoning (KR). AAAI Press.
Baier, C., and Katoen, J.-P. 2008. Principles of Model Checking.
The MIT Press.
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2012. An abstraction
technique for the verification of artifact-centric systems. In Proc. of
the 13th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR), 319–328.
Belardinelli, F. 2014. Model checking auctions as artifact systems:
Decidability via finite abstraction. In Proc. of the 21st Eur. Conf.
on Artificial Intelligence (ECAI), 81–86.
Bultan, T.; Gerber, R.; and Pugh, W. 1999. Model-checking con-
current systems with unbounded integer variables: Symbolic repre-
sentations, approximations, and experimental results. ACM Trans-
actions on Programming Languages and Systems 21(4):747–789.
Calvanese, D.; Delzanno, G.; and Montali, M. 2014. Verifica-
tion of relational multiagent systems with data types (extended ver-
sion). CoRR Technical Report arXiv:1411.4516, arXiv.org e-Print
archive.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.;
Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014. The
nuXmv symbolic model checker. In Proc. of the 26th Int. Conf. on
Computer Aided Verification (CAV), volume 8559 of LNCS, 334–
342. Springer.
Chopra, A. K., and Singh, M. P. 2013. Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence. The MIT
Press. chapter Agent Communication, 101–141.
Delzanno, G., and Podelski, A. 1999. Model checking in CLP. In
Proc. of the Int. Conf. on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), 223–239.
Delzanno, G., and Rosa-Velardo, F. 2013. On the coverability and
reachability languages of monotonic extensions of petri nets. TCS
467:12–29.
Deutsch, A.; Sui, L.; and Vianu, V. 2007. Specification and verifi-
cation of data-driven web applications. J. of Computer and System
Sciences 73(3):442–474.
ISO/IEC 11404:2007. 2007. Information technology: General-
Purpose Datatypes (GPD). Technical report, ISO/IEC, CH-1211
Geneva 20, Switzerland.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A model
checker for the verification of multi-agent systems. In Proc. of the
21st Int. Conf. on Computer Aided Verification (CAV), volume 5643
of LNCS, 682–688. Springer.
Montali, M.; Calvanese, D.; and De Giacomo, G. 2014. Verifica-
tion of data-aware commitment-based multiagent systems. In Proc.
of the 13th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 157–164.
Montanari, U., and Pistore, M. 2005. History-dependent automata:
An introduction. In Proc. of the 5th Int. School on Formal Methods
for the Design of Computer, Communication, and Software Systems
(SFM-Moby), volume 3465 of LNCS, 1–28. Springer.
Needham, R. 1989. Distributed Systems. Addison Wesley Publ.
Co. chapter Names, 89–101.
Savkovic, O., and Calvanese, D. 2012. Introducing datatypes in
DL-Lite. In Proc. of the 20th Eur. Conf. on Artificial Intelligence
(ECAI).

2037

