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Abstract

In this paper we investigate different optimisa-
tion techniques for query processing in networks
of autonomous data sources, interconnected in a
peer-to-peer fashion by means of GLAV mapping
rules at the schema level. There are no restric-
tions on the topology of the network, in particular,
cyclic networks are allowed. We have shown that
knowledge of network structure may help to sig-
nificantly improve the efficiency of query process-
ing, both in the number of exchanged messages
and in the time to get a complete answer. How-
ever, our optimization methods do not require ad-
vance knowledge of this topology, since the topol-
ogy is discovered during query processing. The
contributions of this paper include a definition of
soundness and completeness for query processing
in dynamically changing networks. Moreover, the
query answering algorithm is shown to be efficient
with respect to changes of the network. In par-
ticular, when the size of the change during query
processing is sensibly less than the size of the net-
work itself, query processing time is comparable
to that of query processing in a stable network.
The assumption that a change is small with re-
spect to the size of whole network is reasonable
for large scale networks. The results of an experi-
mental evaluation of the algorithm are presented.

1 Introduction

In this paper, we present a novel efficient distributed query
answering algorithm for dynamic networks of autonomous
sources organised in a peer to peer structure..

Our proposal shares the spirit of thePiazza sys-
tem[Halevyet al., 2003; Tatarinov and Halevy, 2004]. The
vision of the Piazza peer data management system (PDMS)
project is to provide semantic mediation between an en-
vironment of autonomous and heterogeneous peers, each

with its own schema. Rather than requiring the use of a
single, uniform, centralised mediated schema to share data
between peers, Piazza allows peers to define schema map-
pings between pairs of peers (or among small subsets of
peers). In turn, transitive relationships among the schemas
of the peers are exploited so the entire resources of the
PDMS can be used. The original Piazza system is limited in
the fact that it does not allow complex mapping rules (i.e.,
schema mappings must be safe rules with atomic heads), it
does not allow for fully cyclic mapping rules, and it does
not allow for dynamic networks (i.e., networks where peers
may join or leave anytime).

The problem of a PDMS with autonomous and het-
erogeneous peers exemplified by Piazza is different from
the structured P2P systems, such as[Stoicaet al., 2001;
Ratnasamyet al., 2001]. The peers in structured P2P
systems form an overlay network that has some super-
imposed logical structure, such as a ring in Chord, a d-
dimensional coordinate space in CAN or a Skip Graph
data structure. This logical overlay structure among the
peers can be utilised to efficiently route a query. This is
achieved by means of distributed hash tables mapping data
and queries to the logical structure of the network. For ex-
ample, in Chord and Skip Graphs the queries can be routed
in O(logn) overlay hops in a network ofn peers. This can
be achieved only if the schemas of the peers are (almost)
homogeneous and known in advance, so that the distributed
hash tables can be effectively computed. This is not the
case of the scenario of a PDMS with autonomous and het-
erogeneous peers, where peers may join the network by au-
tonomously deciding how to map their own heterogeneous
schema with other schemas of arbitrarily chosen acquain-
tances, each one possibly with a different schema. As a
consequence, it is evident that in each communication step
between two peers the data is transformed according to the
specific semantic schema mapping relating them; therefore,
when some remote data is required to answer a query, the
data has to flow through all the intermediate peers in order
to be interpreted correctly by appropriate transformations.



Together with the work presented in[Halevy et al.,
2003; Tatarinov and Halevy, 2004], other researchers in-
vestigated the theoretical underpinnings of peer database
management systems. The work presented in[Calvaneseet
al., 2004] proposes a logical analysis of the theory behind
a PDMS, but it lacks a distributed algorithm: it assumes
that nodes may exchange both dataand mappings, so that
only the query node will eventually evaluate the query an-
swer in one go – there is no distributed computation and
the network may be flooded with data. The work presented
in [Bernsteinet al., 2002; Serafiniet al., 2003] proposes
a very general theoretical framework for PDMS, with ex-
pressive schema mapping languages (up to first order logic)
and constraint languages (up to first order logic) applied to
single peers. However, no computational characterisation
is given. The paper[Serafini and Ghidini, 2000] describes
a local algorithm to compute query answers in a P2P net-
work, but it allows only safe schema mapping rules with
atomic heads. The algorithm is exponential in the number
of nodes and it floods the network with messages during
query evaluation if the network contains cycles. None of
the above PDMS approaches supports dynamic networks:
in the case of peers joining or leaving the network during
the computation, neither the termination of the query an-
swering algorithm nor the properties of the possible query
answer are guaranteed.

Starting from the general ideas sketched above, the pa-
per[Franconiet al., 2003] introduces a general logical and
computational characterisation of networks of autonomous
sources, interconnected by means of schema mapping rules
between pairs of peers. This paper defines a precise model-
theoretic semantics of a PDMS (fully compatible with Pi-
azza and the other PDMS framework presented above), it
characterises the general computational properties for the
problem of answering queries to a PDMS, and it presents
tight complexity bounds and basic distributed procedures
for important special cases. The paper[Franconiet al.,
2004a] analyses a distributed procedure for the problem of
local database update in a network of database peers. The
problem of local database update is different from the prob-
lem of query answering. Given a PDMS, the answer to a
local query may involve data that is distributed over the net-
work, and this may require the participation of many nodes
at query time. On the other hand, given a PDMS, a “batch”
update algorithm will be such that all the nodes consistently
and optimally propagate all the relevant data to their neigh-
bours, allowing for subsequent local queries to be answered
locally within a node, without fetching data from other
nodes at query time. The update problem has been consid-
ered important by the P2P literature; most notably, recent
papers focused on the importance of data exchange and ma-
terialisation for a stable P2P network[Faginet al., 2003;
Daswaniet al., 2003]. The papers[Franconiet al., 2004b]
introduce a basic distributed algorithm for query answering
in a PDMS, together with thecoDB prototypical implemen-
tation in the JXTA framework. The proposed algorithm is
polynomial in data complexity, but it is still exponential in

the dimension of the network. These papers consider a net-
work of databases, possibly with different schemas, inter-
connected by means of mapping rules having conjunctive
queries both in the body and in the head, with possibly ex-
istential variables both in the body and in the head (called
GLAV rules) as first suggested by[Calvaneseet al., 2004].
Each node can be queried with a conjunctive query over its
schema, for data which the node can possibly fetch from its
neighbours using appropriate mapping rules. Unrestricted
cyclic topologies of the network are allowed. The proposed
PDMS framework is robust in the sense that it supportsdy-
namicnetworks: even if nodes and mapping rules appear or
disappear during the computation, the proposed algorithm
will eventually terminate with a provably sound and com-
plete result.

Some work on distributed data replication uses simi-
lar techniques, such as “lazy replication” and “epidemic
algorithms” [Holliday et al., 2003], but these are not di-
rectly applicable to the kind of PDMS considered by Pi-
azza and by the other references presented above, since
they rely on a different semantics of the mappings. Sim-
ilarly, the routing indexestechnology presented by[Cre-
spo and Garcia-Molina, 2002] can not be applied to the
kind of PDMS with cyclic mappings and dynamic net-
works, since the presence of cycles in the network together
with the a-priori ignorance of the (dynamic) network topol-
ogy invalidates any careful selection of neighbours pro-
viding answers. On the positive side, we are considering
to integrate into our PDMS framework the idea ofdata
mappingsas described in[Kementsietsidiset al., 2003;
Kementsietsidis and Marcelo Arenas, 2003], which intro-
duces a table that maintains mappings to the neighbour’s
data, to mimic a sort of extensional constraint.

1.1 PDMS vs. Data Integration Systems

Another line of research that is necessary to compare with
the PDMS framework proposed here, is the standard classi-
cal logic-based data integration technology, which has been
summarised in a very clear way by[Lenzerini, 2002]; suc-
cessful examples of classical logic-based data integration
technology are the Information Manifold[Kirk et al., 1995]
and Tsimmis[Garcia-Molinaet al., 1997]. The main dif-
ference is in the role of the schema mapping rules between
nodes: in a PDMS a schema mapping rule is intended for
data migration and transformation between neighbours, as
opposed to the role of global logical constraints in classical
data integration systems. It can be proved (see, e.g.,[Fran-
coni et al., 2003]) that by adopting a PDMS semantics the
complexity of query answering is reduced from exponen-
tial (or undecidable) down to polynomial.

Let’s explain by means of an example why the PDMS
semantics is different from the classical semantics given
to data integration systems. Suppose we have three
distributed databases. The first one (DB1) is the mu-
nicipality’s internal database, which has a binary table
Citizen-1 which contains the name of the citizen and
the marital status (with valuessingleor married). The sec-



ond one (DB2) is a public database, obtained from the
municipality’s database, with two unary tablesMale-2
andFemale-2. The third database (DB3) is the Pension
Agency database, obtained from a public database, with the
unary tableCitizen-3 and a binary tableMarriage-3
(stating that two people are married). The three databases
are interconnected by means of the following rules:

1 : Citizen-1(x, y)⇒ 2 : (Male-2(x) ∨ Female-2(x))
(this rule connectsDB1 with DB2)

2 : Male-2(x)⇒ 3 : Citizen-3(x)
2 : Female-2(x)⇒ 3 : Citizen-3(x)

(these rules connectDB2 with DB3)

In the classical logical model, theCitizen-3 table in
DB3 should be filled with all of the individuals in the
Citizen-1 table inDB1, since the following rule is log-
ically implied:

1 : Citizen-1(x)⇒ 3 : Citizen-3(x)

However, in a system of autonomous sources this is not a
desirable conclusion. In fact, rules should be interpreted
only for fetching data, and not for logical computation.
In this example, the tablesFemale-2 and Male-2 in
DB2 will be empty, since the data is fetched fromDB1,
where the gender of any specific entry inCitizen-1
is not known. From the perspective ofDB2, the only
thing that is known is that each citizen is in the view
(Female-2 ∨ Male-2). Therefore, whenDB3 asks for
data fromDB2, the result will be empty.
In other words, the rules

2 : Male-2(x)⇒ 3 : Citizen-3(x)
2 : Female-2(x)⇒ 3 : Citizen-3(x)

will transfer no data fromDB2 toDB3, since no individual
is known inDB2 to be either definitely a male (in which
case the first rule would apply) or definitely a female (in
which case the second rule would apply). We only know
that any citizen inDB1 is either male or female inDB2,
and no reasoning about the rules should be allowed.

In order to explain the importance of cyclic rules, sup-
pose now to have an additional cyclic pair of rules connect-
ing DB1 andDB3 as follows:

1 : Citizen-1(x, “married”)⇒ 3 : Marriage-3(x, y)
3 : Marriage-3(x, y)⇒

1 : Citizen-1(x, “married”) ∧
1 : Citizen-1(y, “married”)

These rules serve the purpose to synchronise the peo-
ple who are known to be married inDB1 (by means of
theCitizen-1 table) with the people who are known to
be married inDB3 (by means of theMarriage-3 table).
Suppose that it is known inDB1 that only John is mar-
ried, and nothing is known inDB3 about marriages. In the
classical logical model, a query toDB3 asking for the non
existence of some married person different from John will
get a negative answer1. In a PDMS setting, we actually ex-
pect a positive answer, since the only information that is
fetched is about John.

1Note that the semantics of a query is thecertain answersemantics.

1.2 Our Contribution

The main contribution of this paper is to extend the results
presented in[Franconiet al., 2003; 2004a; 2004b], by in-
troducing and evaluating experimentally a fully distributed
query processing algorithm for a PDMS, which ispolyno-
mial both in data complexity and in the dimension of the
network. As it comes out from the comparison with the un-
optimized version of the algorithm, the new version of the
algorithm outperforms the unoptimized one exponentially
with respect to the size of the network both in message
and time complexity for highly connected networks. The
new proposed algorithm handles dynamic networks, and it
works without any starting assumption about the topology
of the network.

The paper is organised as follows: first, we introduce
some general definitions of a PDMS, and of its dynamic
behaviour. Then we describe the distributed query answer-
ing algorithms, by emphasising the optimisations that lead
to the polynomial complexity. At the end, we present an
experimental evaluation of the algorithm on some real and
random cases.

2 PDMS network of Heterogeneous
Databases

We quickly define here a PDMS (also called here a network
of autonomous sources), which is basically a collection of
local databases together with schema mapping rules that
interconnect databases pairwise.

Definition 1 (Local database) Let I be a nonempty finite
set of indexes{1, 2, . . . , n}, andC be a set of constants.
For each pair of distincti, j ∈ I, let Li be a first-order
logic without function symbols, with signature disjoint from
Lj but for the shared constantsC. A local databaseDB i is
a theory on the first order languageLi.

Nodes are interconnected by means of mapping rules. A
mapping rule allows a nodei to fetch data from its neigh-
bour nodesj1, . . . ,jm.

Definition 2 (Schema mapping rule) A mapping ruleis
an expression of the form

j1 : b1(x1,y1) ∧ · · · ∧ jk : bk(xk,yk) ⇒ i : h(x,y)

wherej1, . . . , jk, i are distinct indices, eachbl(xl,yl) is
a formula ofLjl

, andh(x,y) is a formula ofLi, andx =
x1 ∪ · · · ∪ xk.

Note that we are making the simplifying assumption that
equal constants mentioned in different nodes refer to the
same objects, i.e., that they play the role of URIs (Uniform
Resource Identifiers); this is the underlying approach of the
Semantic Web framework, for example. Other approaches
considerdomain relationsto map objects between different
nodes[Serafiniet al., 2003], and we plan to consider such
extensions to our model in the future. Note, that predicate



names are always distinct in distinct peers; this can be seen
as modelling the notion of namespaces.

A PDMS system is the collection of nodes intercon-
nected by (possibly cyclic) rules.

Definition 3 (PDMS system) A Peer Database Manage-
ment System (PDMS)is a tuple of the formMDB =
〈I,C〉, whereI = {DB1, · · · ,DBn} is the set of local
databases, andC is the set of mapping rules.

A user accesses the information hold by a PDMS by for-
mulating a query at a specific node.

Definition 4 (Query) A local queryis a first order formula
in the language of one of the local databasesDB i.

In this paper we restrict the general framework as fol-
lows:

• all the nodes are plain relational databases without
constraints;

• schema mapping rules may contain conjunctive
queries in both the head and body (without any safety
assumptions and possibly with built-in predicates in
the body);

• the body involves only one node per rule;

• queries are just conjunctive queries.

In this paper we don’t give the details of the logic
based formalism of the PDMS and of queries, as it has
been thoroughly analysed in, e.g.,[Franconiet al., 2003;
Calvaneseet al., 2004].

To describe the query processing in a PDMS we need to
introduce the notion of adependency edgebetween peers
of a network of autonomous sources.

Definition 5 There is adependency edgefrom a peer i to
peerj, if there is a mapping rule with head at peer i and
body at peer j.

Note that the direction of a dependency edges is the op-
posite of that of the rules. The direction of a rule is the
direction in which data is transfered, whereas the depen-
dency edge has the opposite orientation. In this paper we
useMDB to denote a PDMS, using terms such asPDMS
or a network; please note that we consider the general case
when the network iscyclic. I is used to denote a set of all
peers in givenMDB, C denotes the set of all mappings,
andL the set of dependency edges between peers in a net-
work derived fromC. Subsets ofI are denoted byA. We
assume thatI, L, andC are always finite sets.

Definition 6 A dependency path for a peer i is a path
〈i1, i2, . . . , in〉 of dependency edges, such that 1)i1 = i ;
2) 〈i1, . . . , in−1〉 is a simple path (no one peer appears
twice).

Definition 7 A maximal dependency path for a peer i is a
dependency path such that it is impossible to add a new
peer to the path or if we add any peer to the path, the result
will not be a closed dependency path. In this paper, when
we describe dependency paths for a peer i, we omit the first
peer (i).

There are three types of maximal dependency paths
starting ini:

1. a directed acyclic walk, which starts ini and ends in a
leaf peer of the network. Example: a pathABE in a
pic.2;

2. a semi-cyclic walk which consist of a directed acyclic
walk which starts ini and ends in a some peerw and a
directed cycle which starts inw and ends inw. Exam-
ple: a pathABCB, which consist of an acyclic path
AB and a cycleBCB;

3. a directed cycle which starts and ends ini. Example:
a pathABCA.

As an example, consider a PDMS with the following
schemas and rules:

A : a(X,Y )

B : b(X,Y )

C : c(X,Y ), f(X)

D : d(X,Y )

E : e(X,Y )

r1 : E : e(X,Y ) → B : b(X,Y )

r2 : B : b(X,Y ), b(Y,Z) → C : c(X,Z)

r3 : C : c(X,Y ), c(Y,Z) → B : b(X,Z)

r4 : B : b(X,Y ), b(X,Z),X 6= Z → A : a(X,Y )

r5 : A : a(X,Y ) → C : f(X)

r6 : A : a(X,Y ) → D : d(Y,X)

r7 : D : D(X,Y ),D(Y,Z) → C : c(X,Y )

r8 : C : f(X) → A : A(X,X)

The dependency edges and the maximal dependency paths
for the example above are:

A

BC

D

E



# path # path # path # path

A ABCA B BE C BE D ABE
A ABE B BCAB C BC D ABCD
A ABCB B BCB C DABC D ABCB
A ABCA B BCDAB C ABC D ABCA

C ABE

3 Dynamic behaviour of the network of au-
tonomous sources

One of the distinctive characteristics of PDMS systems is
that the network can vary dynamically. Assume that the
networkMDB consist initially of a set of nodesI, and that
C is an initial set of mappings withL being the initial set
of dependency edges. We model network dynamicity by
adding/removing the mappings between nodes; deletion of
a node is therefore modelled by deleting all mapping rules
that relate to this node. With respect to query answering
adding/removing nodes with mappings is easily seen to be
equivalent to the assumption that all nodes are present from
the beginning, and that only the mappings may change.

We define an atomic network change operation as fol-
lows.

• addLink(i,j,rule,id): add the mapping rulerule from
nodej (the body) to nodei (the head).id is the name
of a rule, which should be unique for a given pair of
nodes.

• deleteLink(i,j,id): delete the mapping ruleid between
nodesi andj

Definition 8

1. A changeU of a networkMDB is a sequence of
atomic change operations overMDB.

2. A finite changeof a network is a finite sequence of
atomic changes.

3. An initial subchangeU1 of a changeU is an initial
prefix ofU.

4. A subchangeUA of U in respect toA ⊂ I is a set
of atomic operations ofU, relevant toA and ordered
with the same order as inU.

We assume that in the case of an atomic change the net-
work will be notified about the change in the following
way:

1. in case ofaddLink(i,j,rule,id), the nodei (which will
fetch data through this rule) gets the notificationad-
dRule(i, j, rule, id)

2. in case ofdeleteLink(i,j,id), the nodei (which will be
unable to fetch data through this rule) gets the notifi-
cationdeleteRule(i, j, id)

Assume that� is a partial ordering relation on the set
of dependency edges of the PDMS network:E1 � E2 iff
there is a directed path from the head ofE2 to the tail of
E1.

Definition 9
1. A changeU1 �complete U2 (U1 is less wrt

the completeness relation thanU2), iff there is
no deleteLink(i, ) ∈ U1, such that there ex-
ist deleteLink(j, ) ∈ U2, and j � i and
deleteLink(j, ) does not occur afterdeleteLink(i, ).

2. A changeU1 �sound U2 (U1 is less wrt the sound-
ness relation thanU2), iff there is noaddLink(i, ) ∈
U1, such that there existaddLink(j, ) ∈ U2, and
j � i and deleteLink(j, ) does not occur after
deleteLink(i, ).

Definition 10
1. A sound answerof a queryQ in a network subject to

runtime changes with respect to a network changeU,
is an answer to the query that is included in the result
that we would obtain if we executed all theaddLink

statements before runningQ, and did not execute the
deleteLink statements at all.

2. A complete answerof a queryQ in a network sub-
ject to runtime changes, is an answer to the query that
contains the result that we would obtain if we executed
all the deleteLink statements before runningQ, and
did not execute theaddLink statements at all.

The motivation behind this definition is that we cannot
know in advance what the state of the database will be at
termination, since the changes may happen at any moment
during the query answering algorithm execution. There-
fore, we require that a sound and/or complete answer will
be classically sound and/or complete with respect to the
part of the network that isunchanged. The result with
respect to the part that is changed will depend on the or-
der and timing of the execution of the changes. In this
sense, the answer to a query in a network subject to “small”
changes will be still meaningful with respect to the major-
ity of the data that resides in the stable parts of the network.

In general, we expect that a query answering algorithm
in a PDMS dynamic network enjoys the following proper-
ties, which will be satisfied by the algorithm we propose in
this paper.

Theorem 1
1. (Soundness and completeness) For a finite change of a

network, the query algorithm terminates with a sound
and complete answer.

2. (Termination) In the case of an infinite change to the
network, the query algorithm may not terminate.

3. (Complexity) For a finite runtime change of the net-
work, the complexity of the query algorithm at each
node is at most quadratic with respect to the size of
the change.



In many cases, we will not be able to assume that a net-
work change is finite. In the general case, therefore, the
nodes in the network may never reach the fix-point – or at
least, we may not be able to show that they have reached a
fix-point.

Definition 11

1. A set of nodesA1 is separated from a set of nodes
A2 in a network of autonomous sources if there is no
dependency path from any node inA1 that involves a
node inA2.

2. A set of nodesA1 is separated from a set of nodesA2

in PDMS network with respect to a changeU if for
any subchange ofU there is no dependency path from
a node inA1 involving a node inA2 in the network we
obtain by applying that subchange.

4 The Query Processing Algorithm

We now describe our algorithm for distributed query pro-
cessing in a a network of autonomous sources. The al-
gorithm is based on asynchronous messaging. The asyn-
chronous model assumes a guaranteed delivery of each
message, and the preservation of the order of the messages
during inter-peer communications. No assumption is re-
quired about the ordering of message delivery globally. The
algorithm is invoked by issuing a query to some node, and
it terminates when the node provides the complete answer
to the query.

In comparison with other algorithms handling cyclic
networks presented in the literature (e.g.,[Franconiet al.,
2004a; 2004b; Serafini and Ghidini, 2000; Calvaneseet
al., 2004]), the algorithm presented here exploits proper-
ties of the network topology to boost the performance of
distributed query processing in the case of cycles. The dis-
covery of the part of the PDMS network topology relevant
to the query is done automatically during a first pass of
query processing without the need for any specific topol-
ogy discovery messages. The algorithm handles dynamic
networks in which new nodes and mappings may appear
during algorithm execution. A network change occurring
during the execution of query processing routines does not
cause additional message exchanges. The network may
process in parallel several queries that are submitted to dif-
ferent nodes.

4.1 Distributed Query Processing

In the description of the algorithm, we use the convention
that variables, constants and functions with a superscript
always denote variables, constants and functions local to
the node denoted by the superscript.

When a peer receives a query to answer, the query is pro-
cessed locally by the peer itself using its own data, this first
answer is immediately replied back to the node (or user)
which issued the query, and then the query is reformulated
and propagated to the relevant neighbour peers, according

to the involved mapping rules. When a peer receives an an-
swer from an acquaintance, it stores the data into the local
database, by essentially materialising the view represented
by the head of the involved mapping rule; in practice, it will
use local GLAV processing to update the local database, as
suggested in[Calvaneseet al., 2004]. The actual time when
data are sent back may depend on the particular method of
global query processing optimisation. Shorter delays may
increase the number of messages in the network at global
and local level but may decrease the time to get a complete
answer (see last Section).

Each queryq is labelled by a unique identifierid, which
is assigned the first time the query is formulated. When a
queryq with identifier id is processed by a node, the node
remembers that by storing the pair〈id, q〉, in order to later
understand when to stop in evaluating fixpoints. A query is
propagated along the maximal dependency paths induced
by the mapping rules, and, if the maximal dependency path
contains a cycle, the query will reach a node with the same
id, which is the node where the cycle is closed. In order
to correctly compute the fixpoint induced by the presence
of cycles, a node should continue to propagate queries to
relevant neighbours along the maximal dependency paths
until none of the answers from these propagated queries
brings in new information. The following theorem states
how to correctly decide when a peer has a complete query
answer and the local query processing can stop.

Theorem 2 The peer has a complete answer to a query
if and only if the answers to all the reformulated queries
propagated along all the maximal dependency paths do not
bring new data for the query to the peer.

There areO((n− 1)!) or O((n− 1)1/2((n− 1)/e)n−1)
maximal dependency paths in a network ofn peers. A
naive checking of the condition of theorem 2 (as it was
done in[Franconiet al., 2004a]) would require exponential
time and exponential number of messages wrtn. In this
paper we introduce a way to restrict the conditions of the-
orem 2, in order to reduce the complexity to polynomial.
All (exponentially many) possible paths can be enumer-
ated as the combination of (polynomially many)indepen-
dent paths[Diestel, 1997], the number of which is a cyclo-
matic number of the network[Diestel, 1997] and does not
exceedn2 . For example, in the example given in Section 2,
the pathABCDA can be considered as the combination of
ABCA andACDA. It is easy to see that theorem 2 holds
also if we consider only the independent maximal depen-
dency path, reducing therefore the complexity as desired.
As a matter of fact, this optimisation is very similar to the
tabled execution of a datalog program[Chen and Warren,
1996].

Each node implicitly gets as part of a query answer ex-
plicit information about the topology of the sub-network
it depends upon. During the first stage of its execution,
the query processing algorithm at each node exploits the
AsynchSpanningTree[Lynch, 1996] algorithm in order
to construct a spanning tree of the graph. To implement



this, no change to the abstract behaviour of the algorithm is
required, but only one additional field of the size of the
identifier of the peer is required. Independent paths are
built by exploiting the spanning tree. The overhead is not
more thenE − n messages, whereE is the number of in-
volved mapping rules.

Please note that the addition or deletion of nodes does
not change the properties of the algorithm: the neigh-
bours of the added or deleted nodes will just consider the
new queries/data from the added node or stop considering
queries/data from the deleted node.

4.2 Handling of Existential variables

By exploiting results of[Calvaneseet al., 2004] we allow to
use existential variables in the heads of the mapping rules.
In order to simplify the processing of queries which use
mappings with existential variables in the heads, we reduce
query processing to use plain mapping rules without exis-
tential variables but with an extended set of relations.

The basic idea is based on skolemisation: for each rule
∃y.q(x, y) ⇐ ∃z.qb(x, z) we create a relationexi(x, y),
where i is the identifier of the mapping, and y is a
new skolem constant, such that there is a one to one
association betweenx and y (this can be easily gener-
alised in case the arity of y is more than one). Then
the mapping∃y.q(x, y) ⇐ ∃z.qb(x, z) is rewritten as
q(x, y) ⇐ ∃z.qb(x, z), exi(x, y). Then all mappings which
useq(x, y) must be rewritten such that new values are not
propagated. It is assumed that we can determine for each
constant if it is a new value without accessing toexi rela-
tions at different peers.

For example,

flight(x, y),flight(y, z)⇐
two-leg-connection(x, z)

would be rewritten as

flight(x, y),flight(y, x)⇐
two-leg-connection(x, z),ex1(x, z, y).

In practice, the creation of a new relation is a not a good
way to solve the problem since the relation may be large in
the size of data (nk, wheren is the number of constants in
the database, andk is the arity of the mapping rule), and
most of the tuples of the relation are expected to be unused.
We use a functional approach, i.e., eachexi is implemented
as a function which takes valuesx and returns the unique
tuple representingy. The functional approach may actively
use properties of the domain in order to easily generate a
set of new values distinguished from a domainD.

4.3 The Algorithm

Data structures supported by each node:

1. id , an identifier of the node unique over the whole
PDMS system.

2. schema, a relation describing all the relational data in
a given node.

QUERY-NODE(Q)

1 key ← GENERATEUNIQUEVALUE

2 state[key]← FALSE

3 RRules ← Rules whereRules[target ]
containsATOMS(Q)

4 � containsmeans that a collection contains
at least one element of the set

5 � Query propagation
6 for each rule in RRules

7 do
8 Queryrule[target](key , rule[body ])
9 � Local computing of answer

after distributed query processing
10 when complete[key] = TRUE

11 do
12 COMPUTEANSWER(Q)

Figure 1: The procedure Query-Node

3. Rules(id , target , body , head), a relation describing
all the mappings outgoing from a given node (which
imports data). id is an identifier of the mappings,
which is assumed to be unique across the network.
target is an identifier of the target of the mappings
(node which exports data).body is a string represent-
ing the body of the mapping as a conjunction of atoms
from schematarget. head is a string representing the
head of the mappings as a set of atoms fromschema.

4. Paths(path), a relation describing all the paths begin-
ning from a given node. Eachpath is a string repre-
senting a conjunction of identifiers of mappings con-
stituting the path.

5. complete(key , state), is an array describing the com-
pleteness status of data received by a node during
query evaluation.

6. dcomplete(mapping ,flag) is an array de-
scribing the state of the topology discovery.
dcomplete(mapping , TRUE) means that the node
knows the topology for all paths passing through the
links mapping

7. Queries(key , source, body , state), a relation which
contains information about the queries being evalu-
ated.key is the unique identifier of the query.source

is the identifier of the mapping through which the
query was sent.body is a string representing the query
as a conjunctions of atoms.state is a flag indicat-
ing the state of query execution,FALSE means that the
query evaluation is not finished,TRUE means that the
query evaluation is finished.

8. SQueries(key , target), a relation describing the
queries which were sent by a given node.key is the
identifier of the query andtarget is the identifier of
the mapping through which the query was sent.



QUERY(key , query)

1 � Query processing in intermediate node
2 source← SOURCE()
3 if πkey,source Queries contains〈key , source〉
4 � If a request for a query identified bykey

was already received by mappingsource

5 do
6 exit
7 Insert into Queries Values(key , source, query , FALSE )
8 QA← COMPUTEANSWER(query)
9 state← complete.state wherecomplete.key = key

10 if Rules ≡ ∅
11 do
12 � Stop topology discovery for leaf nodes
13 dstate← COMPLETEFULL

14 dcomplete← TRUE

15 if SQuery containsAll (Rules.key whereRules.head

containsATOMS(QUERY))
16 do
17 � Stop topology discovery

if there is no extension of a query path
for a given node

18 dstate← COMPLETEFULL

19 dcomplete← TRUE

20 AnswerSource(source)(key , QA, 〈id〉, state, dstate)
21 RRules ← Rules whereRules[target ] containsATOMS(query )
22 � this part of algorithm is valid only

if database does not contain constraints
23 for each rule in RRules

24 do
25 if πkey,targetSRules contains〈key , rule[key ]〉
26 do
27 next
28 Rewrite QueryTarget(rule[key])(key , rule[body ])
29 insert into SQueries Values(key , rule[key ])

Figure 2: The procedure Query

9. EmptyUpdate(key , path,flag), a relation which logs
the paths through which a query answer brings no up-
date to the local data.

The following are the predefined functions we assume
to be supported by each node:

1. GENERATEUNIQUEVALUE, a function which gener-
ates a unique string value across the whole network.

2. COMPUTEANSWER(Q),a function which computes
answer to a query using only local data.

3. ATOMS(Q), a function which returns the set of atomic
symbols in a query Q.

4. SOURCE(), a function which returns the identifier of
the mapping through which the query was sent. Func-
tion is callable only from inside the function QUERY.

5. TARGET(), a function which returns the identifier of a
mapping.

ANSWER(key , QA, Path, state, dstate)

1 � Answer propagation
2 � key is an identifier of the query

to which answer is returned
3 � QA is a dataset representing the query answer
4 � Path is a sequence of identifiers of nodes participating

in the computation of the answer
5 � state is a flag for the completeness of the answer
6 � dstate is a flag needed for topology discovery
7 mapping ← TARGET()
8 � Information about network
9 � Propagated only at the first stage of

the execution of the query
10 if dstate = COMPLETEor dstate = COMPLETEFULL

11 do Insert into Paths values(Path)
12 if dstate = COMPLETEFULL

13 do dcomplete[mapping ]← TRUE

14 if for all rmapping in SQuery .mapping

whereSQuery .key = keydcomplete[rmapping ] = TRUE

15 do
16 � If a node knows all paths

for all relevant incoming mappings
then it knows full topology

17 dcomplete = TRUE

18 � Processing of received answer
19 bEmptyUpdate← UPDATELOCALDATE(QA)
20 if bEmptyUpdate = TRUE

21 do
22 Update setEmptyUpdates.flag = TRUE

whereEmptyUpdates.key = key

and EmptyUpdates.path = Path

23 else
24 do
25 Update setEmptyUpdates.flag = FALSE

whereEmptyUpdates.key = key

and EmptyUpdates.path = Path

26 � Termination condition
27 if dcomplete[key ] = TRUE and

forall EmptyUpdates.flag = TRUE

whereEmptyUpdates.key = key

28 do
29 complete[key ]← TRUE

30 � Answer propagation
31 for each rule in Queries whereQueries.body

containsATOMSQA

32 do
33 QAS ← ComputeLocalAnswer(rule)

34 AnswerSource(rule.rule)

(key ,QAS ,Path + id , state[key ], dstate[key ])

Figure 3: The procedure Answer

6. SOURCE(MAPPINGID),a function which given a
mapping identifier returns the source node identifier (a
source node is the node in the head of the mapping).

7. TARGET(MAPPINGID), returns the target identifier of
the mapping.

8. Rewrite QueryTarget(rule[key])(key , rule[body ]) is
a rewriting algorithm, which takes a query, mappings



and generates maximal rewriting, then sends it to tar-
get source.

In order to get an answer to a query Q to a nodei,
the procedure QUERY-NODE(Q) of the node i should be
called. The query answering algorithm is presented in Fig-
ures 1, 2, 3.

Since the algorithm is based on asynchronous messag-
ing, a query node receives a continuous flow of answers,
which are required to compute the query answer. It is easy
to see that the system is monotonic, namely that at any mo-
ment in time during the execution of the query answering
algorithm a query node always contain a sound – but possi-
bly incomplete – answer to the query. The query answering
algorithm terminates in a query node when the query node
has the complete answer to the original query. This can be
checked with the following termination condition.

Lemma 3 A query node has a complete answer to a query
if and only if there is no answer for that query through any
incoming dependency path bringing new answer tuples to
the query node.

To check the termination condition each node checks the
query answers it gets through each incoming dependency
path. If some path did not bring any new answer tuples,
the node “closes” that path locally. If all possible paths do
not bring new answers, then a node declares that it has the
complete answer to the query. In the case some path brings
new data, then all dependency paths which have at least a
node in common with the current query answer path are
changed back to the state “open”.

The problem of a naive implementation of the above ter-
mination condition is that in general there is an exponential
number of dependency paths in the network, leading to an
exponential number of query answer messages and expo-
nential time of query processing with respect to the size of
the network.

4.4 Independent Dependency Paths

The independent dependency paths optimisation is needed
to speed up the performance of the algorithm in case of
cyclic topologies, especially in the case of a large number
of cycles. As explained above, a naive approach makes
query processing time exponential in the number of nodes
in the network. Experimental results published in[Fran-
coni et al., 2004b] have shown that even for small cyclic
networks (e.g., cliques) and small datasets query process-
ing becomes intractable very quickly.

The algorithm proposed in this article makes the mes-
sage complexity of query processing not more then cubic
in the number of nodes in the worst case.

An additional function INDEPENDENT PATHS com-
putes the set ofindependentdependency paths, which form
a linear basis to describe all paths in the graph[Tutte,
1984], namely in the strongly connected component of the
dependency graph. We use the property of directed graphs
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Figure 4: Query processing using Independent Paths vs.
the Naive Approach: total time before termination for a
clique network.Time is the total time of query execution
in seconds.Nodes is the number of nodes across networks.

that any path in the graph is contained in a linear combi-
nation of some independent paths. We can show that the
propagation of the query answer through all independent
paths is equivalent to the propagation of the query answer
through all the dependency paths in the graph.

A set of independent paths is stored in the relationIn-
dependentPath. After the topology discovery phase, the
node finds the set of independent paths and propagates it to
intermediate nodes to create query answering paths which
are stored in the relationAnswer Propagation of each
node. After query answering paths are propagated, each
node propagates the query answer according to the inde-
pendent paths only.

The number of independent paths does not exceedn2

and the length of each path is less thann, wheren is the
number of nodes. This makes the communication complex-
ity bounded byO(n3), with O(n2) being the time com-
plexity of query processing over the network. We have to
notice that the worst casen3 holds only for highly con-
nected networks with many cycles. In high scale Internet-
like networks the number of independent cycles (the cy-
clomatic number of the graph) is aroundn and the aver-
age length of the cycle is aroundlog(n) [Newman, 2003;
Gleisset al., 2000]. Research in the graph structure of the
Internet and of web networks[Dill et al., 2001] shows that
despite the fact that, in general, network graphs are strongly
connected (or better, that the strongly connected compo-
nent of the network graph constitutes a big part of whole
network), the network has a fractal cluster, which gives the
opportunity for further topology optimisation. Independent
paths maybe selected only in a branch of the current node.
This leads to the cluster optimisation technique presented
in the next Section.



4.5 The cluster optimisation

The cluster optimisation method tries to decrease the num-
ber of messages in the network, but still preserving the
asynchronous communications to get complete answers.
This optimisation was created for networks with self-
similarity property and networks which consist of highly-
connected components weakly-connected to each other.
According to[Newman, 2003] this a common property of
internet like networks.

The cluster optimisation method selects in distributed
way a highly-connected subcomponent of the graph and
tries to localise communications inside the component.
Data are not transfered between components before fix-
point is not reached inside a component. After the fixpoint
reached, the data are transfered between boundary peers.

The key intuition behind this method is that a cluster of
peers (highly connected component) behaves as one peer
for the outside network. During the first stage of the query
propagation, after a cluster is identified, it is assigned a rep-
resenting identifier which is equal to the minimal (in nu-
merical or lexicographical order)id inside the cluster. Dur-
ing a query answering process each peer runs as it would
have no edges going outside the cluster. After the fixpoint
is reached by the boundary nodes, they propagate the query
answer through the outgoing edges. The number of mes-
sages under asynchronous communications is expected to
be inΣ(m3) times, wherem is an average cluster size.

Our experiments with random graphs and ”Internet-
like” graphs has shown that for such kind of networks the
expected time of query processing isO(n log(n)) for a
small average out-degree of the nodes in the graph.

5 Evaluation
For our experiments we used traditional complexity mea-
sures for distributed algorithms[Lynch, 1996]:

• the communication complexityis the total number of
messages throughout network before the algorithm
terminates;

• thetime complexityis the number of rounds before the
algorithm terminates.

and thetotal timefrom wakeupto termination of the algo-
rithm (similar to the so calledtime to completion). In all
experiments measuring time, wall-clock time is reported.

The experiment environment consists of 4 PCs with In-
tel Pentium 4(R) CPU 1.70GHz, 512MB RAM and 900
MHz PowerPC G3, 640 MB. One of PCs is running Win-
dows XP, and others are running Fedora Linux (Core 1).
All computers were located inside a local network with
bandwidth 100MHz. Communications between nodes are
implemented in Java RMI protocol; we used a raw protocol
instead of JXTA pipes, or JMS messages in order to make
query processing as much efficient as possible, since most
messages over networks are “Answer” messages. Currently
JXTA is used only for node advertisement and to bind the
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Figure 5: Query processing using Independent Paths vs.
the Naive Approach: communication complexity for a
clique network.M is the total number of messages divided
on 500.Nodes is the number of nodes accross network.

name of nodes to their physical network location. Peer-
to-peer database agents were executed with Java HotSpot
Client VM J2SE 1.4.2 platform for PC computers and Pow-
erPC. As a data-store, Oracle 10.1.0.2 deployed on a Win-
dows XP platform was used. Agents belonging to one com-
puter were running as threads in one single Java virtual ma-
chine.

PDMS nodes were modeled as threaded JAVA applica-
tions. Up to 20 logical nodes were run on one server. At a
preliminary stage of the experiment it was discovered that
up to 20 logical nodes may run one one physical server
without interaction on experimental datasets. Before the
experiment each node was loaded into the main memory
with mappings and information about physical address of
its adjacent nodes. The global discovery of the network
topology at logical level was performed during experiment.

Six different relational schemas were used describing
bibliographic data extracted from the DBLP and biblio-
graphic database. Each database consists of 200 records
about publications and a varying number of records (from
100 to 400) about properties of articles (authors, editors,
publishers, journals). Scheme consisted of up to 6 relations
with up to 6 non-key attributes. Mappings consisted of con-
junctive queries up to conjunction of 3 atoms in the body
and up to conjunction of two atoms in the head. Existential
variables were used both in the body and in the header of
the mappings.

All peer-to-peer agents were loaded into main memory
with a complete configuration (mappings, logical and phys-
ical addresses of other agents) and with the connections al-
ready established before the starting of the experiments.

To model the behaviour of a dynamic network, a soft-
ware simulation of the network changes was used: each
agent has an interface to halt the agent with a notification
to the neighbour agents.

As noticed before, the original naive version of the algo-
rithm presented in the literature was based on a procedure
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Figure 6: Independent Paths optimisation for “Internet
like” network: total time before termination. k is the pa-
rameter of density of the network. For big n, k is the aver-
age number of outgoing links for a peer.Time is the total
time of query processing in seconds.Nodes is the number
of nodes accross network.

checking all possible node sequences in the dependency
paths. This leads to exponential time of query processing
with respect to the node-size of the network. One of the
objectives of this paper is to test thegraph-optimisationof
query processing, i.e., how the properties of the network
topology, namely the independent paths, may be used to
make query processing more efficient, especially in large
networks.

The charts in Figures 4 and 5 demonstrate that in
highly-connected networks (experiments were performed
for clique shaped PDMS networks) with many nodes the
query processing utilising linear decomposition of the
graph is much more efficient than “naive” implementation.

The “Independent Paths” optimisation is developed for
large scale networks with high-level of connectivity inside
the network. In acyclic networks or networks with very few
cycles with respect to the number of nodes such optimisa-
tion decreases the efficiency of query processing due to the
overhead in the number of messages and computations.

The cluster optimisation technique is also based on the
utilisation of the graph structure of the PDMS network in
order to reduce communication complexity. This technique
attempts at localising the communications inside the small
highly connected parts of the network. During the com-
putation, the network is divided into clusters, which are
highly-connected sets of nodes. Query processing is lo-
calised inside a cluster up to the reaching of a fix-point at
the boundary nodes of the cluster. After that, data are trans-
ferred from cluster to cluster. As it was discovered in[Dill
et al., 2001], the Internet network has a fractal structure: it
consists of subnetworks with a high-degree of connectiv-
ity within each of such subnetworks and low connectivity
between subnetworks.
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Figure 7: Cluster optimisation.M is the total amount of
messages,Nodes is the total number of nodes across net-
work.

For this set of experiments a network was created as a
set of interconnected clusters. Each cluster is a clique of
6 nodes. Clusters are organised into a ring such that there
is only one link between two connected clusters. The out-
come of the experiments is shown in Figure 6 and 7.

6 Conclusions

In this paper we investigate different optimisation tech-
niques for query processing in networks of autonomous
sources. We have shown that the knowledge of the network
structure may help to significantly improve the efficiency
of query processing both in the number of exchanged mes-
sages and in the time to get a complete answer. Our meth-
ods of optimisation do not require the knowledge in ad-
vance of a predefined topology, since the network topology
is discovered during query processing, even in the case of
dynamic networks. In this paper we propose a notion of
soundness and completeness of a query answer in the case
of dynamic networks. The traditional definition proposed
in distributed databases literature does not suit the context
of PDMS networks, since different notions of data objects
and query answers are used. The query answering algo-
rithm is efficient with respect to changes of the network.
The time of query processing in a network, when the size of
the change during query processing is sensibly less than the
size of the network is comparable to the time of query pro-
cessing in a stable network. The assumption that a change
is small with respect to the size of whole network is rea-
sonable for large scale networks.
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