
Computational Logic for Run-Time Verification of Web
Services Choreographies: Exploiting the SOCS-SI Tool

Marco Alberti2, Federico Chesani1, Marco Gavanelli2, Evelina Lamma2,
Paola Mello1, Marco Montali1, Sergio Storari2, and Paolo Torroni1

1 DEIS - Dipartimento di Elettronica, Informatica e Sistemistica
Facoltà di Ingegneria, Università di Bologna

viale Risorgimento, 2
40136 – Bologna, Italy

{fchesani, pmello, mmontali, ptorroni}@deis.unibo.it
2 DI - Dipartimento di Ingegneria

Facoltà di Ingegneria, Università di Ferrara
Via Saragat, 1

44100 – Ferrara, Italy
{marco.gavanelli, marco.alberti, lme, strsrg}@unife.it

Abstract. In this work, we investigate the feasibility of using a framework based
on computational logic, and mainly defined in the context of Multi-Agent Sys-
tems for Global Computing (SOCS UE Project), for modeling choreographies of
Web Services with respect to the conversational aspect.

One of the fundamental motivations of using computational logic, beside its
declarative and highly expressive nature, is given by its operational counterpart,
that can provide a proof-theoretic framework able to verify the consistency of
services designed in a cooperative and incremental manner.

In particular, in this paper we show that suitable “Social Integrity Constraints”,
introduced in the SOCS social model, can be used for specifying global protocols
at the choreography level. In this way, we can use a suitable tool, derived from
the proof-procedure defined in the context of the SOCS project, to check at run-
time whether a set of existing services behave in a conformant manner w.r.t. the
defined choreography.

1 Introduction

Service Oriented Architectures (SOA) have recently emerged as a new paradigm for
structuring inter-/intra- business information processes. While SOA is indeed a set of
principles, methodologies and architectural patterns, a more practical instance of SOA
can be identified in the Web Services technology, where the business functionalities are
encapsulated in software components, and can be invoked through a stack of Internet
Standards.

The standardization process of the Web Service technology is at a good maturation
point: in particular, the W3C Consortium has proposed standards for developing ba-
sic services and for interconnecting them on a point-to-point basis. These standards
have been widely accepted; vendors like Microsoft and IBM are supporting the tech-
nology within their development tools; private firms are already developing solutions

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 58–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Computational Logic for Run-Time Verification of Web Services Choreographies 59

for their business customer, based on the web services paradigm. However, the needs
for more sophisticated standards for service composition have not yet fully satisfied.
Several attempts have been made (WSFL, XLang, BPML, WSCL, WSCI), leading to
two dominant initiatives: BPEL [1] and WS-CDL [2].

Both these initiatives however have missed to tackle some important issues. We agree
with the view [3,4] that both BPEL and WS-CDL languages lack of declarativeness,
and more dangerous, they both lack an underlying formal model and semantics. Hence,
issues like run-time conformance testing, composition verification, verification of prop-
erties are not fully addressed by the current proposals. Also semantics issues, needed
in order to verify more complex properties (besides properties like livelock, deadlock,
leak freedom, etc.), have been left behind.

Some of these issues have been already subject of research: generally, a mapping be-
tween choreographed/orchestrated models to specific formalisms is proposed, and then
single issues are solved in the transformed model. E.g., the composition verification is
addressed in [5,6]; process mining and a-posteriori conformance testing are addressed
in [7]; livelock, deadlock, etc. properties are tackled in [8,9].

In this paper, we focus on a particular issue: the conformance testing (also called
run-time behaviour conformance in [3]). Once a global protocol (or choreography) has
been defined, a question arises: how is it possible to check if the actors play in a con-
formant manner w.r.t the defined choreography? Any solution should take into account
answering the question by analyzing only the external, observable behaviour of the
peers, without assuming any hypothesis or knowledge on their internals (in order to not
undermine the heterogeneity).

Taking inspiration by the many analogies between the Web Services research field
and the Multi Agent System (MAS) field [5], we exploit a framework, namely SCIFF,
for verifying at run-time (or a-posteriori using an event log) if the peers behave in a
conformant manner w.r.t. a given choreography. Within the SCIFF framework, a lan-
guage suitable for specifying global choreographies is provided: a formal semantics
is provided too, based on abductive logic programming [10]. We defined the SCIFF
framework in the SOCS european project [11], where we addressed the issue of pro-
viding a formal language to define multi agent protocols. Its operational counterpart
is an abductive proof procedure, called SCIFF, exploited to check the compliance of
agents to protocols. Moreover, a tool (namely SOCS-SI [12]) has been developed for
automatically analyzing and verifying peers interactions, w.r.t. a protocol expressed in
the language above.

In this paper we show that suitable ”Social Integrity Constraints”, introduced in the
SOCS social model, can be used for specifying global protocols at the choreography
level. In this way, we can use a suitable tool, derived from the proof-procedure defined
in the context of the SOCS project, to check at run-time whether a set of existing ser-
vices behave in a conformant manner w.r.t. the defined choreography.

The paper is organized as follows: in Section 2 we introduce the SCIFF framework
and provide its declarative semantics. Then, in Section 3 we sketch how a simple chore-
ography can be modeled within the framework. In Section 4 we show how the run-time
conformance testing issue can be addressed in our framework, grounding our proposal
to a practical example. Discussion and conclusions follow in Section 5.

60 M. Alberti et al.

2 The SCIFF Framework

In this section, we present the SCIFF framework, describing how the conversational
part of a choreography as well as its static knowledge can be suitably expressed within
the framework. Moreover, we provide a formal definition of fulfillment (i.e., a run-time
behaviour of some peers respects a given choreography) and violation (i.e., when the
peers does not behave in a conformant manner).

2.1 Events, Happened Events and Expected Events

The definition of Event greatly varies, depending on the application domain. For exam-
ple, in the Web Service domain, an event could be the fact that a certain web method
has been invoked; in a Semantic Web scenario instead, an event could be the fact that
some information available on a site has been updated. Moreover, within the same ap-
plication domain there could be several different notions of events, depending on the
assumed perspective, the granularity, etc.

The SCIFF language abstracts completely from the problem of deciding “what is an
event”, and rather lets the developers decide which are the important events for model-
ing the domain, at the desired level. Each event that can be described by a Term, can be
used in SCIFF. For example, in a peer-to-peer communication system, an event could
be the fact that someone communicates something to someone else (i.e., a communica-
tive action has been performed):

tell(alice, bob, msgContent)

Another event could be the fact that a web service has updated some information stored
into an external database, or that a bank clerk, upon the request of a customer, has
provided him/her some money (like in Eq. 2). Of course, in order to perform some rea-
soning about such events, accessibility to such information is a mandatory requirement.

In the SCIFF framework, similarly to what has been done in [13], we distinguish
between the description of the event, and the fact that the event has happened. Typically,
an event happens at a certain time instant; moreover the same event could happen many
times 1 . Happened events are represented as an atom H(Event, T ime), where Event
is a Term, and T ime is an integer, representing the discrete time point in which the
event happened.

One innovative contribution of the SCIFF framework is the introduction of expecta-
tions about events. Indeed, beside the explicit representation of “what” happened and
“when”, it is possible to explicitly represent also “what” is expected, and “when” it is
expected. The notion of expectation plays a key role when defining global interaction
protocols, choreographies, and more in general any dynamically evolving process: it
is quite natural, in fact, to think of such processes in terms of rules of the form “if A
happened, then B should be expected to happen”. Expectations about events come with
form

E(Event, T ime)
1 In our approach the happening of identical events at the same time instant are considered as

if only one event happens; if the same event happens more than once, but at different time
instants, then they are indeed considered as different happenings.

Computational Logic for Run-Time Verification of Web Services Choreographies 61

where Event and T ime can be a variable, or they could be grounded to a particular
term/value. Constraints, like T ime > 10, can be specified over the variables: in the
given example, the expectation is about an event to happen at a time greater than 10
(hence the event is expected to happen after the time instant 10).

Given the notions of happened event and of expected event, two fundamental issues
arise: first, how it is possible to specify the link between these two notions. Second,
how it is possible to verify if all the expectations have been effectively satisfied. The
first issue is fundamental in order to easy the definition of a choreography, and it will be
addressed in the rest of this section. The second issue, instead, is inherently related to
the problem of establishing if a web service is indeed behaving in a compliant manner
w.r.t. a given choreography: the solution proposed by the SCIFF framework is presented
in Section 4.1.

2.2 Choreography Integrity Constraints

Choreography Integrity Constraints ICchor are forward rules, of the form

Body → Head

whose Body can contain literals and (happened and expected) events, and whose Head
can contain (disjunctions of) conjunctions of expectations. In Eq. (1) we report the for-
mal definition of the grammar, where Atom and Term have the usual meaning in Logic
Programming [14] and Constraint is interpreted as in Constraint Logic Programming
[15].

ICchor ::= [IC]�

IC ::= Body → Head
Body ::= (HapEvent|Expect) [∧BodyLit]�

BodyLit ::= HapEvent|Expect|Literal|Constraint
Head ::= Disjunct [∨Disjunct]�|false

Disjunct ::= Expect [∧ (Expect|Literal|Constraint)]�

Expect ::= E(Term [, T])
HapEvent ::= H(Term [, T])

Literal ::= Atom | ¬Atom

(1)

The syntax of ICchor is a simplified version of that one defined for the SOCS In-
tegrity Constraints [16]. In particular, in the context of choreographies, we do not
consider negative expectations (informally, expectations about prohibited events) and
explicit negation. In fact, we assume that choreographies completely specify all the
events that must happen (by means of expectations), and that not expected events are
indeed forbidden. This assumption is formally specified by the definition of violation
of a choreography, that we provide later in the paper (see Def. 2).

CLP constraints [15] can be used to impose relations or restrictions on any of
the variables that occur in an expectation, like imposing conditions on the role of
the participants, or on the time instants the events are expected to happen. For
example, time conditions might define orderings between the messages, or enforce
deadlines.

62 M. Alberti et al.

ICchor allows the user to define how an interaction should evolve, given some pre-
vious situation, that can be represented in terms of happened events. Rules like:

“if a customer requests the withdrawal of X euros from the bank account, the
bank should give the requested money within 24 hours from the request, or
should explicitly notify the user of the impossibility”

can be translated straightforward, e.g. in the corresponding ICchor:

H(request(User, Bank, withdraw(X)), Tr)
→E(give(Bank, User, money(X)), Ta) ∧ Ta < Tr + 24
∨E(tell(Bank, User, not possible, reason(. . .)), Tp)

(2)

2.3 The Choreography Knowledge Base

The Integrity Constraints are a suitable tool for effectively defining the desired behav-
iour of the participants to an interaction, as well as the evolution of the interaction
itself. However, they mostly capture the “dynamic” aspects of the interactions, while
more static information is not so easily tackled by these rules. For example, a common
situation is the one where, before giving the money requested, the bank could check if
the customer’s deposit contains enough money to cover the withdrawal. Or, if the cus-
tomer indeed has a bank account with that bank, and hence if he/she is entailed to ask
for a withdrawal.

Such type of knowledge is independent of the single instance of interaction, but is
often referred during the interaction. The SCIFF framework allows to define such
knowledge in the Choreography Knowledge Base KBchor. The KBchor specifies
declaratively pieces of knowledge of the choreography, such as roles descriptions, list
of participants, etc. KBchor is expressed in the form of clauses (a logic program); the
clauses may contain in their body expectations about the behaviour of participants, de-
fined literals, and constraints, while their heads are atoms. The syntax is reported in
Equation (3).

KBchor ::= [Clause]�

Clause ::= Atom← Cond
Cond ::= ExtLiteral [∧ ExtLiteral]�

ExtLiteral ::= Literal|Expectation|Constraint
Expectation ::= E(Term [, T])

Literal ::= Atom | ¬Atom | true

(3)

Moreover, in our vision, a choreography can be goal directed, i.e. a specific goal
Gchor can be specified. E.g., a choreography used in an electronic auction system could
have the goal of selling all the goods in the store. Another goal could be instead to sell
at least n items at a price higher than a given threshold. Hence, the same auction mech-
anism described by the same rules (integrity constraints), can be used seamlessly for
achieving different goals. Such goals can be defined like the clauses of the KBchor, as
specified in Eq. 3. Typically, a goal is defined as expectations about the outcomes of the
choreography, i.e. in terms of messages (and their contents) that should be exchanged.
If no particular goal is required to be achieved, Gchor is bound to true.

Computational Logic for Run-Time Verification of Web Services Choreographies 63

2.4 Declarative Semantics of the SCIFF Framework

In the SCIFF framework, a choreography is interpreted in terms of an Abductive Logic
Program (ALP). In general, an ALP [10] is a triple 〈P, A, IC〉, where P is a logic pro-
gram, A is a set of predicates named abducibles, and IC is a set of integrity constraints.
Roughly speaking, the role of P is to define predicates, the role of A is to fill-in the
parts of P which are unknown, and the role if IC is to control the ways elements of A
are hypothesised, or “abduced”. Reasoning in abductive logic programming is usually
goal-directed (being G a goal), and it accounts to finding a set of abduced hypotheses
Δ built from predicates in A such that P ∪ Δ |= G and P ∪ Δ |= IC. In the
past, a number of proof-procedures have been proposed to compute Δ (see Kakas and
Mancarella [17], Fung and Kowalski [18], Denecker and De Schreye [19], etc.).

The idea we exploited in the SCIFF framework is to adopt abduction to dynami-
cally generate the expectations and to perform the conformance check. Expectations
are defined as abducibles, and are hypothesised by the abductive proof procedure, i.e.
the proof procedure makes hypotheses about the behaviour of the peers. A confirmation
step, where these hypotheses must be confirmed by happened events, is then performed:
if no set of hypotheses can be fulfilled, a violation is detected. In this paper, we also re-
quire that all the happened events are indeed expected.

A choreography specification C is defined by the triple:

C ≡ 〈KBchor, Echor, ICchor〉
where:

– KBchor is the Knowledge Base,
– Echor is the set of abducible predicates (i.e. expectations), and
– ICchor is the set of Choreography Integrity Constraints.

A choreography instance CHAP is a choreography specification grounded on a set
HAP of happened events. We give semantics to a choreography instance by defining
those sets PEND (Δ in the abductive framework) of expectations which, together with
the choreography’s knowledge base and the happened events HAP, imply an instance
of the goal (Eq. 4) - if any - and satisfy the integrity constraints (Eq. 5).

KBchor ∪HAP ∪PEND |= Gchor (4)

KBchor ∪HAP ∪PEND |= ICchor (5)

At this point it is possible to define the concepts of fulfillment and violation of a set
PEND of expectations. Fulfillment requires all the E expectations to have a matching
happened event, and that all the happened event were indeed expected:

Definition 1. (Fulfillment) Given a choreography instance CHAP, a set of expecta-
tions PEND is fulfilled if and only if for all (ground) terms p:

HAP ∪PEND ∪ {E(p)↔ H(p)} �|= false (6)

64 M. Alberti et al.

Symmetrically, we define violation as follows:

Definition 2. (Violation) Given a choreography instance CHAP, a set of expectations
PEND is violated if and only if there exists a (ground) term p such that:

HAP ∪PEND ∪ {E(p)↔ H(p)} |= false (7)

Notice that, w.r.t. the original SCIFF framework defined for the MAS scenario, the
definitions of fulfillment and violation are slightly different. In fact in the Web Services
scenario we consider as a violation all the events that happen without being expected.
Notice that two different kinds of violation are detected by SCIFF: i) an expected event
does not have a corresponding happened event, and therefore the expectation is not
fulfilled; ii) an event happens without an explicit corresponding expectation.

The operational counterpart of this declarative semantics is the SCIFF proof proce-
dure described in Section 4. SCIFF has been proven sound and complete in relevant
cases [20].

3 Specifying a Choreography in the SCIFF Framework

In this section we develop a simple example in the SCIFF framework. To our purposes,
let us consider a revised version of the choreography proposed in [3]. The choreography
(shown in Figure 1) models a 3-party interaction, in which a supplier coordinates with
its warehouse in order to sell and ship electronic devices. Due to some laws, the supplier
should trade only with customers who do not belong to a publicly known list of banned
countries.

The choreography starts when a Customer communicates a purchase order to the
Supplier. Supplier reacts to this request asking the Warehouse about the availabil-
ity of the ordered item. Once Supplier has received the response, it decides to can-
cel or confirm the order, basing this choice upon Item’s availability and Customer’s
country. In the former case, the choreography terminates, whereas in the latter one a
concurrent phase is performed: Customer sends an order payment, while Warehouse
handles the item’s shipment. When both the payment and the shipment confirmation
are received by Supplier, it delivers a final receipt to the Customer. The specification
of this choreography is given in Spec. 3.1 2 . The events are represented in the form
msgType(sender, receiver, content1, . . . , contentn), where the msgType, sender,
receiver and contenti retain their intuitive meaning.

(IC1) specifies that, when Customer sends to Supplier the purchase order, includ-
ing the requested Item and his/her Country, Supplier should request Item’s avail-
ability to Warehouse. Warehouse should respond within 10 minutes to Supplier’s
request giving the corresponding quantity Qty (IC2). The deadline is imposed as a
CLP constraint over the variable Tqty , that represents the time in which the response is
sent.

2 For the sake of clarity, we omit roles specification, which may be simply expressed in the
KBchor . Moreover, although it is possible to introduce expectations also in the body of the
ICchor, here we show an example where the bodies of the rules contain only happened events.

Computational Logic for Run-Time Verification of Web Services Choreographies 65

Specification 3.1 ICchor specification of the example in figure 1

H(purchase order(Customer, Supplier, Item, Country), Tpo)

→E(check availability(Supplier, Warehouse, Item), Tca) ∧ Tca > Tpo

(IC1)

H(check availability(Supplier, Warehouse, Item), Tca)

→E(inform(Warehouse, Supplier, Item, Qty), Tqty)

∧ Tqty > Tca ∧ Tqty < Tca + 10

(IC2)

H(purchase order(Customer, Supplier, Item, Country), Tpo)

∧ H(inform(Warehouse, Supplier, Item, Qty), Tqty)

→E(accept order(Supplier, Customer, Item), Tao)

∧ ok(Qty, Country) ∧ Tao > Tpo ∧ Tao > Tqty

∨E(reject order(Supplier, Customer, Item), Tro)

∧ ¬ok(Qty, Country) ∧ Tro > Tpo ∧ Tro > Tqty

(IC3)

H(accept order(Supplier, Customer, Item), Tao)

→E(shipment order(Supplier, Warehouse, Item, Customer), Tso)

∧ E(payment(Customer, Supplier, Item), Tp) ∧ Tso > Tao ∧ Tp > Tao

(IC4)

H(shipment order(Supplier, Warehouse, Item, Customer), Tso)

→E(request details(Warehouse, Customer), Trd) ∧ Trd > Tso

(IC5)

H(request details(Warehouse, Customer), Trd)

→E(inform(Customer, Warehouse, Details), Tdet) ∧ Tdet > Trd

(IC6)

H(shipment order(Supplier, Warehouse, Item, Customer), Tso)

∧ H(inform(Customer, Warehouse, Details), Tdet)

→E(confirm shipment(Warehouse, Supplier, Item), Tcs) ∧ Tcs > Tso ∧ Tcs > Tdet

(IC7)

H(payment(Customer, Supplier, Item), Tp)

∧ H(confirm shipment(Warehouse, Supplier, Item), Tcs)

→E(delivery(Supplier, Customer, Item, Receipt), Tdel) ∧ Tdel > Tcs ∧ Tdel > Tp

(IC8)

Specification 3.2 KBchor with some banned countries
ok(Qty, Country):-

Qty>0,
not banned_country(Country).

banned_country(shackLand).
banned_country(badLand).

66 M. Alberti et al.

Customer Supplier

Order Item
send PO to Supplier

Confirm Order
send PO acceptance
to Customer

Warehouse

Check Stock
send ordered item to Warehouse
receive availability from Warehouse

OK not(OK)

Cancel Order
send PO rejection
to Customer

Order Shipment
send shipment order to Warehouse

Make Payment
send payment info to Supplier

Get Shipment Details
send request to Customer
receive details from Customer

Confirm Shipment
send shipment confirmation to

Supplier

Receipt Delivery
send receipt to Customer

Fig. 1. A simple choreography example

After having received the requested quantity, Supplier decides whether to accept or
reject Customer’s order (IC3). As we have pointed out, the decision depends upon the
quantity and the Country the Customer belongs to; Supplier may accept the order
only when Qty is positive and customer’s Country is not in the list of banned coun-
tries. This last condition has been expressed using a predicate defined in the KBchor,
showed in Spec. 3.2. If Supplier has accepted the purchase order, then Customer is
expected to pay for the requested Item and, at the same time, Supplier will send a
shipment order to Warehouse, communicating the involved Item and Customer’s
identity (IC4). Warehouse will use Customer’s identity in order to communicate
with him/her and asking for shipment details (IC5). 3

When Customer receives the request for details, then he/she is expected to respond
giving his/her own Details (IC6). After having received them, Warehouse should
sends to Supplier a shipment confirmation (IC7). Finally, (IC8) states that when both
the payment and the shipment confirmation actually happen Supplier is expected to
deliver a Receipt to Customer.

3 This could be viewed, at a higher level, as a channel passing mechanism, since Customer is
used as a content part of the first message, and as receiver of the second one.

Computational Logic for Run-Time Verification of Web Services Choreographies 67

4 Run-Time Conformance Verification of Web Services
Interactions

In Section 2 we have introduced some key concepts of our approach, in particular hap-
pened events and expectations, and a declarative semantics, together with the notion of
fulfillment and violation of a choreography specification. In this section we show how,
by exploiting these concepts, it is possible to perform the run-time conformance check,
by the operational counterpart of the declarative semantics, represented by the SCIFF
proof procedure. We also show how SCIFF operates on a concrete interaction example.

4.1 Detecting Fulfilment and Violation: The SCIFF Proof Procedure and the
SOCS-SI Tool

We developed the SCIFF proof procedure for the automatic verification of compliance
of interactions w.r.t. a given choreography. Then, we developed a Java-based applica-
tion, SOCS-SI, that receives as input the specification of a choreography and the happen-
ing events, and provides as output the answer about the conformance issue. SOCS-SI
uses the SCIFF proof procedure as inference engine, and provides a Graphical User
Interface for accessing the results of the conformance task.

Fig. 2. The SOCS-SI tool

The SCIFF proof procedure considers the H events as predicates defined by a set
of incoming atoms, and is devoted to generate expectations corresponding to a given
set of happened events and to check that expectations indeed match with those events.
The proof procedure is based on a rewriting system transforming one node to another
(or to others) as specified by rewriting steps called transitions. A node can be either the
special node false, or defined by the following tuple

T ≡ 〈R, CS, PSIC,PEND,HAP,FULF,VIOL〉

68 M. Alberti et al.

where

– R is the resolvent (initially set to the goal G);
– CS is the constraint store (à la CLP [15]);
– PSIC is a set of implications, derived from the ICchor;
– PEND is the set of (pending) expectations (i.e., expectations have not been ful-

filled (yet), nor they have been violated=;
– HAP is the history of happened events;
– FULF and VIOL are the sets of fulfilled and violated expectations, respectively.

We cannot report here all the transitions, due to lack of space; the interested reader can
refer to [21]. As an example, the fulfilment transition is devoted to prove that an expec-
tation E(X, Tx) has been fulfilled by an event H(Y, Ty). Two nodes are generated: in
the first, X and Tx are unified respectively with Y and Ty , and the expectation is ful-
filled (i.e., it is moved to the set FULF); in the second a new constraint that imposes
disunification between (X, Tx) and (Y, Ty) is added to the constraint store CS. At the
end of the computation, a closure transition is applied, and all the expectations remain-
ing in the set PEND are considered as violated. The SCIFF proof procedure can be
downloaded at http://lia.deis.unibo.it/research/sciff/.

The SOCS-SI software tool is a Java-based application, that provides to the user
a GUI to access the outcomes of the SCIFF proof procedure. It has been developed
to accept events that happen dynamically, from various events source. It accepts, as
event source, also a log file containing the log of the relevant events. In this way, it is
possible to perform the conformance verification i) at run-time, by checking immedi-
ately the incoming happened events (possibly raising violations as soon as possible),
and ii) a posteriori, analyzing log files. When performing run-time verification, if time
events (i.e., events that represent the current time instant) are provided (possibly by
an external source, e.g. a clock), SOCS-SI is able to use such information to detect
deadline expirations with a discrete approximation to the nearest greater time instant.
A snapshot of SOCS-SI GUI is shown in Figure 2. SOCS-SI can be downloaded at
http://www.lia.deis.unibo.it/research/socs si/socs si.shtml.

4.2 Example of Run-Time Conformance Verification

In our scenario, the criminal bankJob beagle wants to buy a device from the on-
line shop devOnline, whose warehouse is devWare. devOnline is quite greedy, and
therefore trades with everyone, without checking if the customer comes from one of
the banned countries. As a consequence, even if bankJob comes from shackLand,
one of the banned countries, devOnline sells him the requested device, thus violat-
ing the choreography. Table 1 contains the log of the scenario from the viewpoint of
devOnline; note that messages are expressed in high level way, abstracting from the
SOAP exchange format.

When the first event (labeled m1 in Table 1) happens, (IC1) is triggered, and an
expectation about devOnline’s behaviour is consequently generated:

PEND = { E(check availability(devOnline, Warehouse, device), Tca) ∧ Tca > 2}

http://lia.deis.unibo.it/research/sciff/
http://www.lia.deis.unibo.it/research/socs_si/socs_si.shtml

Computational Logic for Run-Time Verification of Web Services Choreographies 69

Table 1. Log of messages exchanged by devOnline in our scenario

Id message sender receiver content time

m1 purchase order bankJob devOnline [device,shackLand] 2
m2 check availability devOnline devWare [device] 3
m3 inform devWare devOnline [device,3] 10
m4 accept order devOnline bankJob [device] 12
m5 shipment order devOnline devWare [device,bankJob] 13
m6 confirm shipment devWare devOnline [device] 16
m7 payment bankJob devOnline [device] 19
m8 delivery devOnline bankJob [device,receipt] 21

The happening of m2 fullfills the pending expectation and matches with the body of
(IC2), generating a new one:

FULF = { E(check availability(devOnline, devWare, device), 3)}
PEND = { E(inform(devWare, devOnline, device, Qty), TQty)

∧Tqty > 3 ∧ Tqty < 13}

The happening of m3 fulfills the current pending expectation respecting the deadline.
Moreover, it triggers (IC3), and two different hypotheses are considered (acceptance
and rejection of the order). However, since the predicate ok(3,shackLand) is eval-
uated by SCIFF to false, only the expectation about the order rejection is considered:

FULF = { E(check availability(devOnline, devWare, device), 3),

E(inform(devWare, devOnline, device, 3), 10)}
PEND = { E(reject order(devOnline, bankJob, device), Tro)

∧Tro > 3 ∧ Tro > 10}

As a consequence, when devOnline accepts the purchase order of bankJob sending
the message m4, the SCIFF proof procedure detects a violation, since m4 is not explic-
itly expected.

5 Discussion and Conclusion

In this paper, we have addressed the run-time conformance verification issue w.r.t. web
services interaction. We propose to use the SCIFF framework and the SOCS-SI tool,
and to adapt them to the Web Services peculiar features. Indeed, the presented proposal
is part of a bigger and complex framework, sketched in Figure 3. We envisage two
major research directions:

1. a translation issue, where a choreography specification is automatically translated
to its corresponding ICchor and KBchor, together with its Gchor;

2. a verification issue, that consists in three different types of verification (each one
addressed by its own proof-theoretic verification tool).

70 M. Alberti et al.

Fig. 3. Global view of our ongoing research

With respect to the translation issue, currently the link between known and widely
accepted formalisms, such as BPEL and WS-CDL, and our model, is missing. We are
aware that this part is of a fundamental importance, in order to effectively support
our framework. Therefore, we are currently studying a translation algorithm capable
to automatically convert a WS-BPEL/WS-CDL specification to our formalism. We are
also working on the automatic translation of graphical specifications, like for example
BPMN [22]. A first algorithm, that translates a simple graphical workflow language,
has been presented in [23].

With respect to the verification issue, we envisage three possible types of verification.
The first type has been addressed in this work, and is tackled by the SOCS-SI tool
and the SCIFF proof-procedure. Noticeably, SCIFF operates indifferently off-line on a
complete log or at run-time on events as soon as they happen. Therefore, the same tool
is able to perform the conformance verification at run-time or a-posteriori. To support
this type of verification, however, a low-level mechanism for capturing the interaction
events is needed. We do not address this issue, but we recognize it is an important one,
to the end of developing a real system.

The second type of verification is about the proof of “high level” properties: in fact,
besides control-flow properties (like deadlock, liveness, etc.), it is interesting to check if
a group of peers, whose interaction follows a given choreography, can benefit of particu-
lar properties. E.g., in a e-commerce scenario, a buyer is guaranteed to receive the good
he paid for, and the seller is guaranteed to be paid. Assuming the peers behave correctly
(w.r.t. the choreography), the fact that a property holds or not is a consequence of how
the choreography has been specified. To this end, we have developed the g-SCIFF, an
extension of the SCIFF proof procedure, and we applied it to verify some properties of
a security protocol [24]. Other approaches tackle this issue by means of model checking
techniques: e.g., in [25], the authors use model checking techniques to formally verify
that requirements are met by web service systems, and to tackle the property verifi-
cation issue. High level properties are expressed by means of Linear Temporal Logic
formulas, and then verified using model checkers like SPIN or NUSMV.

The third type of verification aims to check if a web service, described by its be-
havioural interface, can play a given role within a choreography. This issue is known
as “A-Priori Conformance Verification”, and it has been tackled by many works in the

Computational Logic for Run-Time Verification of Web Services Choreographies 71

research literature ([5,6], to cite some). We have addressed this problem in [26], com-
bining SCIFF and g-SCIFF: the interested reader can refer to such paper for a compar-
ison of the mentioned approaches.

We would like to clearly state that this is an ongoing work, and that it is far from
being concluded. Several aspects have not yet been exhaustively researched: beside the
automatic translation from other formalisms to our model, we need to test our approach
on significant choreography specifications (currently, we have performed some tests on
global interaction protocols for multi agent systems [27]).

However, we claim that our proposal indeed offers some noticeable advantages. First,
the proposed specification language is declarative, intuitive and of highly expressive na-
ture; ICchor are human readable and clearly represent how the choreography should be
followed by the interacting services. Moreover, a single specification language can be
used to perform several different types of verification. Second, we claim the importance
of modeling messages data and content as well as control flow among them. This kind
of “content awareness” is required to model constraints about the content of messages
and to formalize decisions or, more generally, pieces of knowledge of the choreogra-
phy. Moreover, deadline specification is easily performed by means of CLP constraints,
and business rules can be seamlessly expressed in the choreography knowledge base.
Since the knowledge base is defined as an abductive logic program, powerful forms of
reasoning, such as planning and diagnosis, can be easily integrated into the framework.

Acknowledgements. This work has been partially funded by the MIUR Projects PRIN
2005: “Linguaggi per la specifica e la verifica di protocolli di interazione fra agenti”
and “Vincoli e preferenze come formalismo unificante per l’analisi di sistemi infor-
matici e la soluzione di problemi reali”.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process
Execution Language for Web Services version 1.1. (2003) Available at http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

2. W3C: (Web services choreography description language version 1.0) Home Page:
http://www.w3.org/TR/ws-cdl-10/.

3. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreography
description language (WS-CDL). BPTrends (2005)

4. van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N., Verbeek, H.M.W., Wohed, P.:
Life after BPEL? In Bravetti, M., Kloul, L., Zavattaro, G., eds.: EPEW/WS-FM. Volume
3670 of LNCS., Springer (2005) 35–50

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying the conformance
of web services to global interaction protocols: A first step. In Bravetti, M., Kloul, L., Zavat-
taro, G., eds.: EPEW/WS-FM. Volume 3670 of LNCS., Springer (2005)

6. Kazhamiakin, R., Pistore, M.: A parametric communication model for the verification of
bpel4ws compositions. In: EPEW/WS-FM. (2005) 318–332

7. van der Aalst, W.: Business alignment: Using process mining as a tool for delta analysis and
conformance testing. Requirements Engineering Journal to appear (2005)

http://www.w3.org/TR/ws-cdl-10/

72 M. Alberti et al.

8. Ouyang, C., van der Aalst, W., Breutel, S., Dumas, M., ter Hofstede, A., , Verbeek, H.:
Formal semantics and analysis of control flow in ws-bpel. Technical Report BPM-05-15,
BPMcenter.org (2005)

9. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: Measuring the fit and appropri-
ateness of event logs and process models. In Bussler, C., Haller, A., eds.: Business Process
Management Workshops. Volume 3812. (2005) 163–176

10. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and
Computation 2(6) (1993) 719–770

11. (Societies Of ComputeeS (SOCS): a computational logic model for the description, analysis
and verification of global and open societies of heterogeneous computees. IST-2001-32530)
Home Page: http://lia.deis.unibo.it/Research/SOCS/.

12. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance ver-
ification of agent interaction: a logic-based software tool. Applied Artificial Intelligence
20(2-4) (2006) 133–157

13. Bry, F., Eckert, M., Patranjan, P.: Reactivity on the web: Paradigms and applications of the
language xchange. Journal of Web Engineering 5(1) (2006) 3–24

14. Lloyd, J.W.: Foundations of Logic Programming. 2nd edn. Springer-Verlag (1987)
15. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic Programming

19-20 (1994) 503–582
16. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SOCS com-

putational logic approach for the specification and verification of agent societies. In Priami,
C., Quaglia, P., eds.: Global Computing: IST/FET Intl. Workshop, GC 2004 Rovereto, Italy,
March 9-12. Volume 3267 of LNAI. Springer-Verlag (2005) 324–339

17. Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and Abduction. In
Fukumura, T., ed.: Proc. PRICAI-90, Nagoya, Japan, (Ohmsha Ltd.) 438–443

18. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic programming.
Journal of Logic Programming 33(2) (1997) 151–165

19. Denecker, M., Schreye, D.D.: SLDNFA: an abductive procedure for abductive logic pro-
grams. Journal of Logic Programming 34(2) (1998) 111–167

20. Gavanelli, M., Lamma, E., Mello, P.: Proof of properties of the SCIFF proof-procedure.
Technical Report CS-2005-01, Computer science group, Dept. of Engineering, Ferrara Uni-
versity (2005) http://www.ing.unife.it/informatica/tr/.

21. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The sciff abductive proof-
procedure. In: Proc. of the 9th National Congress on Artificial Intelligence, AI*IA 2005.
Volume 3673 of LNAI., Springer-Verlag (2005) 135–147

22. Initiative, B.P.M.: (Business process modeling notation)
23. Chesani, F., Ciampolini, A., Mello, P., Montali, M., Storari, S.: Testing guidelines confor-

mance by translating a graphical language to computational logic, Workshop on AI tech-
niques in healthcare. In conjunction with ECAI (2006) To appear.

24. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Security protocols
verification in abductive logic programming: a case study. In Dikenelli, O., Gleizes, M.,
Ricci, A., eds.: Proc. of ESAW’05, Ege University (2005) 283–295

25. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal verification of requirements using spin:
A case study on web services. In: Proc. of the Software Engineering and Formal Methods
(SEFM’04), Washington, DC, USA, IEEE Computer Society (2004) 406–415

26. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An abductive
framework for a-priori verification of web services. In Maher, M., ed.: Principles and Practice
of Declarative Programming (PPDP’06), ACM Press (2006) to appear.

27. (The socs protocols repository) Available at http://edu59.deis.unibo.it:8079/
SOCSProtocolsRepository/jsp/index.jsp.

http://lia.deis.unibo.it/Research/SOCS/
http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/index.jsp
http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/index.jsp

	Introduction
	The \mathcal{S}CIFF Framework
	Events, Happened Events and Expected Events
	Choreography Integrity Constraints
	The Choreography Knowledge Base
	Declarative Semantics of the \mathcal{S}CIFF Framework

	Specifying a Choreography in the \mathcal{S}CIFF Framework
	Run-Time Conformance Verification of Web Services Interactions
	Detecting Fulfilment and Violation: The SCIFF Proof Procedure and the $SOCS-SI$ Tool
	Example of Run-Time Conformance Verification

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

