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Abstract. Realizability and reactive synthesis from temporal logics are
fundamental problems in the formal verification field. The complexity
of the Linear-time Temporal Logic with Past (LTL+P) case led to the
definition of fragments with lower complexities and simpler algorithms.
Recently, the logic of Extended Bounded Response LTL+P (LTLEBR+P)
has been introduced. It allows one to express any safety language defin-
able in LTL and it is provided with an efficient, fully-symbolic algorithm
for reactive synthesis.

In this paper, we extend LTLEBR+P with fairness conditions, assump-
tions, and guarantees. The resulting logic, called GR-EBR, preserves the
main strength of LTLEBR+P, that is, efficient realizability, and makes it
possible to specify properties beyond safety. We study the problem of re-
active synthesis for GR-EBR and devise a fully-symbolic algorithm that
reduces it to a number of safety subproblems. To ensure soundness and
completeness, we propose a general framework for safety reductions in
the context of realizability of (fragments of) LTL+P. The experimental
evaluation shows the feasibility of the approach.

Keywords: Realizability · Temporal Logic · Symbolic Automata

1 Introduction

One of the most important problems in formal methods and requirement anal-
ysis is establishing whether a specification over a set of controllable and uncon-
trollable actions is implementable (or realizable), that is, whether there exists
a controller that chooses the value of the controllable actions and satisfies the
specification, no matter what the values of uncontrollable actions are. This prob-
lem has been formalized in the literature under the name of realizability [3]. The
very close problem of reactive synthesis aims at synthesizing such a controller,
whenever the specification is realizable. Usually, these problems are modelled as
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two-player games between Environment, who tries to violate the specification,
and Controller, who tries to fulfill it. Realizability is known to have a very high
worst-case complexity. In particular, it has a non-elementary lower bound for S1S
specifications [2], and it is 2EXPTIME-complete for LTL specifications [22,23].

In order to apply realizability and reactive synthesis in real-world scenarios,
research has focused on the identification of fragments of logics like S1S and LTL,
with a limited expressive power, for which realizability can be solved efficiently.

A well-known example is Generalized Reactivity(1) logic (GR(1), for short) [1].
In this fragment, a specification is syntactically partitioned into assumptions
about the environment and guarantees for the controller. Both of them are ei-
ther Boolean formulas (α) or safety formulas (Gα) or conjunctions of recurrence
formulas (

∧n
i=1 GFαi). The dichotomy between assumptions and guarantees re-

flects the way a system engineer usually formalizes system’s requirements, which
is summarized by the following sentence: “the controller has to behave in con-
formance to the guarantees, under the given assumptions on the environment”.

On a different direction, other approaches focused on safety fragments of
LTL [4, 25]. In particular, Extended Bounded Response LTL (LTLEBR, for short)
is a safety fragment of LTL+P that allows for a fully symbolic compilation of
formulas into deterministic automata. Such a feature contributes to a great im-
provement in solving time for the synthesis problem. Moreover, LTLEBR has a
well-established expressiveness: LTLEBR can define exactly the set of safety lan-
guages definable in LTL.

Contributions The main contributions of this paper are the following ones. First,
we introduce GR-EBR, an extension of LTLEBR that admits: (i) fairness condi-
tions, in particular, conjunctions of recurrence formulas, that is,

∧
i GFαi, forcing

each formula αi to be true infinitely often; (ii) assumptions/guarantees in the
form of an LTLEBR formula augmented with fairness conditions. In addition to
be able to express any LTLEBR formula, and, consequently, any safety property
definable in LTL, GR-EBR allows also for the definition of properties beyond the
safety fragment, like, for instance, G(p)→ G(q).

Second, we devise a novel framework for deriving complete safety reductions
in the context of realizability of (fragments of) LTL. A notable feature of the
framework is that it provides a link to safety reductions for the model checking
problem and proves that if a reduction is complete for model checking, then it is
also complete for realizability. On one hand, this allows one to reason on Kripke
structures instead of on strategies, which is simpler; on the other hand, it enables
the use of some reductions already exploited in model checking for realizability,
provided that they conform to the framework.

Third, the proposed framework is used to derive a complete safety reduction
for the realizability problem of GR-EBR. A crucial property of the algorithm is
that the realizability check of each safety sub-problem is performed in a fully
symbolic way, thus retaining the distinctive feature of LTLEBR.

Last but not least, we provide an implementation of the algorithm as a proto-
type tool called grace (GR-ebr reAlizability ChEcker). The experimental eval-
uation shows good performance against tools for full LTL+P synthesis.
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Related work GR(1) has been introduced in [1, 21]. It is known that GR(1) is a
good candidate for writing specifications of real-world scenarios, with a relatively
low complexity: the realizability problem can be solved with at most a quadratic
number of symbolic steps in the size of the specification [1]. On the other hand,
GR(1) presents some restrictions that limit its use as a specification language:
(i) safety assumptions/guarantees are either Boolean formulas or formulas of the
form Gα, where the only temporal operator admitted in α is the next operator
X; (ii) assumptions are syntactically constrained to be formulas controlled by
Environment, in the sense that the variables inside the next operators of the
safety part of the assumptions must be uncontrollable. In GR-EBR we relax that
syntactical restrictions of GR(1): for example, the safety assumptions and guar-
antees can be any arbitrary LTLEBR formula, like, for instance, G(r → F[0,10]g).
For this reason, GR-EBR can be considered an extension not only of LTLEBR,
but also of GR(1). On the semantic side, the comparison is more problematic.
On the one hand, all (standard) realizability problems for GR(1) specifications
are definable in LTL+P [1] and also in GR-EBR. On the other hand, we do not
known whether GR-EBR is able to express more properties than GR(1). Our con-
jecture is that this is the case. Take for instance the bounded-response property
G(r → F[0,k]g): it is easily expressible in GR-EBR, but we see no way it could be
definable in GR(1) without introducing additional variables (that would maintain
realizability but not language equivalence).

Bounded synthesis [9, 13] belongs to the class of Safraless techniques [17],
and it consists in bounding the number of times Controller is forced to visit
a rejecting state of a Universal co-Büchi automaton (UCW, for short) for the
initial formula. This corresponds to a safety automaton, which can be either
(i) made deterministic by a suitable generalization of the classical subset con-
struction [7, 11], or (ii) encoded into a constraint system [9, 13] (e.g., SAT- or
SMT-based) which bounds also the size of a candidate controller (this also al-
lows one to tackle undecidable problems, for instance in the case of distributed
or parametric synthesis). Both choices work for the whole class of UCW, and
thus for full LTL. A significant drawback of such an approach is that the UCW,
which can be exponentially larger than the initial specification, is explicitly rep-
resented. Moreover, in the first case, the algorithm for the determinization turns
out to be quite complex, since each state of the resulting automaton is actually
a function. This can also result into a very large state space, that can be tackled
by exploiting either antichains [11] or BDDs [7]. In contrast, as we will see, we
define a reduction tailored to GR-EBR formulas that allows us to exploit the
LTLEBR transformations introduced in [4] for a fully symbolic mapping of the ini-
tial formula directly into a sequence of symbolic safety automata. In particular,
we never build any explicit-state automaton and we avoid the subsequent use of
determinization algorithms.

Organization The rest of the paper is organized as follows. In Sec. 2, we in-
troduce the notation and provide the basic definitions. In Sec. 3, we define the
logic GR-EBR and give an example of GR-EBR specification. The framework for
deriving complete reductions is presented in Sec. 4. In Sec. 5 we describe the
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algorithm for the realizability of GR-EBR specifications. The outcomes of the
experimental evaluation are reported in Sec. 6. Finally, in Sec. 7, we point out
some interesting future research directions.

2 Preliminaries

2.1 Temporal Logics

Linear Temporal Logic with Past (LTL+P) is a modal logic interpreted over
infinite state sequences. Let Σ be a set of propositions. LTL+P formulas are
inductively defined as follows:

φ := p | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2 | Yφ | φ1 S φ2

where p ∈ Σ. Temporal operators can be subdivided into the future opera-
tors, next (X) and until (U), and past operators, yesterday (Y) and since (S).
We define the following common abbreviations (where > stands for any tau-
tology such as p ∨ ¬p): (i) release: φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2); (ii) eventually :
Fφ1 ≡ > U φ1; (iii) globally : Gφ1 ≡ ¬F¬φ1; (iv) once: Oφ1 ≡ > S φ1; (v) his-
torically : Hφ1 ≡ ¬O¬φ1. LTL+P formulas are interpreted over infinite state
sequences (or ω-words) π ∈ (2Σ)ω. We call language a set of ω-words. We write
π |= φ to denote the fact that the state sequence π is a model (or satisfies) the
formula φ. We refer to [4] for the semantics of the LTL+P operators. With |φ|,
we refer to the size of the formula φ, defined as the number of symbols in it. We
define the language of φ, written L(φ), as the set of all and only the models of φ.

An important class of languages is the class of safety properties, that express
the fact that “something bad never happens”. Formally, we define a safety prop-
erty (or safety language) as a language for which it holds that, for any ω-word
that does not belong to language, there exists a finite prefix of it such that all
its continuations do not belong to the language as well. A formula φ is called a
safety formula if L(φ) is a safety language. Recently, Cimatti et al. [4] introduced
a subset of LTL+P, called Extended Bounded Response LTL+P, which expresses
exactly the safety properties that can be defined in LTL+P [5], and gave a sym-
bolic procedure to turn formulas of this fragment into symbolic automata.

Definition 1 (The logic LTLEBR+P [4]). Let a, b ∈ N. An LTLEBR+P formula
χ is inductively defined as follows:

η := p | ¬η | η1 ∨ η2 | Yη | η1 S η2 Pure Past Layer

ψ := η | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U
[a,b] ψ2 Bounded Future Layer

φ := ψ | φ1 ∧ φ2 | Xφ | Gφ | ψ R φ Future Layer

χ := φ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

We define the bounded until operator ψ1U
[a,b]ψ2 as a shortcut of the formula∨b

i=a(Xiψ2 ∧
∧i−1
j=0 X

jψ1), where Xiφ := X(1) . . .X(i)φ. We define LTLP (the pure
past fragment of LTL+P) as the set of all the formulas belonging to the Pure
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Past Layer of Def. 1, respectively. With some abuse of notation, we will denote
with the symbol of the logic (e.g., LTL+P or LTLEBR+P) also the set of all the
formulas of the respective logic.

2.2 Automata

Temporal logic has a strong relation with automata on infinite words [24]. Since
in the following we will work only with symbolic representations, we give here
the definition of symbolic automata. It is well-known that the symbolic repre-
sentation can be exponentially more succinct than the explicit-state one.

Definition 2 (Symbolic Automaton on Infinite Words). A symbolic au-
tomaton on infinite words over the alphabet Σ is a tuple A = (V, I, T, α), such
that (i) V = X ∪ Σ, where X is a set of state variables and Σ is a set of in-
put variables, (ii) I(X) and T (X,Σ,X ′), with X ′ = {x′ | x ∈ X}, are Boolean
formulas which define the set of initial states and the transition relation, respec-
tively, and (iii) α(X) is an LTL+P formula over the variables in X which defines
the accepting condition.

Definition 3 (Languages of Symbolic Automata). An ω-word (or simply
a word) σ = 〈σ0, σ1, . . .〉 is an infinite sequence of letters in Σ. A run τ =
〈τ0, τ1, . . .〉 is an infinite sequence of states (i.e., evaluations of the variables in
X) that are in relation with respect to T (i.e., such that any two consecutive
evaluations satisfy the formula T ). A run τ is induced by the word σ iff τ0 |= I
and (τi, σi, τi+1) |= T , for all i ≥ 0. We say that A is deterministic iff there
exists exactly one trace induced by σ, for each σ ∈ Σω. A word σ is accepted
by A iff there exists an accepting run induced by σ in A. The language of A,
denoted with L(A), is the set of all and only the words accepted by A.

We will refer to three important classes of accepting conditions: (i) safety :
α(X) := Gβ; (ii) Reactivity(1): α(X) := GFβ → GFβ′; (iii) Generalized Reactiv-
ity(1): α(X) :=

∧m
i=1 GFβi →

∧n
j=1 GFβ

′
j ; where each β, β′, βi, β

′
j ∈ LTLP.

2.3 Model Checking, Realizability, and Synthesis

A Kripke structure is a tuple M = (Σ,Q, I, T, L) where: (i) Σ is the input
alphabet, (ii) Q is the (finite) set of states, (iii) I ⊆ Q is the set of initial states,
(iv) T ⊆ Q × Q is a complete transition relation, and (v) L : Q → 2Σ is the
labeling function that assigns to each state the set of atoms in Σ that are true
in that state. We denote with |M | the number of states in M , i.e., |Q|. Given a
path π := 〈q0, q1, . . .〉 in M , we denote with L(π) the sequence 〈L(q0), L(q1), . . .〉.
The path π is called initialized iff q0 ∈ I. The model checking problem takes as
input a Kripke structure and a temporal formula, and asks to find whether all
the initialized traces of the former satisfy the latter.

Definition 4 (The model checking problem). Given a Kripke structure M
and a linear temporal formula φ, the model checking problem is the problem of
finding whether all the initialized traces π of M are such that L(π) |= φ, written
M |= Aφ (where A is the “for all paths” operator of CTL).
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Realizability and reactive synthesis are in some sense more ambitious prob-
lems than model checking, since they aim to find whether a given temporal
formula φ over two sets U and C of uncontrollable and controllable variables,
respectively, is implementable and, if this is the case, to synthesize a possible
implementation. Usually, realizability is modeled as a two-player game between
Environment, who tries to violate the specification and Controller, who tries to
fulfill it. In this setting, an implementation of the specification is represented by
a strategy.

Definition 5 (Strategies and Languages of Strategies). Let U and C
be two disjoint sets of input (or uncontrollable) and output (or controllable)
variables, respectively. A strategy g is a function g : (2U )+ → 2C. We define
the language of the strategy g, denoted as L(g), as the set of all and only the
sequences 〈(U0 ∪C0), (U1 ∪C1), . . .〉 such that Ui ∈ 2U and Ci = g(〈U0, . . . ,Ui〉),
for all i ≥ 0.

Definition 6 (Realizability and Synthesis for LTL). Let φ be a temporal
formula over the alphabet Σ = U ∪C, where U is the set of input variables, C the
set of output variables, and U ∩C = ∅. We say that φ is realizable if and only if
there exists a strategy g : (2U )+ → 2C such that L(g) ⊆ L(φ). If φ is realizable,
the synthesis problem is the problem of computing such a strategy.

The strategies which we are mainly interested in are the ones that can be
represented finitely. In the literature, there are two main (and equivalent) rep-
resentations for finite strategies, that is, Mealy machines and Moore machines.
In this paper, we are mainly interested in the first ones.

Definition 7 (Mealy Machine). A Mealy machine is a tuple M = (ΣU , ΣC , Q,
q0, δ) such that: (i) ΣU and ΣC are the input and output alphabets, respectively;
(ii) Q is the (finite) set of states and q0 is the initial state; (iii) δ : Q×ΣU → ΣC×Q
is the total transition function. We say that an infinite word σ = 〈σ0, σ1, . . .〉 ∈
(ΣU ∪ ΣC)ω is accepted by M iff there exists a trace 〈(q0, σ0), (q1, σ1), . . .〉 ∈
(Q × (ΣU ∪ ΣC))ω such that δ(qi, σi ∩ ΣU ) = (σi ∩ ΣC , qi+1), for all i ≥ 0. We
define the language of M , written as L(M), as the set of all the infinite words
accepted by M .

A fundamental feature is the small model property for realizability of LTL+P
[11, 17, 22], which ensures that each realizable LTL+P formula has at least a
finitely representable strategy.

Proposition 1 (Small model property of LTL+P [22]). Let φ be an LTL+P
formula and n = |φ|. If φ is realizable by a strategy g, then there exists a Mealy
machine Mg such that (i) Mg has at most 22

c·n
states, for some constant c ∈ N,

and (ii) L(Mg) ⊆ L(φ).

3 LTLEBR+P with fairness, assumptions, and guarantees

In this section, we extend LTLEBR+P (see Def. 1) with fairness conditions (i.e.,
of type GFα), assumptions and guarantees (that correspond to the antecedent
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and the consequent of a logical implication). The syntax of the resulting logic,
called GR-EBR, is the following.

Definition 8 (The logic GR-EBR). The GR-EBR logic comprises all and only
those formulas that can be written in the following form:

(ψ1
ebr ∧

m∧
i=1

GFαi)→ (ψ2
ebr ∧

n∧
j=1

GFβj)

where m,n ∈ N, ψ1
ebr, ψ

2
ebr ∈ LTLEBR+P and αi, βj ∈ LTLP, for each i, j ∈ N.

3.1 Expressiveness of GR-EBR

Each LTLEBR+P formula φ is a GR-EBR formula as well. In fact, φ ≡ (>∧>)→
(φ ∧ >) ∈ GR-EBR. It follows that any safety language definable in LTL+P is
definable in GR-EBR as well. In addition, GR-EBR is strictly more expressive
than LTLEBR+P, since the former can express also non-safety properties, like
G(p)→ G(q).

Consider the temporal hierachy defined by Manna and Pnueli in [19]. The
Reactivity class is defined as the set of all and only those languages definable
by formulas of type

∧
i(GFαi → GFβi) where each αi and each βi are pure-

past LTL+P formulas. It is known that LTL+P is expressively equivalent to the
Reactivity class. Moreover, if we fix the number of conjuncts of the formula
above to be N, that the resulting class (called Reactivity(N)) strictly contains
Reactivity(N-1) and is strictly contained in Reactivity(N+1). Compared to this
classification, we have that GR-EBR is at least as expressive as the Reactivity(1)
class, since each formula of type GF(α) → GF(β) belongs to GR-EBR. However,
the exact expressiveness of GR-EBR is still unknown.

On a more practical side, we found that some benchmarks of SYNTCOMP
[15], like simple arbiter N (for each N ∈ {2, 4, 6, 8, 10, 12}) and also escala-
tor bidirectional, can be translated in GR-EBR with minor rewritings.

3.2 An Example

We take the example proposed in [4] and we extend it with fairness, assump-
tions and guarantees. Suppose that we want to synthesize an arbiter that, given
a request from client i (for some i ∈ {1, . . . , n}) in the environment, assigns
the grant to the corresponding client, in such a way to guarantee the following
properties: (1) bounded response: the grant is assigned at most k time units, for
some k > n, after the request is issued; (2) mutual exclusion: the arbiter can
assign a grant at most to one client at a time. The conjunction of the previous
two requirements form the guarantees for the controller. The assumptions for
the environment are the following: (1) initially, there are no requests; (2) if a
request is issued at time i, then it cannot be issued until time i + k; (3) there
are infinitely many requests from each client.
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In order to write a specification of the arbiter, we can model the requests for
the n clients with the (uncontrollable) variables r1, . . . , rn. Similarly, the grant
corresponding to the request ri can be modeled with the (controllable) variable
gi, for each i ∈ {1, . . . , n}. The assumption for the environment corresponds to
the LTLEBR+P formula φe defined as follows:

n∧
i=1

¬ri ∧
n∧
i=1

G(ri → G[1,k]¬ri) ∧
n∧
i=1

GFri

The guarantees for the controller correspond to the LTLEBR+P formula φc defined
as follows:

n∧
i=1

G(ri → F[0,k]gi) ∧ G(
∧

1≤i<j≤n

¬(gi ∧ gj))

The overall specification is φe → φc and syntactically belongs to GR-EBR.
Our goal is to solve the realizability problem for GR-EBR specifications by

reducing it to realizability subproblems for safety specifications. The reduction
to safety, which we will give in Sec. 5, generates a safety formula for each integer
k, in such a way to guarantee the following important properties: (i) soundness,
ensuring that the realizability of the kth subproblem implies the realizability
of the starting formula, and (ii) completeness, establishing the existence of an
upper bound µ such that the unrealizability of all the kth subproblems with
k ≤ µ implies the unrealizability of the starting formula. In the next section
we will give a general framework for (sound and) complete reductions. From it,
in Sec. 5, we will derive one for GR-EBR specifications, showing also how the
realizability of each safety subproblems can be solved symbolically.

4 A Framework of Safety Reductions for LTL+P
Realizability

The central question of this section is: how can we obtain a complete safety
reduction for the realizability problem of specifications written in (fragments of)
LTL? In the following, we propose a framework to answer it.

The core and the main novelty of our framework is a link with safety re-
ductions for model checking: in order to design a complete reduction for the
realizability problem, one can prove that it is complete for the model checking
problem and then use our framework to derive completeness for realizability.
On one hand, this allows to prove completeness at the level of model checking,
which is simpler than proving completeness for realizability. On the other hand,
this opens the possibility of using existing safety reductions already devised for
model checking for realizability as well. We start by defining what is a safety
reduction in the context of our framework.

Definition 9 (Safety reduction). Let S ⊆ LTL be a fragment of LTL. A
safety reduction for S is a function J·K such that, for each formula φ ∈ S over
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the alphabet Σ, it holds that JφK = {φk}k∈N, where φk is a safety formula over
the alphabet Σ such that φk → φ, for any k ∈ N. With JφKk, we will denote the
formula φk of the set above.

Link between realizability and model checking The rationale behind the link
between realizability and model checking is the following one: since we can easily
view Mealy machines as (a particular type of) Kripke structures and viceversa,
and since by Prop. 1 we can restrict realizability to the search of finite strategies
representable by Mealy machines, the realizability problem of the LTL+P formula
φ can be reduced to checking if there exists a Mealy machine Mg such that
M ′g |= Aφ, where M ′g is the Kripke structure corresponding to Mg.

The Kripke structureM ′g corresponding to the Mealy machineMg = (2U , 2C , Q,

q0, δ) is defined as M ′g = (2U∪C , Q′, I ′, T ′, L′) where:

1. Q′ = Q× {qU | U ∈ 2U} × {qC | C ∈ 2C};
2. I ′ = {(q0, qU , qC) ∈ Q′ | δ(q0, U) = (C, q′) for any U ∈ 2U , C ∈ 2C and q′ ∈
Q},

3. T ′ = {((q, qU , qC), (q′, qU ′ , qC′)) | δ(q, U) = (C, q′) for any U,U ′ ∈ 2U , C, C ′ ∈
2C , and q, q′ ∈ Q′} and

4. L′((q, qU , qC)) = U ∪ C.

The Kripke structure M ′g is such that each trace of M ′g corresponds to a word
of Mg, and viceversa.

In proving the completeness theorem, we will abstract from the concrete
safety reduction and give the conditions for a general safety reduction J·K (as
defined in Def. 9) to be complete. These conditions are formalized in Def. 10.

Definition 10 (Sound and Complete safety reduction). Let S ⊆ LTL be
a fragment of LTL, φ a formula in S, and J·K a safety reduction for S. We say
that J·K is µ-complete, for a given function µ : N → N if and only if, for all
φ ∈ S and for all Kripke structures M :

M |= Aφ ⇔ ∃k ≤ µ(|M |) . M |= AJφKk

We can finally state the main theorem of our framework, which uses Def. 10
and Prop. 1 in order to establish that if a safety reduction is complete for the
model checking problem, then it is complete for the realizability problem as well.

Theorem 1 (Soundness and Completeness for LTL+P Realizability).
Let S ⊆ LTL be a fragment of LTL, φ ∈ S a formula over the input alphabet U
and output alphabet C (with n = |φ|) and J·K a µ-complete safety reduction for
S, for a given function µ. It holds that:

φ is realizable ⇔ ∃k ≤ µ(2|U| · 2|C| · 22
c·n

) . JφKk is realizable

Proof. We first prove the soundness, which corresponds to the right-to-left di-
rection. Suppose there exist a k ≤ µ(2|U| ·2|C| ·22c·n) such that JφKk is realizable.
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Then, there exists a strategy g : (2U )+ → 2C such that L(g) ⊆ L(JφKk). By
Prop. 1, there exists a Mealy machine Mg = (2U , 2C , Q, q0, δ) with input al-
phabet 2U and output alphabet 2C such that L(Mg) ⊆ L(JφKk). Starting from
Mg, let M ′g = (2U∪C , Q′, I ′, T ′, L′) be the corresponding Kripke structure. The
Kripke structure M ′g is such that each trace of M ′g corresponds to a word of

Mg, and viceversa. Therefore all the traces π of M ′g are such that L′(π) |= JφKk,

that is M ′g |= AJφKk. Since by hypothesis J·K is a µ-complete safety reduction,
by Def. 10, it holds that M ′g |= Aφ. This means that also L(Mg) ⊆ L(φ). Since
Mg is a Mealy machine, this implies that φ is realizable.

We now prove completeness, which corresponds to the left-to-right direction.
Suppose that φ is realizable. Since φ ∈ S and since S ⊆ LTL, φ is an LTL
formula as well. Therefore, by Prop. 1, there exists a Mealy machine Mg with
input alphabet 2U and output alphabet 2C such that L(Mg) ⊆ L(φ) with at
most 22

c·n
states, for some constant c ∈ N. From Mg, we build an equivalent

Kripke structure M ′g with input alphabet Σ′ = 2U∪C , as described above for
the soundness proof. It holds that M ′g |= Aφ. Since by hypothesis J·K is a µ-

complete safety reduction for S, and since |Q′| = 2|U| · 2|C| · |Q| (where Q and Q′

are the set of states of Mg and M ′g, respectively), by Def. 10, there exists a k ≤
µ(2|U| ·2|C| ·22c·n) such that M ′g |= AJφKk. This means that also L(Mg) ⊆ L(JφKk).

Since Mg is a Mealy machine, this means that there exists a k ≤ µ(2|U| ·2|C| ·22c·n)
such that JφKk is realizable.

Novelty and Usage As already mentioned before, a distinguished and important
feature of our framework is that it provides a link with safety reductions for
the model checking problem. This opens the possibility to use model checking
safety reductions for the realizability problem as well, provided that the reduc-
tion fulfills the requirements in Def. 10. In the next sections, we will define a
concrete safety reduction for GR-EBR specifications that is complete with re-
spect to Def. 10, and we will use it for introducing a novel algorithm for GR-EBR
realizability. Using Theorem 1, we will derive a corollary for the completeness of
our algorithm.

In practice The upper bound for the value of µ(·) (after which we can answer
unrealizable) is doubly exponential in the size of the initial formula and therefore,
in practice, it is prohibitively large. It follows that usually the completeness
of a safety reduction can be exploited in practice only for making sure that,
starting from a realizable specification, we will eventually find a k ∈ N such that
the kth subproblem is realizable. Therefore, like K-Liveness for model checking
[6], we can use our algorithm in parallel with another one that checks for the
unrealizability of the specification. The first that terminates stops the other and,
thus, the entire procedure. We remark that we cannot check the unrealizability
of φ by solving the dualized game (i.e., looking for a Moore-type strategy of
Environment) for ¬φ, because GR-EBR and LTLEBR+P are not closed under
complementation.
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GR-EBR formula φ :=
(φ1
ebr ∧

∧m
i=1 GFαi)→ (φ2

ebr ∧
∧n
j=1 GFβj)

GR(1) acceptance condition:
· build A(φ1

ebr) with safe states ¬error1
· build A(φ2

ebr) with safe states ¬error2
· set objective to

∧m
i=1 GF(αi ∧ ¬error1) →∧n

i=1 GF(βj ∧ ¬error2)

∧m
i=1 GF(αi ∧ ¬error1) →∧n
i=1 GF(βj ∧ ¬error2)

· degeneralization of the
GR(1) objective

SSA for monitors M tot
α and M tot

β

(objective GFmtot
α → GFmtot

β )

· safety reduction for a given
k ∈ N of the R(1) objective

SSA for counter # with
safe states # < k

A(φ1
ebr),

A(φ2
ebr)

· compose ⊗

Ak
safe

· call safety synthesizer back-
end

is Ak
safe

realiz-
able?

output “φ is
realizable”

k++

is k
upper-
bound?

output “φ is
unrealizable”

yes no

yes

no

only in theory

Fig. 1: Low-level view of the procedure for the realizability of GR-EBR formulas.

5 A Safety Reduction for GR-EBR

In this section, we describe the algorithm for solving realizability of GR-EBR
specifications. It consists in three steps. Firstly, we build the product between
the two symbolic and safety automata for the safety parts of both assumptions
and guarantees. This product automaton has a GR(1) accepting condition. The
second step consists in a so-called degeneralization, that, by using determinis-
tic monitors, turns the GR(1) accepting condition into a Reactivity(1) (R(1),
for short) condition. The third and last step, that is the core of the procedure,
reduces the realizability problem over the above automaton to a sequence of
safety synthesis problems, that is, realizability problems over safety (and sym-
bolic) automataAk

safe , one for each index k ∈ N. By introducing a concrete safety
reduction J·Kebr for GR-EBR, and by proving that it is complete with respect to
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Def. 10, we prove the completeness of the entire procedure. The structure of the
full procedure is depicted in Fig. 1.

Finally, note that, as for now, there is no incrementality between an iteration
and the next one, because of the lack of incremental safety synthesizers. The only
point that we save between one iteration and the next one is the construction
of the two symbolic safety automata, which is performed only once during the
procedure.

5.1 Construction of the automaton with a GR(1) condition

In this part, we describe the first step of the algorithm. Starting from a GR-EBR
formula φ := (φ1ebr∧

∧m
i=1 GFαi)→ (φ2ebr∧

∧n
j=1 GFβj), the objective is to obtain

an automaton A such that: (i) it has a GR(1) accepting condition, and (ii) it
recognizes the same language of φ, i.e., L(φ) = L(A). In order to do that, we
first build the two symbolic safety automata for the safety parts of both the
assumptions and the guarantees, that is for φ1ebr and φ2ebr. Since by definition
both are LTLEBR+P formulas, we use the transformation described in [4], to
which the reader is referred for more details.

From now on, let A(φ1ebr) and A(φ2ebr) be the automata for φ1ebr and φ2ebr,
respecively. Let Aφebr

be the product automaton A(φ1ebr)×A(φ2ebr). The question
is how to set the acceptance condition of Aφebr

such that the conditions (i)
and (ii) of above are fulfilled. We answer this question by examining how the
automataA(φ1ebr) andA(φ2ebr) are made internally. Take for example the formula
Gp (for some atomic proposition p ∈ Σ). The safety automaton corresponding
to this formula comprises an error bit as one of its state variables, let us call
it error, which is initially set to be false. The transition function for error

is deterministic and updates error to true if ¬p holds in the current state, or
keeps its value otherwise. The set of safe states comprises all and only those
states in which error is false. In a symbolic setting, this is expressed by the
formula G¬error. In this way, p is forced to hold constantly in all (and only)
the words accepted by the automaton.

A crucial property of each error bit is monotonicity : once error is set to true,
it can never be set to false again. Formally, given a trace τ of the automaton, it
holds that, if there exists i ≥ 0 such that τ(i) |= error, then τ(j) |= error, for all
j ≥ i. Monotonicity of the error bits allows us to express an accepting condition
of type G¬error in terms of GF¬error, by maintaining the equivalence.

Lemma 1 (Monotonicity of Error Bits). Each error bit is monotone.

Proof. Consider a trace τ of an automaton with an accepting condition of the
type G¬error. If τ |= G¬error then of course τ |= GF¬error. Suppose now
that τ |= GF¬error. If by contradiction we suppose that τ 6|= G¬error, we have
that there exists an i ≥ 0 such that τ(i) |= error. By the monotonicity property,
this would mean that also τ(j) |= error, for all j ≥ i, that is τ |= FGerror, but
this a contradiction with out hypothesis. Therefore, we proved that changing the
acceptance condition of an automaton from a G¬error to GF¬error maintains
the equivalence.
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Let error1 and error2 be the error bits of A(φ1ebr) and A(φ2ebr), respectively.
Let A∧→∧ebr be the automaton obtained from Aφebr

by replacing its acceptance
condition with the following GR(1) condition:

(GF¬error1 ∧
m∧
i=1

GFαi)→ (GF¬error2 ∧
n∧
j=1

GFβj) (1)

The intuition is that error1 and error2 keep track of the safety parts of φ, that
is φ1ebr and φ2ebr. The following lemma proves the equivalence between φ and
A∧→∧ebr .

Lemma 2. Let φ be an GR-EBR formula. It holds that L(φ) = L(A∧→∧ebr ).

Proof. Let φ ∈ GR-EBR. φ is of the following form:

(φ1ebr →
m∧
i=1

GFαi)→ (φ2ebr →
n∧
j=1

GFβj)

By the theorems proved in [4], it holds that L(φ1ebr) = L(A(φ1ebr)) and L(φ2ebr) =
L(A(φ2ebr)).

Consider first the left-to-right direction. Let σ ∈ L(φ). We prove that σ ∈
L(A∧→∧ebr ). Each σ ∈ L(φ) is such that: a. either σ |= ¬φ1ebr∨¬(

∧m
i=1 GFαi), b. or

σ |= φ2ebr ∧
∧n
j=1 GFβj Recall that A∧→∧ebr is defines as the product automaton

A(φ1ebr) × A(φ2ebr) with the acceptance condition α defined as (GF¬error1 ∧∧m
i=1 GFαi)→ (GF¬error1 ∧

∧n
j=1 GFβj).

Consider case a. If σ |= ¬φ1ebr ∨ ¬(
∧m
i=1 GFαi), then the trace induced by σ

in A∧→∧ebr is such that at least one of the following two cases hold:

a.1. either ∃i ≥ 0 such that τ(i) |= error1, that is τ |= F(error1). In this case,
we exploit monotonicity of error1. Since τ |= F(error1), it also holds that
τ |= FG(error1), that is τ 6|= GF(¬error1). As a consequence, τ |= α, where
α is the acceptance condition of A∧→∧ebr , and thus σ ∈ L(A∧→∧ebr ).

a.2. or τ |= ¬
∧m
i=1 GFαi. In this case, of course, τ |= α (that is, τ satisfies the

acceptance condition of A∧→∧ebr ), and thus σ ∈ L(A∧→∧ebr ).

Consider now the case b. If σ |= φ2ebr ∧
∧n
j=1 GFβj , then σ |= φ2ebr and σ |=∧n

j=1 GFβj . Therefore, the trace induced by σ inA∧→∧ebr is such that τ |= G(¬error2)∧∧n
j=1 GFβj , that implies that τ |= GF(¬error2)∧

∧n
j=1 GFβj . Therefore, τ |= α,

and thus σ ∈ L(A∧→∧ebr ). The opposite direction can be proved similarly.

5.2 Degeneralization

The objective of this part is to transform the GR(1) accepting condition of the
automaton A∧→∧ebr , that is of the form

∧m
i=1 GFαi →

∧n
j=1 GFβj , into a condition

of the form GFα → GFβ (also called Reactivity(1) objective, R(1), for short).
In this context, we will use the term monitor as a synonym of deterministic
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automaton. In order to accomplish the task, for each αi (resp. for each βi), we
define a monitor Mαi (resp. Mβi) that is set to true when αi (resp. βi) has been
read and is reset to false when all the αi (resp. βi) have been read. For this last
condition, we define the monitors M tot

α and M tot
β .

Let Mαi and M tot
α be the symbolic safety automata such that their input

alphabet is 2Σ (where Σ is the alphabet of the starting GR-EBR formula), their
set of state variables are {mαi} and {mtot

α }, respectively, all their reachable
states are safe states, and their transition relations are the following:

i n i t (mαi ) := 0
next (mαi ) := case
αi : 1
mtotα : 0

d e f au l t : mαi
esac

i n i t (mtotα ) := 0
next (mtotα ) := case
mα1

∧ · · · ∧mαm : 1
d e f au l t : 0

esac
dumbline

We define Mβi and M tot
β as Mαi and M tot

α , respectively, but with αi sub-
stituted with βi and α substituted with β. Let Adegen be the product between
all the Mαi , Mβi , M

tot
α and M tot

β . Let AGF→GF
degen be the automaton obtained from

Adegen by replacing its accepting condition with the Reactivity(1) condition
GFmtot

α → GFmtot
β . We can prove the following lemma, which states that this

step of the algorithm maintains the equivalence.

Lemma 3. L(A∧→∧ebr ) = L(Aφebr
×AGF→GF

degen ).

Proof. We prove separately the two directions. Consider first the right-to-left
direction. Let σ be an infinite word of L(Aφebr

×AGF→GF
degen ). Then σ is a word in

L(Aφebr
). Moreover, σ is a word in L(AGF→GF

degen ) and thus there exists a run τ

induced by σ such that τ |= GFmtot
α → GFmtot

β , that is, τ |= FG¬mtot
α ∨ GFmtot

β .
We divide in cases:

– if τ |= FG¬mtot
α , then by the semantics of the temporal operators F and G,

there exists an i ≥ 0 such that for all j ≥ i, τj |= ¬mtot
α . By construction

of the monitors mtot
α , this means that there exists an i ≥ 0 such that for

all j ≥ i, τj |=
∨m
k=1 ¬mαk . This implies that, there exists a k ∈ [1,m] and

an i ≥ 0 such that for all j ≥ i, such that τj |= ¬mαk . Indeed, suppose by
contradiction that it is not so: then for all k ∈ [1,m], there exists infinitely
many positions i ≥ 0 such that τi |= mαk . This would mean that the monitor
M tot
α is set to true infinitely many times, that is GFmtot

α , but this is a con-
tradiction with our hypothesis. Therefore, it holds that τ |=

∨m
k=1 FG¬mαk ,

and thus also that τ |=
∧m
i=1 GFαi →

∧n
j=1 GFβj . Overall, since τ is induced

by σ, we have that σ is a word of L(Aφebr
) that induces a run τ such that

τ |=
∧m
i=1 GFαi →

∧n
j=1 GFβj , that is σ ∈ L(A∧→∧ebr ).

– If otherwise τ |= GFmtot
β , then there exists infinitely many positions i ≥ 0

such that τi |= mtot
β . Moreover, it holds that for all i1 ≥ 0 and for all i2 ≥ i1,

if τi1 |= mtot
β and τi2 |= mtot

β , then, for all 1 ≤ k ≤ n, there exists a i1 ≤ j ≤ i2
such that τj |= mbk . Putting together these two points, we have that for all
1 ≤ k ≤ n, there exists infinitely many i ≥ 0 such that τi |= mbk . That is,
τ |=

∧n
k=1 GFmbk . By definition of the monitors Mβi and since τ is induced
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by σ, we have that σ is a word in L(Aφebr
) that induces a run τ such that

τ |=
∧m
i=1 GFαi →

∧n
j=1 GFβj . That is, σ ∈ L(A∧→∧ebr ).

The proof the left-to-right direction is specular, and therefore is omitted from
the presentation.

5.3 Reduction to Safety for Reactivity(1) objectives

In this part, we describe a complete safety reduction (see Def. 10) tailored for
Reactivity(1) objectives. We will apply this reduction on the automaton AGF→GF

degen

obtained from the previous step. The intuition is to use a counter to count and
limit the number of positions, after a position in which mtot

β holds, in which

mtot
α ∧ ¬mtot

β holds. We define the counter as follows.

Definition 11 (Counter for the Reactivity(1) objective). Let Ak#→α,β be

the symbolic and deterministic safety automaton whose set of safe states is rep-
resented by the formula G(#→α,β < k) and whose transition relation is the follow-
ing:

i n i t (#→α,β ) := 0
nex t (#→α,β ) := case

mtotβ : 0

mtotα : #→α,β + 1
d e f a u l t : #→α,β

esac

We define Ak
safe := Aφebr

×Adegen×Ak#→α,β , and we set the accepting condi-

tion of Ak
safe to be the one of Ak#→α,β , i.e., G(#→α,β ≤ #→α,β < k). The automaton

Ak
safe is a symbolic and deterministic safety automaton, and therefore it can be

used as an arena for a safety game. In practice, we check the realizability of
Ak

safe by means of a tool for safety synthesis. We start with k = 0, and we check

the realizabilty of Ak
safe : if Controller has a strategy, than we stop, otherwise we

increment k and we repeat the cycle.
In order to prove that this step is sound and complete, we use the framework

described in Sec. 4. We call J·Kebr the safety reduction described in this part.
Since the framework works with formulas rather than with automata, for all
φ ∈ GR-EBR, we define JφKkebr to be any safety formula such that L(JφKkebr ) =
L(Ak

safe). From now, with id : N→ N we denote the identity function.

Theorem 2. J·Kebr is a id-complete safety reduction for GR-EBR.

Proof. We have to prove that, for all φ ∈ GR-EBR, for all Kripke structures M
and for all k ∈ N, it holds that:

M |= Aφ ⇔ ∃k ≤ id(|M |) . M |= AJφKkebr

We prove separately the two directions. Consider first the soundness which cor-
responds to the right-to-left direction. Suppose that M |= AJφKkebr . It holds
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that, for each initialized trace π of M , L(π) |= JφKkebr , where L(·) is the labeling
function of M . Let π be an initialized trace of M . By definition of J·Kebr , it
holds that, there exists a run τ induced by L(π) such that: (i) τ is accepting in
Aφebr

×Adegen, and (ii) τ is accepting in Ak#→α,β . From the second point, we have

that:

– either, #→α,β make infinitely many resets. This means that there exists in-

finitely many positions in τ in which mtot
α holds and, after at most k occur-

rences of mtot
α , there is a mtot

β . Therefore, in particular, there exists infinitely

many positions in which mtot
β holds, that is τ |= GFmtot

β .
– or the counter #→α,β stops to increment because, because it does not read

any mtot
α . This means that there exists finitely many positions in which mtot

α

holds, that is τ |= FG¬mtot
α .

Therefore, it holds that τ |= FG¬mtot
α ∨ GFmtot

β , that is τ |= GFmtot
α → GFmtot

β .
Finally, we have that τ is an accepting run of Aφebr

×Adegen such that τ |=
GFmtot

α → GFmtot
β . Since by hypothesis L(π) is induced by τ , by definition of

AGF→GF
degen , we have that L(π) ∈ L(Aφebr

×AGF→GF
degen ). By concatenating Lemma 2

and Lemma 3, we have that L(π) ∈ L(φ), and therefore π |= φ. It follows that
M |= Aφ.

We now prove completeness, which corresponds to the left-to-right direction.
Suppose that M |= Aφ, where φ ∈ GR-EBR. We prove this case by contradiction.
Suppose therefore that for all k ≤ id(|M |), M 6|= AJφKkebr . This means that there
exists an initialized trace π in M such that L(π) 6∈ L(JφKkebr ), for all k ≤ id(|M |).
By definition of J·Kebr , for k = id(|M |), we have that for all runs τ induced by

L(π) in Aφebr
×Adegen×Ak#→α,β , it holds that τ 6|= G(#→α,β ≤ k). Let τ be one of

these runs. There exists a position i in τ such that τi |= (#→α,β = v), for some
v > k. By definition of the counter #→α,β , the run τ is such that:

∃0 < h1 < h2 < · · · < hv . ( τh1
|= mtot

α ∧ τh2
|= mtot

α ∧ . . . τhv |= mtot
α ∧

∀h1 ≤ h ≤ hv . (τj |= ¬mtot
β ))

Recall that τ is a run induced by L(π). Since v > k, k = id(|M |) and M is a
finite-state Kripke structure, the positions h1 . . . hv in π (attention: not in τ)
cannot be all different. That is, there exists at least two indexes s, e ∈ N such
that: (i) 1 ≤ s < e ≤ v, (ii) πhs = πhe , and (iii) πhs |= mtot

α . Starting from π,
we can build a looping trace π′ that agrees with π in the prefix π[0,he] and then
loops on the interval π[hs,he]. It holds that π′ is an initialized trace of M and
it induces a run τ ′ such that τ ′ |= GFmtot

α ∧ FG¬mtot
β , that is τ ′ 6|= GFmtot

α →
GFmtot

β . Nevertheless, since M |= Aφ, by Lemma 2 and Lemma 3, we have that

L(π′) ∈ L(Aφebr
×AGF→GF

degen ), and therefore this is a contradiction. This means

that it has to hold that L(π) ∈ L(JφKkebr ), that is π |= JφKkebr for all the initialized
traces π of M , and thus there exists a k ≤ id(|M |) such that M |= AJφKkebr .

With Theorem 1, we derive the following corollary that proves the complete-
ness of our procedure.
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Corollary 1. For any formula φ ∈ GR-EBR, it holds that: φ is realizable iff
∃k ≤ id(2|U| · 2|C| · 22c·n) such that JφKkebr is realizable.

6 Experimental Evaluation

We implemented the algorithm described in Sec. 5 and summarized in Fig. 1 in
a prototype tool called grace (which stands for GR-ebr reAlizability ChEcker)
4 . We chose safetysynth [14] as a BDD-based backend for solving each safety
game.

As competitor tools, we chose BoSy [9, 10, 12] and Strix [18, 20]. BoSy
implements the Bounded Synthesis approach (see the paragraph on the related
works in Sec. 1), while Strix is based on parity games and is the winner of
SYNTCOMP 2018, 2019 and 2020. We set a timeout of 180 seconds. The exper-
iments have been run on a 16-cores machine with a 2696.6 MHz AMD core with
62 GB of RAM.

We remark that a comparison with GR(1) synthesis tools is nontrivial. The
majority of the tools for GR(1) only support the realizability of the strict impli-
cation (see for example [8]), not the standard one (which is our case). Therefore,
although the latter can be reduced to the former [1], a non-trivial practical effort
is required to write an algorithm for this translation.

We considered benchmarks of two types: (i) artificial, and (ii) derived from
the SYNTCOMP [14] benchmarks’set. Regarding the artifical benchmarks, we
partitioned them in four categories, each containing 30 benchmarks scalable in
their dimension N , for a total of 120 formulas. The categories are the following
ones:

1. G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . )))→ G(
∧N
i=1(ui ↔ Xci))

2. (G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . ))) ∧ XNGuN ∧ GFuN ) →
(
∧N
i=1(ui ↔ XNci) ∧ GFcN )

3. (G(u0) ∧ XG(u1) ∧ · · · ∧ XNG(uN ) ∧
∧N
i=1 GFui) → (

∧N
i=1 G(ui ↔ ci) ∧∧N

i=1 GFci)

4. (¬u0 ∧ G[0,N ]¬u0 ∧ XN+1Gu0)→ (
∧N
i=1 G(u0 ↔ Xci) ∧

∧N
i=1 GF(ci ∧ u0))

The variables starting with u are uncontrollable, while those starting with c are
controllables. All the benchmarks are realizable, and were specifically crafted
to elicit potential criticalities of grace. In particular, the benchmarks in the
fourth category have been specifically designed in order to force the minimum k
of the termination of grace to increase with their dimension.

Regarding the benchmarks derived from the SYNTCOMP benchmarks’set,
we included (i) simple arbiter N (for each N ∈ {2, 4, 6, 8, 10, 12}), escalator
bidirectional, which belong to the SYNTCOMP benchmarks’ set, and (ii) our
example for an arbiter (Sec. 3.2), with N ∈ {1, . . . , 15}.

Fig. 2 show the comparison between the tools on all the benchmarks of both
types. All times are in seconds. From Fig. 2 (left), it is clear the exponential

4 https://es-static.fbk.eu/tools/grace/

https://es-static.fbk.eu/tools/grace/
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Fig. 2: grace compared to BoSy (on the left) and to Strix (on the right)

blowup in solving time in which BoSy occurs. The blowup involves formulas
of both types, and of all four categories (of artificial benchmarks). For exam-
ple, (i) on category 4, the solving times of BoSy on N = 13, 14 are 19.4 and
136.3 sec., respectively, and the corresponding automata have 27 and 31 states,
respectively. (ii) on simple arbiter N, BoSy takes 45.714 sec. for N = 8, and
reaches the timeout for N = 10. Fig. 3 (left), which compares the dimension of
the benchmarks (X axis) with the solving time of grace, BoSy and Strix (Y
axis), clearly shows this trend. A more precise study of the complexity of BoSy
shows that the majority of the time spent by it is due to the construction of the
UCW corresponding to the input formula, which is the task of the tools ltl3ba
and spot. On the contrary, it is clear from Fig. 2 (left) that grace avoids this
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grace vs BoSy on number of safety sub-problems.
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bad behavior, most likely due to the fact that the explicit state UCW is never
built. Similar considerations can be made for the tool Strix (see Fig. 2, right),
except for the category example-arbiter, in which the solving times of Strix
are consistently better than the ones of grace. A careful study revealed that
all these benchmarks are transformed to the equi-realizable formula true by the
preprocessor of Owl [16] (a tool for ω-automata manipulation), which Strix is
based on.

The plot in Fig. 3 (right) shows, for each index k ranging from 1 to 31 (these
correspond to the columns), on how many benchmarks (of both types) grace
or BoSy terminate with index k (this corresponds to the height of a column).
The benchmarks in category 4 and the ones of simple arbiter N force grace
to terminate with increasing values of k. The plot in Fig. 3 points out that
BoSy does not incur in this growth, except for one benchmark. Nevertheless,
the solving times of grace are still better than the ones of BoSy. This witnesses
the fact that each safety sub-problem generated by grace is very simple to solve.

7 Conclusions

In this paper, we introduced the logic of GR-EBR, an extension of LTLEBR+P
[4] adding fairness conditions and assumes-guarantees formulas, and studied its
realizability problem. We aim at extending the work done in three directions:
(i) as far as we know, there are no safety synthesizer (like safetysynth) that
are able to exploit incrementality ; since in our context, the only part of the
automaton that changes between one iteration and the next one is the counter,
some work may be saved; (ii) since GR(1) is a very efficient fragment, it is
important to investigate whether there is a compilation from GR-EBR to GR(1);
(iii) last but not least, we aim at giving a semantic characterization of GR-EBR,
and at exploiting the proposed framework for more expressive logics, such as full
LTL.
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