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Abstract

In this paper we investigate different optimisa-
tion techniques for query processing in networks
of autonomous data sources, interconnected in a
peer-to-peer fashion by means of GLAV mapping
rules at the schema level. There are no restric-
tions on the topology of the network, in particular,
cyclic networks are allowed. We have shown that
knowledge of network structure may help to sig-
nificantly improve the efficiency of query process-
ing, both in the number of exchanged messages
and in the time to get a complete answer. How-
ever, our optimization methods do not require ad-
vance knowledge of this topology, since the topol-
ogy is discovered during query processing. The
contributions of this paper include a definition of
soundness and completeness for query processing
in dynamically changing networks. Moreover, the
guery answering algorithm is shown to be efficient
with respect to changes of the network. In par-
ticular, when the size of the change during query
processing is sensibly less than the size of the net-
work itself, query processing time is comparable
to that of query processing in a stable network.
The assumption that a change is small with re-
spect to the size of whole network is reasonable
for large scale networks. The results of an experi-
mental evaluation of the algorithm are presented.

Introduction

with its own schema. Rather than requiring the use of a
single, uniform, centralised mediated schema to share data
between peers, Piazza allows peers to define schema map-
pings between pairs of peers (or among small subsets of
peers). In turn, transitive relationships among the sclsema
of the peers are exploited so the entire resources of the
PDMS can be used. The original Piazza system is limited in
the fact that it does not allow complex mapping rules (i.e.,
schema mappings must be safe rules with atomic heads), it
does not allow for fully cyclic mapping rules, and it does
not allow for dynamic networks (i.e., networks where peers
may join or leave anytime).

The problem of a PDMS with autonomous and het-
erogeneous peers exemplified by Piazza is different from
the structured P2P systemsuch adStoicaet al, 2001,
Ratnasamyet al, 2001. The peers in structured P2P
systems form an overlay network that has some super-
imposed logical structure, such as a ring in Chord, a d-
dimensional coordinate space in CAN or a Skip Graph
data structure. This logical overlay structure among the
peers can be utilised to efficiently route a query. This is
achieved by means of distributed hash tables mapping data
and queries to the logical structure of the network. For ex-
ample, in Chord and Skip Graphs the queries can be routed
in O(logn) overlay hops in a network of peers. This can
be achieved only if the schemas of the peers are (almost)
homogeneous and known in advance, so that the distributed
hash tables can be effectively computed. This is not the
case of the scenario of a PDMS with autonomous and het-
erogeneous peers, where peers may join the network by au-
tonomously deciding how to map their own heterogeneous

In this paper, we present a novel efficient distributed queryschema with other schemas of arbitrarily chosen acquain-
answering algorithm for dynamic networks of autonomoustances, each one possibly with a different schema. As a
sources organised in a peer to peer structure..

Our proposal shares the spirit of thRiazza sys-

tem[Halevyet al,, 2003; Tatarinov and Halevy, 20p4The

consequence, it is evident that in each communication step
between two peers the data is transformed according to the
specific semantic schema mapping relating them; therefore,

vision of the Piazza peer data management system (PDMS$yhen some remote data is required to answer a query, the
project is to provide semantic mediation between an endata has to flow through all the intermediate peers in order
vironment of autonomous and heterogeneous peers, eath be interpreted correctly by appropriate transformation



Together with the work presented [ialevy et al, the dimension of the network. These papers consider a net-
2003; Tatarinov and Halevy, 20D4other researchers in- work of databases, possibly with different schemas, inter-
vestigated the theoretical underpinnings of peer databasmnnected by means of mapping rules having conjunctive
management systems. The work present¢@alvaneset  queries both in the body and in the head, with possibly ex-
al., 2004 proposes a logical analysis of the theory behindistential variables both in the body and in the head (called
a PDMS, but it lacks a distributed algorithm: it assumesGLAV rules) as first suggested hZalvaneset al, 2004.
that nodes may exchange both datel mappings, so that Each node can be queried with a conjunctive query over its
only the query node will eventually evaluate the query an-schema, for data which the node can possibly fetch from its
swer in one go — there is no distributed computation ancheighbours using appropriate mapping rules. Unrestricted
the network may be flooded with data. The work presentedyclic topologies of the network are allowed. The proposed
in [Bernsteinet al, 2002; Serafinet al, 2003 proposes PDMS framework is robust in the sense that it suppadyts
a very general theoretical framework for PDMS, with ex- namicnetworks: even if nodes and mapping rules appear or
pressive schema mapping languages (up to first order logiajisappear during the computation, the proposed algorithm
and constraint languages (up to first order logic) applied tawill eventually terminate with a provably sound and com-
single peers. However, no computational characterisatioplete result.
is given. The papeiSerafini and Ghidini, 204describes Some work on distributed data replication uses simi-
a local algorithm to compute query answers in a P2P netlar techniques, such as “lazy replication” and “epidemic
work, but it allows only safe schema mapping rules withalgorithms”[Holliday et al, 2003, but these are not di-
atomic heads. The algorithm is exponential in the numberectly applicable to the kind of PDMS considered by Pi-
of nodes and it floods the network with messages duringaizza and by the other references presented above, since
query evaluation if the network contains cycles. None ofthey rely on a different semantics of the mappings. Sim-
the above PDMS approaches supports dynamic networkdlarly, the routing indexegechnology presented Hyre-
in the case of peers joining or leaving the network duringspo and Garcia-Molina, 200Zan not be applied to the
the computation, neither the termination of the query ankind of PDMS with cyclic mappings and dynamic net-
swering algorithm nor the properties of the possible queryworks, since the presence of cycles in the network together
answer are guaranteed. with the a-priori ignorance of the (dynamic) network topol-

ogy invalidates any careful selection of neighbours pro-

Starting from the general ideas sketched above, the pariding answers. On the positive side, we are considering
per[Franconiet al, 2003 introduces a general logical and to integrate into our PDMS framework the idea ddta
computational characterisation of networks of autonomousnappingsas described ifKementsietsidiset al, 2003;
sources, interconnected by means of schema mapping rulgementsietsidis and Marcelo Arenas, 2008hich intro-
between pairs of peers. This paper defines a precise modeluces a table that maintains mappings to the neighbour’s
theoretic semantics of a PDMS (fully compatible with Pi- data, to mimic a sort of extensional constraint.
azza and the other PDMS framework presented above), it
characterises the general computational properties or thy 4
problem of answering queries to a PDMS, and it presents
tight complexity bounds and basic distributed procedures\nother line of research that is necessary to compare with
for important special cases. The pagEranconiet al, the PDMS framework proposed here, is the standard classi-
20043 analyses a distributed procedure for the problem ofcal logic-based data integration technology, which haabee
local database update in a network of database peers. Tisemmarised in a very clear way blyenzerini, 2002, suc-
problem of local database update is different from the probcessful examples of classical logic-based data integratio
lem of query answering. Given a PDMS, the answer to gechnology are the Information ManifolKirk et al, 199
local query may involve data that is distributed over the net and TsimmigGarcia-Molinaet al,, 1997. The main dif-
work, and this may require the participation of many nodederence is in the role of the schema mapping rules between
at query time. On the other hand, given a PDMS, a “batch™odes: in a PDMS a schema mapping rule is intended for
update algorithm will be such that all the nodes consisgentl data migration and transformation between neighbours, as
and optimally propagate all the relevant data to their neighopposed to the role of global logical constraints in cleasic
bours, allowing for subsequent local queries to be answeredata integration systems. It can be proved (see, [Egn-
locally within a node, without fetching data from other coniet al, 2003) that by adopting a PDMS semantics the
nodes at query time. The update problem has been consid¢omplexity of query answering is reduced from exponen-
ered important by the P2P literature; most notably, recential (or undecidable) down to polynomial.
papers focused on the importance of data exchange and ma- Let’s explain by means of an example why the PDMS
terialisation for a stable P2P netwdikaginet al, 2003;  semantics is different from the classical semantics given
Daswaniet al, 2003. The paper$Franconiet al., 20044 to data integration systems. Suppose we have three
introduce a basic distributed algorithm for query answgerin distributed databases. The first onBH;) is the mu-
in a PDMS, together with theoDB prototypical implemen-  nicipality’s internal database, which has a binary table
tation in the JXTA framework. The proposed algorithm is Gi t i zen- 1 which contains the name of the citizen and
polynomial in data complexity, but it is still exponential i the marital status (with valuesngleor married). The sec-
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ond one PB,) is a public database, obtained from the 1.2 Our Contribution
municipality’s database, with two unary tablbkl e- 2
andFenal e- 2. The third database)B3) is the Pension
Agency database, obtained from a public database, with t
unary tableCi t i zen- 3 and a binary tabl&ar ri age- 3
(stating that two people are married). The three databas
are interconnected by means of the following rules:

The main contribution of this paper is to extend the results
h|%resented inFranconiet al, 2003; 2004a; 2004bby in-
tfoducing and evaluating experimentally a fully distrigdit
SQuery processing algorithm for a PDMS, whichpislyno-
mial both in data complexity and in the dimension of the
network. As it comes out from the comparison with the un-

1:Gtizen-1(z,y) = 2: (Mal e-2(z) vV Fenal e- 2(z)) optimized version of the algorithm, the new version of the
(this rule connectd) B, with DB>) algorithm outperforms the unoptimized one exponentially

2:Mal e-2(z) = 3:Ctizen-3(z) with respect to the size of the network both in message

2:Femal e-2(z) = 3:Citizen-3(z) and time complexity for highly connected networks. The
(these rules conned@B> with DB3) new proposed algorithm handles dynamic networks, and it

In the classical logical model, th@i ti zen- 3 table in works without any starting assumption about the topology

DBs should be filled with all of the individuals in the ©f the network. _ _ .
Gi ti zen- 1 table inDB;, since the following rule is log- The paper is organised as follows: first, we introduce
ically implied: some general definitions of a PDMS, and of its dynamic

o o behaviour. Then we describe the distributed query answer-
1:Gtizen-1(z) = 3: G tizen-3(z) ing algorithms, by emphasising the optimisations that lead
However, in a system of autonomous sources this is not & the polynomial complexity. At the end, we present an
desirable conclusion. In fact, rules should be interpretedgxperimental evaluation of the algorithm on some real and
only for fetching data, and not for logical computation. random cases.

In this example, the tableBeral e- 2 and Mal e- 2 in

DBs will be empty, since the data is fetched frabB, 2 PDMS network of Heterogeneous
yvhere the gender of any specific _entry(Bntl zen-1 Databases

is not known. From the perspective @iB,, the only ] .

thing that is known is that each citizen is in the view We quickly define here a PDMS (also called here a network
(Femal e- 2 v Mal e- 2). Therefore, wherDB; asks for ~ Of autonomous sources), which is basically a collection of
data fromDBs, the result will be empty. local databases together with schema mapping rules that
In other words, the rules interconnect databases pairwise.

3 '\F/zlm(;l- if?(; iff E:: tziegéﬁ_(%)(x) Definition 1 (Local database) Let I be a nonempty finite
’ : set of indexed1,2,...,n}, andC be a set of constants.
will transfer no data fronD B4 to DB3, since no individual ~ For each pair of distinct, j € I, let L; be a first-order
is known in DB5 to be either definitely a male (in which logic without function symbols, with signature disjoirtrr
case the first rule would apply) or definitely a female (in L; but for the shared constangs. Alocal databas®B; is
which case the second rule would apply). We only knowa theory on the first order language.
that any citizen inDB; is either male or female i® B,
and no reasoning about the rules should be allowed. Nodes are interconnected by means of mapping rules. A
In order to explain the importance of cyclic rules, sup- mapping rule allows a nodeto fetch data from its neigh-
pose now to have an additional cyclic pair of rules connectbour nodegy, ..., j,.
ing DB, and DBj3 as follows:
1:Citizen-1(z,"married”) = 3: Marri age- 3(z,y)
3:Marriage-3(z,y) =
1:Citizen-1(z,"married”) A ) ) )
1:Citizen-1(y," “married”) Jrobi(x,y1) A A g be(Xk, yi) = 0 h(X,Y)

These rules serve the purpose to synchronise the P€%heresy, ..., jk, i are distinct indices, each;(x;,y;) is

ple who are known to be married iBB; (by means of 4 formyla ofL;,, andh(x,y) is a formula ofL;, andx =
theCi ti zen- 1 table) with the people who are knownto . ;.. | Xg. !

be married inDB3 (by means of thdar r i age- 3 table).

Suppose that it is known i3, that only John is mar- Note that we are making the simplifying assumption that
ried, and nothing is known i B about marriages. Inthe  equal constants mentioned in different nodes refer to the
classical logical model, a query 1083 asking for the non  same objects, i.e., that they play the role of URIs (Uniform
existence of some married person different from John willresource Identifiers); this is the underlying approachef th
get a negative answerlin a PDMS setting, we actually ex- Semantic Web framework, for example. Other approaches
pect a positive answer, since the only information that is;onsideidomain relationgo map objects between different
fetched is about John. nodeg[Serafiniet al,, 2003, and we plan to consider such
INote that the semantics of a query is tegtain answesemantics. extensions to our model in the future. Note, that predicate

Definition 2 (Schema mapping rule) A mapping ruleis
an expression of the form




names are always distinct in distinct peers; this can be sedbefinition 7 A maximal dependency path for a peeriis a

as modelling the notion of namespaces. dependency path such that it is impossible to add a new
A PDMS system is the collection of nodes intercon- peer to the path or if we add any peer to the path, the result
nected by (possibly cyclic) rules. will not be a closed dependency path. In this paper, when

we describe dependency paths for a peer i, we omit the first
Definition 3 (PDMS system) A Peer Database Manage- peer (i).
ment System (PDMSjs a tuple of the formMDB =

(9,€), whereJ = {DBy,---,DB,} is the set of local There are three types of maximal dependency paths
databases, an@ is the set of mapping rules. starting ini:
A user accesses the information hold by a PDMS by for- 1. a directed acyclic walk, which startsiiand ends in a
mulating a query at a specific node. leaf peer of the network. Example: a pattBE in a
pic.2;

Definition 4 (Query) Alocal queryis a first order formula

in the language of one of the local databades;. 2. a semi-cyclic walk which consist of a directed acyclic

walk which starts in and ends in a some peerand a
directed cycle which starts ilm and ends inv. Exam-
ple: a pathABC B, which consist of an acyclic path
AB and a cycleBC'B;

In this paper we restrict the general framework as fol-
lows:

¢ ggnt;\t?ainnc;g.es are plain relational databases without 3. adirected cycle which starts and ends.iExample:
' a pathABC A.

e schema mapping rules may contain conjunctive . . .
queries in both the head and body (without any safety r'?s an exzmplle,.consmer a PDMS with the following
assumptions and possibly with built-in predicates inScheémas and rules.

the body);
e the body involves only one node per rule; A ¢ oa(X)Y)
: . I : B : bX,Y)
e queries are just conjunctive queries. C o odX,Y), f(X)
In this paper we don't give the details of the logic D : d(X,Y)
based formalism of the PDMS and of queries, as it has E : eX)Y)

been thoroughly analysed in, e.fgFranconiet al., 2003;
Calvaneset al., 2004.
To describe the query processing in a PDMS we need to

introduce the notion of dependency eddeetween peers 1 E:e(X,Y)— B:bX,Y)
of a network of autonomous sources. 9 B:b(X,Y),b(Y,Z) — C: (X, 2)
Definition 5 There is adependency edgieom a peer i to 3 C:e(X,Y),e(Y, Z) = B:b(X, Z)
peerj, if there is a mapping rule with head at peeriand 74 B:bX,)Y),bX,2),X #7Z — A:a(X,Y)
body at peer j. r5 A:a(X,Y) = C: f(X)

Note that the direction of a dependency edges is the op- r6 A:a(X,Y) > D:d(Y, X)
posite of that of the rules. The direction of a rule isthe 77 : D:D(X,Y),D(Y,Z) — C: ¢(X,Y)
direction in which data is transfered, whereas the depen- r8 C:f(X)— A: AX, X)

dency edge has the opposite orientation. In this paper we
useMD3B to denote a PDMS, using terms suchR3BMS

or a network please note that we consider the general case )
when the network isyclic. 7 is used to denote a set of all | N€ dependency edges and the maximal dependency paths
peers in giverMDB, € denotes the set of all mappings, [OF the example above are:

and/l the set of dependency edges between peers in a net-
work derived fromC. Subsets of are denoted byl. We
assume that, £, and@ are always finite sets.

Definition 6 A dependency path for a peer i is a path Q
(11,19, ...,1,) Of dependency edges, such thatl)= i;

2) (i1,...,in—1) IS @ simple path (no one peer appears
twice).



# path |# path |# path |# path

AABCA | B BE | C BE | D ABE

A ABE | B BCAB | C BC | D ABCD

AABCB | B BCB | C DABC | D ABCB

AABCA | BBCDAB | C ABC | D ABCA
C ABE

3 Dynamic behaviour of the network of au-

tonomous sources

One of the distinctive characteristics of PDMS systems is 2.
that the network can vary dynamically. Assume that the

network M DB consist initially of a set of nodek and that
C is an initial set of mappings withh being the initial set

of dependency edges. We model network dynamicity by

Assume that is a partial ordering relation on the set
of dependency edges of the PDMS netwolk: < E iff
there is a directed path from the headif to the tail of
Es.

Definition 9

1. A changeU; =compicte Uz (U; is less wrt
the completeness relation thaly,), iff there is
no deleteLink(i,_) € Ui, such that there ex-
ist deleteLink(j,.) € Uy, and j =< 4 and
deleteLink(j, ) does not occur aftedelete Link (i, ).

A changdU; =<ounq Uz (Uy is less wrt the sound-
ness relation thaiJ,), iff there is noaddLink (i, -) €
U,, such that there existddLink(j,-) € Us, and
j = 4 and deleteLink(j,_) does not occur after
deleteLink(i, ).

adding/removing the mappings between nodes; deletion %efinition 10

a node is therefore modelled by deleting all mapping rules
that relate to this node. With respect to query answering
adding/removing nodes with mappings is easily seen to be
equivalent to the assumption that all nodes are present from

the beginning, and that only the mappings may change.

We define an atomic network change operation as fol-

lows.

e addLink(i,j,rule,id) add the mapping ruleule from
nodej (the body) to nodé (the head).d is the name
of a rule, which should be unique for a given pair of
nodes.

e deleteLink(i,j,id) delete the mapping rulid between
nodes andj

Definition 8
1. A changeU of a network MDB is a sequence of

atomic change operations ovatDB.

. Afinite changeof a network is a finite sequence of
atomic changes.

. Aninitial subchangdU; of a changeU is an initial
prefix ofU.

. AsubchangdJ 4 of U in respect toA C J is a set
of atomic operations of), relevant toA and ordered
with the same order as id.

1. Asound answeof a query@ in a network subject to
runtime changes with respect to a network chahbe
is an answer to the query that is included in the result
that we would obtain if we executed all thédLink
statements before runnin@, and did not execute the
deleteLink statements at all.

. A complete answeof a query@ in a network sub-
ject to runtime changes, is an answer to the query that
contains the result that we would obtain if we executed
all the deleteLink statements before runnin@, and
did not execute theddLink statements at all.

The motivation behind this definition is that we cannot
know in advance what the state of the database will be at
termination, since the changes may happen at any moment
during the query answering algorithm execution. There-
fore, we require that a sound and/or complete answer will
be classically sound and/or complete with respect to the
part of the network that isinchanged The result with
respect to the part that is changed will depend on the or-
der and timing of the execution of the changes. In this
sense, the answer to a query in a network subject to “small”
changes will be still meaningful with respect to the major-
ity of the data that resides in the stable parts of the network

In general, we expect that a query answering algorithm
in a PDMS dynamic network enjoys the following proper-
ties, which will be satisfied by the algorithm we propose in
this paper.

We assume that in the case of an atomic change the nefeorem 1

work will be notified about the change in the following
way:

1. in case ofaddLink(i,j,rule,id) the nodea (which will
fetch data through this rule) gets the notificatia
dRule(i, j, rule, id)

2. in case ofdeleteLink(i,j,id) the noda (which will be

unable to fetch data through this rule) gets the notifi-

cationdeleteRule(i, j, id)

1. (Soundness and completeness) For a finite change of a
network, the query algorithm terminates with a sound
and complete answer.

2. (Termination) In the case of an infinite change to the

network, the query algorithm may not terminate.

. (Complexity) For a finite runtime change of the net-
work, the complexity of the query algorithm at each
node is at most quadratic with respect to the size of
the change.



In many cases, we will not be able to assume that a netto the involved mapping rules. When a peer receives an an-
work change is finite. In the general case, therefore, thewer from an acquaintance, it stores the data into the local
nodes in the network may never reach the fix-point — or atlatabase, by essentially materialising the view represent
least, we may not be able to show that they have reachedlay the head of the involved mapping rule; in practice, it will

fix-point. use local GLAV processing to update the local database, as
suggested ifCalvaneset al, 2004. The actual time when
Definition 11 data are sent back may depend on the particular method of

global query processing optimisation. Shorter delays may
increase the number of messages in the network at global
and local level but may decrease the time to get a complete
answer (see last Section).

Each query; is labelled by a unique identifiéd, which

2. A set of noded, is separated from a set of nodds IS @ssigned the first time the query is formulated. When a
in PDMS network with respect to a changkeif for ~ dueryq with identifierid is processed by a node, the node
any subchange df there is no dependency path from remembers that by storing the pait, ¢), in order to later

anode inA, involving a node i, in the network we understand when to stop in evaluating fixpoints. A query is
obtain by applying that subchange. propagated along the maximal dependency paths induced

by the mapping rules, and, if the maximal dependency path

. . contains a cycle, the query will reach a node with the same
4 The Query Processing Algorithm id, which is the node where the cycle is closed. In order

We now describe our algorithm for distributed query pro-to correctly compute the fixpoint induced by the presence
cessing in a a network of autonomous sources. The alf cycles, a node should continue to propagate queries to
gorithm is based on asynchronous messaging. The asyfelevant neighbours along the maximal dependency paths
chronous model assumes a guaranteed delivery of eadhtil none of the answers from these propagated queries
message, and the preservation of the order of the message®ngs in new information. The following theorem states
during inter-peer communications. No assumption is rehow to correctly decide when a peer has a complete query
quired about the ordering of message delivery globally. Theéinswer and the local query processing can stop.

algorithm is invoked by issuing a query to some node, and

it terminates when the node provides the complete answefheorem 2 The peer has a complete answer to a query

1. A set of nodegl, is separated from a set of nodes
A, in a network of autonomous sources if there is no
dependency path from any nodeAn that involves a
node inA,.

to the query. if and only if the answers to all the reformulated queries
In comparison with other algorithms handling cyclic Propagated along all the maximal dependency paths do not
networks presented in the literature (e[@ranconiet al,  bring new data for the query to the peer.

2004a; 2004b; Serafini and Ghidini, 2000; Calvanese

al., 2004), the algorithm presented here exploits proper- 1here ared((n — 1)) or O((n—1)"/?((n—1)/e)"~")

ties of the network topology to boost the performance ofMaximal dependency paths in a networkropeers. A
distributed query processing in the case of cycles. The disd@ive checking of the condition of theorem 2 (as it was
covery of the part of the PDMS network topology relevantdone in[Franconiet al, 20044) would require exponential

to the query is done automatically during a first pass ofime and exponential number of messages wrtin this
query processing without the need for any specific topolPaper we introduce a way to restrict the.condmons of t.he-
ogy discovery messages. The algorithm handles dynami@'®m 2, in order to reduce the complexity to polynomial.
networks in which new nodes and mappings may appeaﬁ\” (exponentlally'ma'ny) possible pgths can .be enumer-
during algorithm execution. A network change occurring@t€d as the combination of (polynomially mangjiepen-
during the execution of query processing routines does ndient pathEDiestel, 1997, the number of which is a cyclo-
cause additional message exchanges. The network mayatic number of the netwoiRiestel, 1997 and does not

process in parallel several queries that are submitted-o di exceedh? . For example, in the example given in Section 2,
ferent nodes. the pathABC D A can be considered as the combination of

ABCAandACDA. ltis easy to see that theorem 2 holds
also if we consider only the independent maximal depen-
dency path, reducing therefore the complexity as desired.
In the description of the algorithm, we use the conventionAs a matter of fact, this optimisation is very similar to the
that variables, constants and functions with a superscrigiabled execution of a datalog progre@hen and Warren,
always denote variables, constants and functions local t4994.
the node denoted by the superscript. Each node implicitly gets as part of a query answer ex-
When a peer receives a query to answer, the query is prglicit information about the topology of the sub-network
cessed locally by the peer itself using its own data, this firsit depends upon. During the first stage of its execution,
answer is immediately replied back to the node (or userithe query processing algorithm at each node exploits the
which issued the query, and then the query is reformulatedisynchSpanningTree[Lynch, 1996 algorithm in order
and propagated to the relevant neighbour peers, accordirtg construct a spanning tree of the graph. To implement

4.1 Distributed Query Processing



this, no change to the abstract behaviour of the algorithm is
required, but only one additional field of the size of the QUERY-NODE(Q)
identifier of the peer is required. Independent paths arel key < GENERATEUNIQUEVALUE
built by exploiting the spanning tree. The overhead is not 2 state[key] < FALSE
more thenE — n messages, whei® is the number of in- 3 RRules — Rules where Rules[target]
volved mapping rules. contains AToMS(Q) . _
Please note that the addition or deletion of nodes does®  containsmeans that a collection contains
. . ] . at least one element of the set
not change the properties of the algorithm: the neigh- 5 > Query propagation
bours of 'ghe added or deleted nodes will just con5|d_er the6 for each rule in RRules
new queries/data from the added node or stop considering; do
queries/data from the deleted node. 8 Query ™'l (key rule[body])
9 > Local computing of answer
after distributed query processing
10 whencomplete[key] = TRUE
do
COMPUTEANSWERQ)

4.2 Handling of Existential variables

By exploiting results ofCalvaneset al., 2004 we allow to
use existential variables in the heads of the mapping rules12
In order to simplify the processing of queries which use
mappings with existential variables in the heads, we reduce
guery processing to use plain mapping rules without exis-
tential variables but with an extended set of relations.

The basic idea is based on skolemisation: for each rule 3. Rules(id, target, body, head), a relation describing
Jy.q(v,y) < Jz.qp(z, 2) we create a relationr;(z,y), all the mappings outgoing from a given node (which

where i is the identifier of the mapping, and y is a imports data). id is an identifier of the mappings,
new skolem constant, such that there is a one to one  which is assumed to be unique across the network.

Figure 1: The procedure Query-Node

association betweer and y (this can be easily gener-

alised in case the arity of y is more than one). Then

the mapping3dy.q(z,y) < 3Jz.q(x,z) is rewritten as
q(z,y) < Jz.qp(x, 2), ex;(x,y). Then all mappings which

target is an identifier of the target of the mappings
(node which exports datapody is a string represent-
ing the body of the mapping as a conjunction of atoms
from schema'®™9. head is a string representing the

useq(z,y) must be rewritten such that new values are not
propagated. It is assumed that we can determine for each
constant if it is a new value without accessingeiq rela- 4. Paths(path), arelation describing all the paths begin-
tions at different peers. ning from a given node. Eachuth is a string repre-

For example, senting a conjunction of identifiers of mappings con-
stituting the path.

head of the mappings as a set of atoms fraiema.

flight(z,y),flight(y,z) <

-l eg- i . _
two-1 eg-connection(z, 2) 5. complete(key, state), is an array describing the com-

pleteness status of data received by a node during
query evaluation.

would be rewritten as

flight (z,y),f1ight (y,2) <

t wo- | eg- connecti on(z, ), exi(z, 2,y). 6. dcomplete(mapping, flag) is an array de-

scribing the state of the topology discovery.
dcomplete(mapping, TRUE) means that the node

knows the topology for all paths passing through the
links mapping

In practice, the creation of a new relation is a not a good
way to solve the problem since the relation may be large in
the size of datar(*, wheren is the number of constants in
the database, anidis the arity of the mapping rule), and
most of the tuples of the relation are expected to be unused.
We use a functional approach, i.e., eachis implemented 7. Queries(key, source, body, state), a relation which
as a function which takes valuesand returns the unique contains information about the queries being evalu-
tuple representing. The functional approach may actively ated. key is the unique identifier of the queryource
use properties of the domain in order to easily generate a  is the identifier of the mapping through which the

set of new values distinguished from a domain query was senthody is a string representing the query
as a conjunctions of atomsstate is a flag indicat-

ing the state of query executiomLSE means that the
guery evaluation is not finishedRUE means that the
query evaluation is finished.

4.3 The Algorithm
Data structures supported by each node:

1. id, an identifier of the node unique over the whole

PDMS system. 8. SQueries(key, target), a relation describing the

gueries which were sent by a given nodey is the
identifier of the query andarget is the identifier of
the mapping through which the query was sent.

2. schema, a relation describing all the relational data in
a given node.



QUERY(key, query)
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9.

> Query processing in intermediate node 1
source «— SOURCHK) 2
if They,source Queries contains (key, source)

> If a request for a query identified byey 3
was already received by mappirgurce 4
do
exit 5
Insertinto Queries Values(key, source, query, FALSE) 6
QA — COMPUTEANSWER(query) 7
state «— complete.state where complete.key = key 8
if Rules = () 9
do
> Stop topology discovery for leaf nodes 10
dstate «— COMPLETEFULL 11
dcomplete <+ TRUE 12
if SQuery containsAll (Rules.key where Rules.head 13
contains ATOMS(QUERY)) 14
do
> Stop topology discovery 15
if there is no extension of a query path 16
for a given node
dstate «— COMPLETEFULL
dcomplete «— TRUE 17
AnswerSnurce(source)(key, QA, <Zd>, state, dSt(lt@) 18

RRules < Rules where Rules|target] containsaToMs(query) 19
B> this part of algorithm is valid only 20
if database does not contain constraints
for each rule in RRules

21
22

do
if They,targetSRules contains (key, rule[key])
do 23
next 24
25

Rewrite_QueryTer9et(rulelkey]) (o, rule[body])
insert into SQueries Values(key, rule[key])

26

Figure 2: The procedure Query 27

EmptyUpdate(key, path, flag), a relation which logs
the paths through which a query answer brings no up-gg
date to the local data. 30

. . . 31
The following are the predefined functions we assume

to be supported by each node:

1.

32
33

GENERATEUNIQUEVALUE, a function which gener- 34

ates a unique string value across the whole network.

. CoMPUTEANSWER(Q),a function which computes

answer to a query using only local data.

AToMs(Q), a function which returns the set of atomic ¢
symbols in a query Q.

SouRCHK(), a function which returns the identifier of
the mapping through which the query was sent. Func- 7.
tion is callable only from inside the functionu@Rry.

TARGET(), a function which returns the identifier ofa 8.
mapping.

ANSWERkey, QA, Path, state, dstate)

> Answer propagation
> key is an identifier of the query
to which answer is returned
> QA is a dataset representing the query answer
> Path is a sequence of identifiers of nodes participating
in the computation of the answer
> state is a flag for the completeness of the answer
> dstate is a flag needed for topology discovery
mapping < TARGET()
> Information about network
> Propagated only at the first stage of
the execution of the query
if dstate = COMPLETEOr dstate = COMPLETEFULL
do Insertinto Paths values(Path)
if dstate = COMPLETEFULL
do dcomplete[mapping] < TRUE
if for all rmapping in SQuery.mapping
where SQuery.key = key dcomplete[rmapping] = TRUE
do
> If a node knows all paths
for all relevant incoming mappings
then it knows full topology
dcomplete = TRUE
> Processing of received answer
bEmptyUpdate <— UPDATELOCALDATE(QA)
if bEmptyUpdate = TRUE
do
Update setEmptyUpdates.flag = TRUE
where EmptyUpdates.key = key
and EmptyUpdates.path = Path
else
do
Update setEmpty Updates.flag = FALSE
where EmptyUpdates.key = key
and EmptyUpdates.path = Path
> Termination condition
if dcomplete[key] = TRUE and
forall EmptyUpdates.flag = TRUE
where EmptyUpdates.key = key
do
complete[key] — TRUE
> Answer propagation
for each rule in Queries where Queries.body
containsATOMSQA
do
QAS «— ComputeLocal Answer(rule)
AnswerSource(rule.'rule)

(key, QAS, Path + id, state[key], dstate[key])

Figure 3: The procedure Answer

SOURCEMAPPINGID),a function which given a
mapping identifier returns the source node identifier (a
source node is the node in the head of the mapping).

TARGET(MAPPINGID), returns the target identifier of
the mapping.

Rewrite_QueryTeroet(rulelkey]) (key  rule[body]) is
a rewriting algorithm, which takes a query, mappings
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and generates maximal rewriting, then sends it to tar-
get source.

In order to get an answer to a query Q to a nade
the procedure QeERY-NODE(Q) of the node i should be
called. The query answering algorithm is presented in Fig-
ures 1,2, 3.

Since the algorithm is based on asynchronous messag-
ing, a query node receives a continuous flow of answers,
which are required to compute the query answer. It is easy
to see that the system is monotonic, namely that at any mo-
ment in time during the execution of the query answering
algorithm a query node always contain a sound — but possi-
bly incomplete — answer to the query. The query answering
algorithm terminates in a query node when the query node
has the complete answer to the original query. This can be
checked with the following termination condition.

0O 5 10 15 20 25 30 35 40 45 50 55 60 65
Lemma 3 A query node has a complete answer to a query Nodes

if and only if there is no answer for that query through any

incoming dependency path bringing new answer tuples t&igure 4: Query processing using Independent Paths vs.
the query node. the Naive Approach: total time before termination for a

clique network.Time is the total time of query execution
To check the termination condition each node checks thé secondsNodes is the number of nodes across networks.

guery answers it gets through each incoming dependenc% . . . . . .

path. If some path did not bring any new answer tuples, af[ any path m_the graph is contained in a linear combi-

the node “closes” that path locally. If all possible paths dohation of_some independent paths. We can S.hOW that the
: Hyopagation of the query answer through all independent

complete answer to the query. In the case some path brindt"S iS equivalent to the propagation of the query answer

new data, then all dependency paths which have at least rough all t'he dependency paths in the graph- )
node in common with the current query answer path are A Set of independent paths is stored in the relation
changed back to the state “open”. depen_denPath Aftef the topology discovery phase, theT

The problem of a naive implementation of the above ter-10d€ finds the set of independent paths and propagates it to
mination condition is that in general there is an exponéntiaintérmediate nodes to create query answering paths which
number of dependency paths in the network, leading to a@"® Stored in the relatiodnswer_Propagation of each
exponential number of query answer messages and expf0de. After query answering paths are propagated, each
nential time of query processing with respect to the size of'©d€ propagates the query answer according to the inde-
the network. pendent paths only.

The number of independent paths does not exeeed
and the length of each path is less tharwheren is the
number of nodes. This makes the communication complex-
The independent dependency paths optimisation is needéy bounded byO(n?), with O(n?) being the time com-
to speed up the performance of the algorithm in case oplexity of query processing over the network. We have to
cyclic topologies, especially in the case of a large numbenotice that the worst case® holds only for highly con-
of cycles. As explained above, a naive approach makesected networks with many cycles. In high scale Internet-
guery processing time exponential in the number of nodefike networks the number of independent cycles (the cy-
in the network. Experimental results published[fran-  clomatic number of the graph) is aroundand the aver-
coni et al, 2004k have shown that even for small cyclic age length of the cycle is arouridg(n) [Newman, 2003;
networks (e.g., cliques) and small datasets query proces&leisset al, 200(. Research in the graph structure of the
ing becomes intractable very quickly. Internet and of web networK®ill et al, 2007 shows that

The algorithm proposed in this article makes the mesdespite the fact that, in general, network graphs are styong
sage complexity of query processing not more then cubiconnected (or better, that the strongly connected compo-
in the number of nodes in the worst case. nent of the network graph constitutes a big part of whole

An additional function NDEPENDENTPATHS com-  network), the network has a fractal cluster, which gives the
putes the set dhdependentiependency paths, which form opportunity for further topology optimisation. Indepentie
a linear basis to describe all paths in the grdpbtte, paths maybe selected only in a branch of the current node.
1984, namely in the strongly connected component of theThis leads to the cluster optimisation technique presented
dependency graph. We use the property of directed graphia the next Section.

4.4 Independent Dependency Paths



4.5 The cluster optimisation M
400
The cluster optimisation method tries to decrease the num-

ber of messages in the network, but still preserving the 3%
asynchronous communications to get complete answers. 300
This optimisation was created for networks with self-
similarity property and networks which consist of highly-
connected components weakly-connected to each other. 200
According to[Newman, 200Bthis a common property of 150
internet like networks.

The cluster optimisation method selects in distributed
way a highly-connected subcomponent of the graph and 50
tries to localise communications inside the component. 0
Data are not transfered between components before fix- 0 5 10 15 20 25 30 35 40 45 50 55 60 65
point is not reached inside a component. After the fixpoint Nodes
reached, the data are transfered between boundary peers.

The key intuition behind this method is that a cluster of Figure 5: Query processing using Independent Paths vs.
peers (highly connected component) behaves as one pegfe Naive Approach: communication complexity for a
for the outside network. During the first stage of the queryclique network.M is the total number of messages divided

propagation, after a cluster is identified, it is assigneebar  on 500.Nodes is the number of nodes accross network.
resenting identifier which is equal to the minimal (in nu-

merical or lexicographical ordeiy inside the cluster. Dur- name of nodes to their physical network location. Peer-
ing a query answering process each peer runs as it woul-peer database agents were executed with Java HotSpot
have no edges going outside the cluster. After the fixpoinClient VM J2SE 1.4.2 platform for PC computers and Pow-
is reached by the boundary nodes, they propagate the queeyPC. As a data-store, Oracle 10.1.0.2 deployed on a Win-
answer through the outgoing edges. The number of mesdows XP platform was used. Agents belonging to one com-
sages under asynchronous communications is expected foiter were running as threads in one single Java virtual ma-
be inX(m3) times, wheren is an average cluster size. chine.

Our experiments with random graphs and "Internet- PDMS nodes were modeled as threaded JAVA applica-
like” graphs has shown that for such kind of networks thetions. Up to 20 logical nodes were run on one server. At a
expected time of query processing@¥n log(n)) for a  preliminary stage of the experiment it was discovered that

250

100

small average out-degree of the nodes in the graph. up to 20 logical nodes may run one one physical server
without interaction on experimental datasets. Before the
5 Evaluation experiment each node was loaded into the main memory

] N i with mappings and information about physical address of
For our experiments we gsed traditional complexity measjtg adjacent nodes. The global discovery of the network
sures for distributed algorithnisynch, 1996: topology at logical level was performed during experiment.
Six different relational schemas were used describing
bibliographic data extracted from the DBLP and biblio-
rTbraphic database. Each database consists of 200 records
about publications and a varying number of records (from
« thetime complexitys the number of rounds before the 100 to 400)_ about properties of artjcles (authors, editprs,
algorithm terminates. pl_JbIlshers, journals). Sc_:heme conS|s_ted of up to 6 relation
with up to 6 non-key attributes. Mappings consisted of con-
and thetotal timefrom wakeupto termination of the algo- junctive queries up to conjunction of 3 atoms in the body
rithm (similar to the so calletime to completiop In all ~ @nd up to conjunction of two atoms in the head. Existential
experiments measuring time, wall-clock time is reported. Variables were used both in the body and in the header of
The experiment environment consists of 4 PCs with In-th€ mappings.
tel Pentium 4(R) CPU 1.70GHz, 512MB RAM and 900 All peer-to-peer agents were loaded into main memory
MHz PowerPC G3, 640 MB. One of PCs is running Win- With a complete configuration (mappings, logical and phys-
dows XP, and others are running Fedora Linux (Core 1)ical addresses of other agents) and with the connections al-
All computers were located inside a local network with ready established before the starting of the experiments.
bandwidth 100MHz. Communications between nodes are To model the behaviour of a dynamic network, a soft-
implemented in Java RMI protocol; we used a raw protocoware simulation of the network changes was used: each
instead of JXTA pipes, or JIMS messages in order to mak@gent has an interface to halt the agent with a notification
query processing as much efficient as possible, since mo#® the neighbour agents.
messages over networks are “Answer” messages. Currently As noticed before, the original naive version of the algo-
JXTA is used only for node advertisement and to bind therithm presented in the literature was based on a procedure

e the communication complexitig the total number of
messages throughout network before the algorith
terminates;
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Figure 6: Independent Paths optimisation for “Internet Nodes
like” network: total time before termination. k is the pa- _. L )
rameter of density of the network. For big n, k is the aver-Figure 7: Cluster optimisationM is the total amount of
age number of outgoing links for a pedfime is the total messaged\odes is the total number of nodes across net-

time of query processing in secondéodes is the number ~ Work.

of nodes accross network. For this set of experiments a network was created as a

checking all possible node sequences in the dependen t of interconnected clusters. Each cluster is a clique of
gnodes. Clusters are organised into a ring such that there

paths. This leads to exponential time of query processin X
with respect to the node-size of the network. One of theS only one link between two connected clusters. The out-

objectives of this paper is to test theaph-optimisatiorof ~ cOMe of the experiments is shown in Figure 6 and 7.
query processing, i.e., how the properties of the network .
topology, namely the independent paths, may be used t6 Conclusions

make query processing more efficient, especially in Iargqn this paper we investigate different optimisation tech-

networks. ; S
. niques for query processing in networks of autonomous

hi H‘e chartst ig Figt]urei 4 and 5 detmonstrate ]Ehat '&ources. We have shown that the knowledge of the network
ighly-connected networks (experiments were performe tructure may help to significantly improve the efficiency

for clique shap_ed PDMS net_works) with many nodes theof query processing both in the number of exchanged mes-
guery processing utilising linear decomposition of the

. o o .~ “sages and in the time to get a complete answer. Our meth-
graph is much more efficient than “naive” implementation. 9 9 P

The “Ind dent Paths” optimisation is developed f ods of optimisation do not require the knowledge in ad-
e “Independent Paths” optimisation Is developed for, ;e of a predefined topology, since the network topology
large scale networks with high-level of connectivity insid

. . is discovered during query processing, even in the case of
the network. In acyclic networks or networks with very few dynamic networks. In this paper we propose a notion of

quIGS with respect to the number of nodes SQCh oplimiSagy, ndness and completeness of a query answer in the case
tion decreases the efficiency of query processing due t0 thg 4 namic networks. The traditional definition proposed
overhead in the ngm_ber_of messages and computations. j, gistriputed databases literature does not suit the gonte
_The cluster optimisation technique is also based on thg¢ ppus networks, since different notions of data objects
utilisation of the graph structure of the PDMS network in 5,4 query answers are used. The query answering algo-
order to reduce communication complexity. This techniqu&iinm s efficient with respect to changes of the network.
aftempts at localising the communications |n_3|de the smakrne time of query processing in a network, when the size of
highly connected parts of the network. During the com-y,q change during query processing is sensibly less than the
putation, the network is divided into clusters, whlch_aresiZe of the network is comparable to the time of query pro-
highly-connected sets of nodes. Query processing is 10zegging in a stable network. The assumption that a change

calised inside a cluster up to the reaching of a fix-point ats small with respect to the size of whole network is rea-
the boundary nodes of the cluster. After that, data aretrang,naple for large scale networks.

ferred from cluster to cluster. As it was discoveredill
et al, 2001, the Internet network has a fractal structure: it

consists of subnetworks with a high-degree of connectiv—ReferenceS
ity within each of such subnetworks and low connectivity [Bernsteiret al, 2004 P. Bernstein, F. Giunchiglia, A. Ke-
between subnetworks. mentsietsidis, J. Mylopoulos, L. Serafini, and I. Zaihrayeu.
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