Link Mining
PageRank

From Stanford C246
Broad Question: How to organize the Web?

- **First try**: Human curated Web dictionaries
 - Yahoo,
 - DMOZ
 - LookSmart

- **Second try**: Web Search
 - Information Retrieval investigates documents in a small trusted set
 - Newspaper articles, Patents, etc.

- **But**: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search Challenges

- Web contains many sources of information
 - Who to trust?
 - **Trick:** Trustworthy pages may point to each other

- What is the best answer to query “newspaper”?
 - No single right answer
 - **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
All web pages are not equally “important”

http://www.inf.unibz.it/~mkacimi/ vs www.stanford.edu

There is large diversity in the web-graph node connectivity. So, what about ranking pages by link structure?
Idea: Links as Votes

- A page is more important if it has more links
 - In-links? Out-links?

- Think of links as votes:
 - www.stanford.edu has 23,400 in-links
 - http://www.inf.unibz.it/~mkacimi/ has 1 in-link

- Are all links equal?
 - Links from important pages count more
 - Recursive procedure
Simple Recursive Formulation

- Each link’s vote is proportional to the importance of its source page.
- If page j with importance r_j has n out-links, each link gets r_j/n votes.
- Page j’s own importance is the sum of the votes on its in-links.

$$r_j = r_i/3 + r_k/4$$
PageRank: The “Flow” Model

- A “vote” from an important page is worth more.
- A page is important if it is pointed to by other important pages.
- Define a “rank” r_j for page j as

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

```
"Flow" equations:
- $r_y = \frac{r_y}{2} + \frac{r_a}{2}$
- $r_a = \frac{r_y}{2} + r_m$
- $r_m = \frac{r_a}{2}$
```
PageRank: Matrix Formulation

- **Stochastic adjacency matrix M**
 - Let page \(i \) has \(d_i \) outgoing links

 \[
 M_{ij} = \begin{cases}
 \frac{1}{d_i} & \text{if } i \rightarrow j \\
 0 & \text{else}
 \end{cases}
 \]

 - \(M \) is a column stochastic matrix (Columns sum to 1)

- **Rank vector \(r \):** vector with an entry per page
 - \(r_i \) is the importance score of page \(i \)

 \[
 \sum_i r_i = 1
 \]

 - The flow equations can be written

 \[
 r = M \cdot r
 \]
Example

- Remember the flow equation:
- Flow equation in the matrix form
 \[r_i \cdot d_i = \sum_{i \rightarrow j} \frac{r_i}{d_i} \]
- Suppose page \(i \) links to 3 pages, including \(j \)

\[r = M \cdot r \]
The flow equations can be written

\[r = M \cdot r \]

So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \).

Largest eigenvalue of \(M \) is 1 since \(M \) is column stochastic (with non-negative entries).

We know \(r \) is unit length and each column of \(M \) sums to one so, \(Mr \leq 1 \).

We can now efficiently solve for \(r \!).

The method is called Power iteration.
Power Iteration Method

Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks

Power iteration: a simple iterative scheme
- Suppose there are \(N \) web pages

Initialize:
\[
\begin{bmatrix}
\frac{1}{N}, \ldots, \frac{1}{N}
\end{bmatrix}^T
\]

Iterate:
\[
\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}
\]

Stop when
\[
\left| \mathbf{r}^{(t+1)} - \mathbf{r}^{(t)} \right|_1 < \varepsilon
\]

\(|X|_1 = \sum_{i=1}^{N} |X_i| \) is the \(L_1 \) norm

Can use any other vector norm. e.g., Euclidean
PageRank: How to solve?

- **Power Iteration:**
 - **Set** \(r_j = \frac{1}{N} \)
 - **1:** \(r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - **2:** \(r = r' \)
 - **Goto 1**

- **Example**

\[
\begin{pmatrix}
\vec{r}_y \\
\vec{r}_a \\
\vec{r}_m
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{3} \\
\frac{3}{6} \\
\frac{1}{6}
\end{pmatrix}
\begin{pmatrix}
\frac{5}{12} \\
\frac{1}{3} \\
\frac{3}{6}
\end{pmatrix}
\begin{pmatrix}
\frac{9}{24} \\
\frac{11}{24} \\
\frac{1}{6}
\end{pmatrix}
\cdots
\begin{pmatrix}
\frac{6}{15} \\
\frac{6}{15} \\
\frac{3}{15}
\end{pmatrix}
\]

\[
\begin{array}{ccc}
\text{y} & \text{a} & \text{m} \\
\hline
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0 \\
\end{array}
\]

- \(\vec{r}_y = \frac{\vec{r}_y}{2} + \frac{\vec{r}_a}{2} \)
- \(\vec{r}_a = \frac{\vec{r}_y}{2} + \frac{\vec{r}_m}{2} \)
- \(\vec{r}_m = \frac{\vec{r}_a}{2} \)
Imagine a random web surfer:
- At any time t, surfer is on some page i
- At time $t+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:
- $P(t)$...vector whose i^{th} coordinate is the probability that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages
Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random

$$p(t+1) = M.p(t)$$

- Suppose the random walk reaches a state

$$p(t+1) = M.p(t) = p(t)$$

- Then $p(t)$ is stationary distribution of a random walk

- Our original rank vector r satisfies

$$r = M. r$$

- So, r is a stationary distribution for the random walk
Existence and Uniqueness

- A central result from the theory of random walks (a.k.a Markov processes)

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time \(t=0 \).
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_j} \quad \text{or equivalently} \quad r = M \cdot r \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example

\[
\begin{pmatrix}
 r_a \\
 r_b
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1
\end{pmatrix}
\]

Iteration 0, 1, 2,
Does it converge to what we want?

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_j} \]

Example

\[
\begin{pmatrix}
 r_a \\
 r_b
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix}
\]

Iteration 0, 1, 2,
PageRank: 2 Problems

- **Dead Ends**
 - Some pages have no out-links
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- **Spider Traps**
 - All out-links are within the group
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem 1: Spider Traps

- **Power Iteration:**

 - Set \(r_j = \frac{1}{N} \)
 - \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - And iterate

- **Example**

\[
\begin{align*}
(r_y) &= \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \quad \begin{pmatrix} 2/6 \\ 1/6 \\ 3/6 \end{pmatrix} \quad \begin{pmatrix} 3/12 \\ 2/12 \\ 7/12 \end{pmatrix} \quad \begin{pmatrix} 5/24 \\ 3/24 \\ 16/24 \end{pmatrix} \ldots \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\
(r_a) &= \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \quad \begin{pmatrix} 2/6 \\ 1/6 \\ 3/6 \end{pmatrix} \quad \begin{pmatrix} 3/12 \\ 2/12 \\ 7/12 \end{pmatrix} \quad \begin{pmatrix} 5/24 \\ 3/24 \\ 16/24 \end{pmatrix} \ldots \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\
(r_m) &= \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \quad \begin{pmatrix} 2/6 \\ 1/6 \\ 3/6 \end{pmatrix} \quad \begin{pmatrix} 3/12 \\ 2/12 \\ 7/12 \end{pmatrix} \quad \begin{pmatrix} 5/24 \\ 3/24 \\ 16/24 \end{pmatrix} \ldots \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\end{align*}
\]

\[r_y = r_y/2 + r_a/2\]
\[r_a = r_y/2\]
\[r_m = r_a/2 + r_m\]
Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer had two options:
 - With probability β, follow a link at random
 - With probability $1 - \beta$, jump to some random page

- Common values for β are in the range 0.8 to 0.9

- Surfer will teleport out of spider trap within few steps
Problem 2: Dead Ends

- **Power Iteration:**
 - Set $r_j = \frac{1}{N}$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example**

$$
\begin{bmatrix}
 r_y \\
 r_a \\
 r_m
\end{bmatrix} =
\begin{bmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & \ldots & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 16/24 & \ldots & 0
\end{bmatrix}
$$

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

$r_y = r_y/2 + r_a/2$
$r_a = r_y/2$
$r_m = r_a/2$
Solution: Always Teleport

- **Teleports**: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>½</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>½</td>
</tr>
</tbody>
</table>
Why Teleports Solve the Problem?

- Why are dead-ends and spider traps a problem and why teleports solve the problem?

 - **Spider-traps** are not a problem, but with traps PageRank scores are not what we want

 - **Solution**: never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends are** a problem

 - The matrix is not column stochastic so out initial assumptions are not met

 - **Solution**: Make matrix column stochastic by always teleporting when there is nowhere else to go
Solution: Random Teleports

Google’s solution that does it all:

- At each step, random surfer has two options
 - With probability β, follow a link at random
 - With probability $1 - \beta$, jump to some random page

- PageRank equation

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

d_i: out degree of node i
The Google Matrix

- PageRank equation

\[r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- The Google Matrix A

\[A = \beta . M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

- We have a recursive problem \(r = A . r \)

 And the power method still works!

- What is \(\beta \)?

 In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{bmatrix}
 1/2 & 1/2 & 0 \\
 1/2 & 0 & 0 \\
 0 & 1/2 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1/3 & 1/3 & 1/3 \\
 1/3 & 1/3 & 1/3 \\
 1/3 & 1/3 & 1/3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 7/15 & 7/15 & 1/15 \\
 7/15 & 1/15 & 1/15 \\
 1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]
Computing PageRank

- Key step is matrix-vector multiplication

\[r^{\text{new}} = A \cdot r^{\text{old}} \]

- Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)

- Say \(N = 1 \) billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
A = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{pmatrix}
+ 0.2
\begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15
\end{pmatrix}
\]
Suppose there are N pages.

Consider page i, with d_i out-links.

We have:

$$M_{ij} = \begin{cases} \frac{1}{d_i} & \text{if } i \rightarrow j \\ 0 & \text{else} \end{cases}$$

The random teleport is equivalent to:

- Adding a teleport link from i to every other page and setting transition probability to $(1 - \beta) / N$.
- Reducing the probability of following each out-link from $1 / |d_i|$ to $\beta / |d_i|$.
- Equivalent: Tax each page a fraction $(1 - \beta)$ of its score and redistribute evenly.
Rearranging the Equation

1. \[r = A \cdot r, \text{ where } A_{ij} = \beta M_{ji} + \frac{1 - \beta}{N} \]

2. \[r_j = \sum_{i=1}^{N} A_{ij} \cdot r_i \]

3. \[r_j = \sum_{i=1}^{N} \left[\beta M_{ij} + \frac{1 - \beta}{N} \right] \cdot r_i \]
 \[= \sum_{i=1}^{N} \beta M_{ij} \cdot r_i + \frac{1 - \beta}{N} \sum_{i=1}^{N} r_i \]
 \[= \sum_{i=1}^{N} \beta M_{ij} \cdot r_i + \frac{1 - \beta}{N} \sum_{i=1}^{N} r_i \text{ since } \sum_{i=1}^{N} r_i = 1 \]

So we get

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right] r \]
Sparse Matrix Formulation

- We just rearranged the PageRank equation

\[r = \beta M \cdot r + \left[\frac{1-\beta}{N} \right]_N \]

- Where \(\left[\frac{1-\beta}{N} \right]_N \) is a vector with all \(N \) entries \((1-\beta)/N \)

- \(M \) is a **sparse matrix** (with no dead-ends)
 - 10 links per node, approximately 10.N entries

- So in each iteration, we need to:
 - Compute \(r^{\text{new}} = \beta M \cdot r^{\text{old}} \)
 - Add a constant value \((1-\beta)/N \) to each entry in \(r^{\text{new}} \)
 - Note that if \(M \) contains dead-ends then \(\sum_{j=1}^{N} r^{\text{new}}_j < 1 \)

We also have to normalize \(r^{\text{new}} \) so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

 - **Set:** $r_j^{\text{old}} = \frac{1}{N}$
 - **repeat until convergence:** $\sum_j |r_j^{\text{new}} - r_j^{\text{old}}| > \varepsilon$
 - $\forall j$: $r_j^{\text{new}} = \sum_{i \rightarrow j} \beta \frac{r_i^{\text{old}}}{d_i}$
 - $r_j^{\text{new}} = 0$ if in-degree of j is 0
 - **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{\text{new}} = r_j^{\text{new}} + \frac{1-S}{N}$, where: $S = \sum_j r_j^{\text{new}}$
 - $r^{\text{old}} = r^{\text{new}}$