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Abstract. This paper introduces a new logical formalism, intended for tempo-
ral conceptual modelling, as a natural combination of the well-known description
logic DLR and point-based linear temporal logic with Since and Until. We define
a query language (where queries are non-recursive Datalog programs and atoms
are complex DLRUS expressions) and investigate the problem of checking query
containment under the constraints defined by DLRUS conceptual schemas—i.e.,
DLRUS knowledge bases—as well as the problems of schema satisfiability and
logical implication.

1 Introduction

Temporal information systems are information systems that store historical information,
i.e., past, present, and potential future data. Many formalisations have been proposed for
temporal information systems which are based on first-order temporal logic [14]. Al-
though these formalisations can be very useful for characterising semantical problems
arising in temporalised ontologies and in temporal databases, like conceptual modelling
or querying, usually they are computationally unfeasible for performing deduction tasks
(for example, logical implication in the first-order temporal logic of the flow of time
〈Z, <〉 or 〈N, <〉 is not even recursively enumerable). Note that we are interested in de-
duction rather than model checking. An obvious solution to this problem would be to look
for well-behaved fragments of first-order temporal logic (see e.g. [14] and references
therein); however this way has not been successful—the only promising approach we
know of is the recent paper [19]. Another idea is to deviate from the first-order paradigm
and start from computationally more friendly languages such as description logics which
have been used in the area of non-temporal information management to characterise in a
uniform framework both conceptual modelling and queries [9, 6, 7].

The temporal description logic DLRUS we devise in this paper is based on the ex-
pressive and decidable description logic DLR which allows the logical reconstruction
and the extension of representational tools such as object-oriented and semantic data
models, frame-based and web ontology languages [10, 11]. In this setting, an interest-
ing feature of DLR is the ability to completely define classes and relations as DLR
views over other classes and relations of the conceptual schema. Moreover, DLR for-
mulas can express a large class of integrity constraints that are typical in databases, for
instance, existence dependencies, exclusion dependencies, typed inclusion dependencies
without projection of relations, unary inclusion dependencies, full key dependencies [9].
Logical implication in DLR is EXPTIME-complete [9]; practical correct and complete
algorithms exist, used in conceptual modelling applications [20, 16].



DLR is not only a very powerful language for conceptual modelling. The problem
of view-based query processing under DLR constraints has also been studied [9]. View-
based query answering requires to answer a query over a virtual database (constrained
by a DLR theory playing the role of the conceptual schema and of the integrity con-
straints) for which the only information comes from a set of materialised views over the
same database; this problem with non-recursive Datalog queries and views is a co-NP-
complete problem (in data complexity) under the closed world assumption. Checking
query containment of non-recursive Datalog queries under DLR constraints is decidable
in 2EXPTIME [9].

Given all these nice features of DLR, it is natural to try to extend it with a tempo-
ral dimension, to understand the expressive power of the resulting hybrid with respect
to the needs of temporal conceptual modelling and view based query processing, and to
investigate its computational properties. This paper reports the results of such an attempt.
We construct DLRUS as an organic combination of DLR and the propositional linear
temporal logic with Since and Until (which usually serves as the temporal component in
the first-order approach) by allowing applications of temporal operators to all syntacti-
cal terms of DLR: classes, relations, and formulas. We then investigate computational
properties of reasoning with DLRUS by analysing schema, class, and relation satisfiabil-
ity, logical implication, and query containment for non-recursive Datalog queries under
DLRUS constraints.

The full DLRUS turns out to be undecidable. The main reason for this is the possi-
bility to postulate that a binary relation does not vary in time—a very small fragment of
DLRUS (say, DLR augmented with a single time invariant binary relation) can encode
the undecidable tiling problem (cf. [26, 19]). The fragment DLR−

US of DLRUS deprived
of the ability to talk about temporal persistence of n-ary relations, for n ≥ 2, is still very
expressive, as is illustrated by examples in this paper, but its computational behaviour is
much better. We obtain the following non-trivial novel complexity results: (1) reasoning
in DLR−

US with atomic formulas is EXPTIME-complete, (2) satisfiability and logical im-
plication of arbitrary DLR−

US formulas is EXPSPACE-complete, and (3) the problem of
checking query containment of non-recursive Datalog queries under DLR−

US constraints
is decidable in 2EXPTIME with an EXPSPACE lower bound.

The results obtained in this paper are novel for several reasons. Previous approaches
to temporal description logics considered much weaker languages having only binary
relations (i.e., roles), without the cardinality constructs, without the inverse construct
(which DLRUS implicitly is able to express by considering only binary relations), and
without ever considering the ability to express queries [21, 25, 28, 23]. In this paper for the
first time an upper bound for the complexity of reasoning in a temporal description logic
with both future and past operators is proved, leading to a tight EXPSPACE-completeness
result which automatically holds for the weaker basic temporal description logic ALC−

US
as well. In this paper for the first time non trivial decidability and complexity results are
presented for the problem of temporal query containment under complex constraints. For
a survey of the previous various approaches to temporal description logics see [4].

2 The temporal description logic

In this paper, we adopt the classical snapshot representation of abstract temporal databases
(see e.g. [14]). The flow of time T = 〈Tp, <〉, where Tp is a set of time points (or
chronons) and < a binary precedence relation on Tp, is assumed to be isomorphic to
〈Z, <〉. Thus, a temporal database can be regarded as a mapping from time points in T
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Fig. 1. Syntax and semantics of DLRUS .

to standard relational databases, with the same interpretation of constants and the same
domains along time.

As a language for expressing temporal conceptual schemas we use the combination of
the propositional temporal logic with Since and Until and the (non-temporal) description
logic DLR [9]. The resulting DLRUS temporal description logic can be regarded as a
rather expressive fragment of the first-order temporal logic L{since, until}; cf. [14, 19] and
Section 3 below; note that DLR itself is neither in the guarded fragment of FOL nor in
the two variable variables fragment of FOL with counting quantifiers.

The basic syntactical types of DLRUS are entities (i.e., unary predicates, also known
as concepts or classes) and n-ary relations of arity ≥ 2. Starting from a set of atomic
entities (denoted by EN ), a set of atomic relations (denoted by RN ), and a set of role
symbols (denoted by U ) we define inductively (complex) entity and relation expressions
as is shown in the upper part of Fig. 1, where the binary constructs (u,t,U ,S) are applied
to relations of the same arity, i, j, k, n are natural numbers, i ≤ n, and j does not exceed
the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both entity and
relation expressions all the Boolean constructs are available. The selection expression
Ui/n : E denotes an n-ary relation whose argument named Ui (i ≤ n) is of type E;
if it is clear from the context, we omit n and write (Ui : E). The projection expres-



sion ∃≶k[Uj ]R is a generalisation with cardinalities of the projection operator over the
argument named Uj of the relation R; the plain classical projection is ∃≥1[Uj ]R. It is
also possible to use the pure argument position version of the model by replacing role
symbols Ui with the corresponding position numbers i.

The language of DLRUS is interpreted in temporal models over T , which are triples
of the form I

.
= 〈T ,∆I , ·I(t)〉, where ∆I is non-empty set of objects (the domain of I)

and ·I(t) an interpretation function such that, for every t ∈ T , every entity E, and every
n-ary relation R, we have EI(t) ⊆ ∆I and RI(t) ⊆ (∆I)n. The semantics of entity
and relation expressions is defined in the lower part of Fig. 1, where (u, v) = {w ∈ T |
u < w < v} and the operators 2

+ (always in the future) and 2
− (always in the past) are

the duals of 3
+ (some time in the future) and 3

− (some time in the past), respectively,
i.e., 2

+E ≡ ¬3
+¬E and 2

−E ≡ ¬3
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the temporal operators 3
+, ⊕ (at the next moment), and their past counterparts can

be defined via U and S: 3
+E ≡ > U E, ⊕E ≡ ⊥ U E, etc. However, this is not

possible for relations of arity > 1, since >n—the top n-ary relation—can be interpreted
by different subsets of the n-ary cross product > × · · · × > at different time points;
the reason for this is the ability of DLR to talk only about difference between relations
rather than of the complement of a relation. Then, we may have 〈d1, d2〉 ∈ (3+R)I(t)

because 〈d1, d2〉 ∈ RI(t+2), but 〈d1, d2〉 /∈ (>2)
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as 3

∗E ≡ E t 3
+E t 3

−E and 2
∗E ≡ E u 2

+E u 2
−E, respectively.

A temporal conceptual database schema (or a knowledge base) is a finite set Σ of
DLRUS -formulas. Atomic formulas are formulas of the formE1vE2 andR1vR2, with
R1 andR2 being relations of the same arity. If ϕ and ψ are DLRUS -formulas, then so are
¬ϕ,ϕ∧ψ,ϕUψ,ϕSψ.E1

.
= E2 is used as an abbreviation for (E1vE2)∧(E2vE1), for

both entities and relations. The global atomic formulaE1v
∗E2 is used as an abbreviation

for 2
∗(E1 vE2), for both entities and relations. Temporal conceptual database schemas

specify the constraints for temporal databases.
Given a formula ϕ, an interpretation I, and a time point t ∈ T , the truth-relation

I, t |= ϕ (ϕ holds in I at moment t) is defined inductively as follows:

I, t |= E1 v E2 iff EI(t)
1 ⊆ E

I(t)
2 I, t |= ϕ U ψ iff ∃v > t.(I, v |= ψ ∧

∀w ∈ (t, v).I, w |= ϕ)

I, t |= R1 vR2 iff RI(t)
1 ⊆ R

I(t)
2 I, t |= ϕ S ψ iff ∃v < t.(I, v |= ψ ∧

∀w ∈ (v, t).I, w |= ϕ)
I, t |= ¬ϕ iff I, t 6|= ϕ
I, t |= ϕ ∧ ψ iff I, t |= ϕ and I, t |= ψ

A formula ϕ is called satisfiable if there is a temporal model I such that I, t |= ϕ, for
some time point t. A conceptual schema Σ is satisfiable if the conjunction

∧

Σ of all
formulas in Σ is satisfiable (we write I, t |= Σ instead of I, t |=

∧

Σ); in this case I is
called a model of Σ. We say that Σ is globally satisfiable if there is I such that I, t |= Σ
for every t (I |= Σ, in symbols). An entity E (or relation R) is satisfiable if there is I
such that EI(t) 6= ∅ (respectively, RI(t) 6= ∅), for some time point t. Finally, we say that
Σ (globally) implies ϕ and write Σ |= ϕ if we have I |= ϕ whenever I |= Σ.

Note that an entity E is satisfiable iff ¬(E v ⊥) is satisfiable. An n-ary relation R
is satisfiable iff ¬(∃≥1[i]R v ⊥) is satisfiable for some i ≤ n. A conceptual schema Σ
is globally satisfiable iff 2

∗(
∧

Σ) is satisfiable. And Σ |= ϕ iff 2
∗(

∧

Σ) ∧ ¬ϕ is not
satisfiable. Thus, all reasoning tasks connected with the notions introduced above reduce
to satisfiability of formulas.



2.1 Temporal queries

In this Section we extend DLRUS with a temporal query language, and we define the
problem of evaluating a temporal query under DLRUS constraints and the problem of
temporal query containment under constraints (see, e.g., [14, 12, 1] for a survey and a
discussion about temporal queries). A non-recursive Datalog query (i.e., a disjunction of
conjunctive queries or SPJ-queries) over a DLRUS schema Σ is an expression of the
form

Q(−→x ):-
∨

j Qj(
−→x ,−→yj ,

−→cj ), where Qj(
−→x ,−→yj ,

−→cj ) ≡
∧

i P
i
j (
−→x i

j ,
−→y i

j ,
−→c i

j),

P i
j are DLRUS entity or relation expressions possibly occurring in Σ, −→x i

j ,
−→y i

j , and −→c i
j

are sequences of distinguished variables, existential variables, and constants, respectively,
the number of which is in agreement with the arity of P i

j . The variables −→x in the head are
the union of all the distinguished variables in each Qj ; the existential variables are used
to make coreferences in the query, and constants are fixed values. Q is a n-ary relation
(not appearing in Σ) whose arity is the number of variables in −→x .

It is to be noted that we allow entities and relations in the query to occur in the
conceptual schema Σ. This approach is similar to that of [9], where atoms in a query
can be constrained by means of schema formulas. Furthermore, query expressions do
not directly manipulate explicit temporal attributes, but time is implicit in each query
expression. Indeed, the temporal dimension is handled by means of the temporal modal
operators in DLRUS . In this perspective, the query language is in strict relation with the
First-Order Temporal Logic with since and until, L{since, until}, used in [14] for querying
temporal databases.

The semantics of queries is based on the snapshot representation of a temporal database,
and defined as follows. Given a temporal schema Σ, let I be a temporal model, and t be
a time point in T such that I satisfies Σ at t, i.e., I, t |= Σ. The snapshot interpretation

I(t) =
〈

∆I , {EI(t) | E ∈ EN}, {RI(t) | R ∈ RN}
〉

can be regarded as a usual first-order structure (i.e., a snapshot, non-temporal, database at
time t conforming in a sense to the conceptual schema), and so the whole I as a first-order
temporal model (with constant domain ∆I in which some values of the query constants
are specified). The evaluation of a query Q of arity n, under the constraints Σ, in the
model I that satisfies Σ at moment t, and the answer to the query Q, are respectively the
sets:

eval(Q, I(t)) = {−→o ∈ (∆I)n | I, t |=
∨

j ∃
−→yj .Qj(

−→o ,−→yj ,
−→cj )}

ans(Q, I) = {〈t,−→o 〉 ∈ T × (∆I)n | −→o ∈ eval(Q, I(t))}

We obtain a so called sequenced semantics for queries, which is based on the view of a
database as a time-indexed collection of snapshots. The query language is also snapshot-
reducible in the sense that non-temporal queries—i.e., queries without any temporal
connective—are still valid queries, and are interpreted using the sequenced semantics.
Our language allows also for upward compatible queries. Intuitively, a non-temporal
query is upward compatible if the answer set on a temporal database is the same as
the answer set on an associated non-temporal database. This is a temporal slice of the
temporal database at the current time: eval(Q, I(now)).

Given two queries (of the same arity) Q1 and Q2 over Σ, we say that Q1 is contained
in Q2 under the constraints Σ, and write Σ |= Q1 ⊆ Q2, if, for every temporal model
I of Σ we have ans(Q1, I) ⊆ ans(Q2, I). The query satisfiability problem—given a
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Fig. 2. The example EER diagram.

query Q over a schema Σ, to determine whether there are I and t such that I, t |= Σ,
and eval(Q, I(t)) 6= ∅—is reducible to query containment: Q is satisfiable iff Σ 6|=
Q(−→x ) ⊆ P (−→x ) ∧ ¬P (−→x ), where P is a DLRUS -relation of the same arity as Q.

2.2 Examples

As an example, let us consider the following conceptual schema Σ:

Works-forv∗ emp/2 : Employee u act/2 : Project
Managesv∗ man/2 : TopManager u prj/2 : Project
Employeev∗ ∃=1[from]PaySlipNumber u ∃=1[from](PaySlipNumber u to/2 : Integer) u

∃=1[from]Salary u ∃=1[from](Salary u to/2 : Integer)

>v∗ ∃≤1[to](PaySlipNumber u from/2 : Employee)
Managerv∗ Employee u (AreaManager t TopManager)
AreaManagerv∗ Manager u ¬TopManager
TopManagerv∗ Manager u ∃=1[man]Manages

Projectv∗ ∃≥1[act]Works-for u ∃=1[prj]Manages

Employee u ¬(∃≥1[emp]Works-for) v∗ Manager

Managerv∗ ¬(∃≥1[emp]Works-for) u (Qualified S (Employee u ¬Manager))

The theory introduces Works-for as a binary relation between employees and projects,
and Manages as a binary relation between managers and projects. Employees have ex-
actly one pay slip number and one salary each, which are represented as binary relations
(with from and to roles) with an integer domain; moreover, a pay slip number uniquely
identifies an employee (it acts as a key). It is stated that managers are employees, and are
partitioned into area managers and top managers. Top Managers participate exactly once
in the relation Manages, i.e., every top manager manages exactly one project. Projects
participate at least once to the relation Works-for and exactly once in the relation
Manages. Finally, employees not working for a project are exactly the managers, and
managers should be qualified, i.e., should have passed a period of being employees. The
meaning of the above conceptual schema (with the exception of the last two formulas) is
illustrated by the left part of the diagram in Fig. 2.

The conceptual schema Σ globally logically implies that, for every project, there is
at least one employee who is not a manager, and that a top manager worked in a project
before managing some (possibly different) project:



Σ |= Projectv∗ ∃≥1[act](Works-for u emp : ¬Manager)
Σ |= TopManagerv∗

3
−∃≥1[emp](Works-for u act : Project)

Note also that if we add to Σ the formula

Employeev∗ ∃≥1[emp]Works-for

saying that every employee should work for at least one project, then all the entities and
the relations mentioned in the conceptual schema are interpreted as the empty set in every
model of Σ, i.e., they are not satisfiable relative to Σ.

The expressivity of the query language can be understood with the following exam-
ples, taken from [14]:

“Find all people who have worked for only one project”
Q(x) :-(∃=1[emp](3∗Works-for))(x)
“Find all managers whose terminal project has code prj342”
Q(x) :-Manager(x) ∧ Manages(x, prj342) ∧ (2+¬Manages)(x, y)
“Find all project-hoppers—people who never spent more than two consecutive years in a
project”
Q(x) :-(2∗¬∃≥1[emp](Works-for u⊕ Works-for u⊕⊕ Works-for))(x)
“Find all people who did not work between two projects”
Q(x) :-(3−∃≥1[emp]Works-for)(x)∧

(¬∃≥1[emp]Works-for)(x) ∧ (3+∃≥1[emp]Works-for)(x)

We now consider an example of query containment under constraints, where the con-
straints are expressed by the above schema Σ. Consider the following queries:

Q1(x, y) :- ¬AreaManager(x) ∧ Manages(x, z) ∧ Project(z)∧
Resp-for(y, z) ∧ Department(y)

Q2(x, y) :- (3−∃≥1[emp]Works-for)(x) ∧ Manages(x, z)∧
Resp-for(y, z) ∧ ¬InterestGroup(y)

It is not hard to see that Q1 is contained in Q2 under the constraints inΣ, i.e.,Σ |= Q1 ⊆
Q2.

3 Decidability and complexity

In this section, we present and briefly discuss our main results on the computational
behaviour of DLRUS and its fragments over the flow of time 〈Z, <〉.

Unfortunately, full DLRUS , even restricted to atomic formulas, turns out to be unde-
cidable. One can actually show that the undecidable tiling problem reduces to satisfiabil-
ity of atomic formulas in DLRUS .

Theorem 1. The global satisfiability problem for DLRUS conceptual schemas contain-
ing only atomic formulas is undecidable.

It follows, in particular, that (a) the problem of satisfiability of complex DLRUS for-
mulas is undecidable, and (b) the problem of global logical implication in DLRUS—even
involving only atomic formulas—is undecidable as well. The main technical reason for
undecidability is the possibility to ‘temporalise’ binary relations, cf. [26]. The fragment
DLR−

US , in which the temporal operators can be applied only to entities and formulas
(but not to n-ary relations, with n ≥ 2), exhibits a much better computational behaviour.
The following theorem presents the complexity results we have obtained for schema and
query reasoning in DLR−

US :



Theorem 2. Let the flow of time be 〈Z, <〉. Then
(1) the problem of logical implication in DLR−

US involving only atomic formulas is
EXPTIME-complete;

(2) the formula satisfiability problem (and so the problem of logical implication) in
DLR−

US is EXPSPACE-complete;
(3) the query-containment problem for non-recursive Datalog queries under DLR−

US -
constraints is decidable in 2EXPTIME and is EXPSPACE-hard.

The main ideas of the proof are as follows:
(1) EXPTIME-hardness follows from the EXPTIME-hardness of DLR. An EXPTIME-

algorithm is obtained by means of a polynomial reduction from DLR−
US to the logic

DLRreg , where logical implication is known to be decidable in EXPTIME [9]. The re-
duction extends the one proposed in [21].

(2)The EXPSPACE-hardness of the formula satisfiability problem is proved in [17],
even for the sublanguage ALC2 of DLR−

US , by reducing to it the n-CORRIDOR tiling
problem [24]. But the most interesting and original result presented in this paper is the
EXPSPACE upper bound. We briefly sketch the main new contribution. First, we take the
road proposed in [25, 27, 28] and show that the satisfiability problem can be equivalently
formulated as a problem about the existence of certain quasimodels. Roughly, the idea
behind the notion of a quasimodel is to represent ‘the state’ of the (in general, infinite)
domain of a temporal model at each moment of time by finitely many ‘types’ of the
domain objects at this moment. A set T is a quasistate candidate for ϕ if it is a set of
concept types (i.e., a subset of all the subconcepts in ϕ which is Boolean saturated). Not
all quasistate candidates can represent proper states. Denote by c(t) the type which results
from t when all concepts starting with a temporal operator are replaced by new atomic
concepts. Thus, c(t) abstracts from the temporal content of T . We say that the quasistate
candidate T is a quasistate for ϕ if the following (non-temporal) DLR-formula αT

(

⊔

t∈T

c(t)
.
= >

)

∧
∧

t∈T

¬(c(t)
.
= ⊥)

is satisfiable. A quasimodel for ϕ is a sequence of quasistates for ϕ satisfying some
additional conditions. It was proved in [28] that given an oracle deciding whether a given
quasistate candidate is a quasistate, the question whether a quasimodel for ϕ exists can be
decided in EXPSPACE. Hence, the main new ingredient providing us with an EXPSPACE
procedure deciding the existence of quasimodels for ϕ is the following:

Lemma 1. Given a DLR−
US -formula ϕ, it is decidable in EXPSPACE whether a quasis-

tate candidate for ϕ is a quasistate.

Since αT is exponential in the size of ϕ, this lemma does not follow from known
results and, in fact, a number of new ideas are required to prove it.

(3) The query containment problem can be reduced to satisfiability in quasimodels
and the query-containment problem for (non-temporal) DLR. Since we proved in (2)
that the satisfiability problem is EXPSPACE-complete, while for DLR the problem was
shown to be decidable in 2EXPTIME time in [9] we can conclude that also in DLR−

US
the query containment problem is in 2EXPTIME.

4 Conceptual modelling

In this section we briefly show how the temporal description logic DLRUS can provide
a formal semantic characterisation of the most important temporal conceptual modelling



constructs (for the valid time representation). We refer mostly to the temporal extended
entity-relationship data model, for which a detailed literature exists [18, 22].

The extended entity-relationship (EER) model—i.e., the standard entity-relationship
data model, enriched with IsA links, disjoint and covering constraints, and full car-
dinality constraints—may be viewed as a temporalised EER model which assigns to
every construct a temporal interpretation but provides no explicit temporal constructs.
Gregersen and Jensen [18] call this approach implicit, because the temporal dimension is
hidden in the interpretation structure so that entities and relationships are always time-
dependent. The non-temporal fragment of DLRUS , i.e., DLR, is enough to capture the
EER model with implicit time. For the non-temporal EER model, such an encoding, in-
troduced by [10, 11], establishes a precise correspondence between legal database states
of the EER diagram and models of the derived DLR theory. That this encoding is correct
for the EER model with implicit time was shown in [2, 3], where DLR was interpreted
by a temporal semantics. The example knowledge base in Section 2.2 (without the last
two formulas) shows the exact encoding for the left-hand part of the temporally implicit
EER diagram in Fig.2. This encoding could support the design of a temporal concep-
tual schema by exploiting the reasoning in DLRUS : it becomes possible to verify the
conceptual specification, infer implicit facts and stricter constraints, and manifest any in-
consistencies. Note that the same ideas presented here would apply to non-temporal UML
class diagrams (encoded in DLR in [8]) and DAML+OIL ontologies.

We now introduce the basic temporal constructs that can be added on top of a tempo-
rally implicit model leading to a full fledged temporal conceptual model.

Temporal entities and relations. Both entity and relation instances in a temporal
setting have an existence time associated to them. DLRUS -formulas can enforce either
that entities (relations) cannot last forever—we call them temporary entities (temporary
relations), or that their extension never changes in time—we call them snapshot enti-
ties (snapshot relations). Temporary entities and relations are captured by the following
DLRUS -formulas:

E v∗ (3+¬E) t (3−¬E) Rv∗ (3+¬R) t (3−¬R)

saying that there must be a past or a future time point where the entity (relation) does
not hold. In other words, instances of temporary entities (relations) always have a limited
lifetime. On the other hand, snapshot entities and relations are captured by the following
DLRUS -formulas:

E v∗ (2+E) u (2−E) Rv∗ (2+R) u (2−R)

saying that whenever the entity (relation) is true it is necessarily true in every past and
every future time point, i.e, they never change along time. Snapshot entities and rela-
tions are used to capture the semantics of legacy non-temporal schemas when included
in a temporal model, thus enforcing the upward compatibility. In our example (Fig. 2),
Employee,Department,Resp-For could be constrained by snapshot DLRUS for-
mulas, while Manager,Work-For by temporary formulas.

Temporal attributes. At different points in time, an entity may have different val-
ues for the same attribute. Attributes can be forced either to remain unchanged in time
(snapshot attribute), or to necessarily change (temporary attribute) with the following
DLRUS -formulas, respectively:

E v∗ ∃≥1[from]2∗RA E v∗ ∃=1[From](RA u (3+¬RA t 3
−¬RA))



When considering the interaction between the temporal behaviour of an attribute and
that of the owner entity, it is consistent in DLRUS to have both snapshot attributes of
a temporary entity and temporary attributes of a snapshot entity. In the former case, the
DLRUS semantics says that during the lifespan of an entity the value of a snapshot
attribute never changes. In the latter one, the meaning is that each instance always be-
longs to the snapshot entity but the value of the temporary attribute will change during
its existence. In our running example, where Employee is a snapshot entity, Salary
is modelled as a temporary attribute, while Names,PaySlipNumber are modelled as
snapshot attributes. In particular, PaySlipNumber plays the role of a full fledged tem-
poral key (see the formula for PaySlipNumber in Sect. 2.2).

Temporal cardinalities. Cardinality constraints limit the participation of entities in
relationships. In a temporal setting, we can distinguish between snapshot participation
constraints (true at each point in time) and lifespan participation constraints (evaluated
during the entire existence of the entity). While the standard DLRUS cardinality con-
struct captures snapshot participation constraints, the lifespan participation constraints
are defined by the following DLRUS -formula:

E v∗ ∃≶n[i]3∗R

i.e., over its lifespan, an instance of the entity E must participate as the ith argument in at
least n (at most n, or precisely n) tuples of the relation R. Obviously, since for snapshot
relations the set of instances does not change in time, there is no difference between
snapshot and lifespan participation constraints with respect to snapshot relations. In our
example, we could say for example that managers should manage at most 5 different
projects in their entire existence as managers, while still being constrained in managing
exactly one project at a time.

Dynamic entities. In the temporal conceptual modelling literature, two notions of dy-
namic transitions between a entities (also called object migrations) are considered [22]:
dynamic evolution, when an object ceases to be an instance of a source entity, and dy-
namic extension, when an object continues to belong to the source. Let Es be the source
entity and Et be the target one; the two cases are captured by the following formulas,
respectively:

Es v
∗

3
+(Et u ¬Es) Es v

∗
3

+Et

An interesting consequence of dynamic evolution is that the source is necessarily a tem-
porary entity.

DLRUS is also able to capture safety and liveness constraints. A safety constraint
intuitively says that “nothing bad ever happens” and can be captured by the formula
2

∗¬(E v ⊥). On the other hand, liveness constraints saying that “something good will
happen” can be expressed by existential temporal formulas: 3

∗¬(E v⊥).

Schema evolution. We consider here a simplified case of conceptual schema evolu-
tion [15], which can be called a monotonic approach. This allows only for changes in the
schema such that the resulting conceptual schema is compatible with the previous global
constraints.

Let Γ and φp be atomic formulas, or possibly a Boolean combination of atomic
formulas, which introduce, respectively, a new schema portion and a condition to be
checked. The formula 2

∗(¬φp ∨ 2
+Γ ) states that as soon as the property φp becomes

true for the data, the conceptual schema will include the additional Γ constraint. A simple
example is:



φp ≡ (InterestGroupv⊥)

Γ ≡ (∃≥1[amount](Salary u payee/2 : TopManager) v LowAmount)

meaning that as soon as the organisation does not include interest groups anymore, the
salary of top managers should be in the “low amount” class.

Note that the DLR−
US with only atomic formulas (i.e., the EXPTIME-complete frag-

ment of DLRUS ) is enough to capture most of the modelling constructs discussed in this
Section—in fact, in the case of (global) logical implication for atomic formulas, there is
no difference between v and v∗—with the exception of (a) schema evolution constraints,
(b) safety and liveness conditions, (c) snapshot relations and attributes, and (d) temporal
cardinalities. Full DLR−

US (i.e., the EXPSPACE-complete fragment of DLRUS ) is able
to express (a) and (b) as well. However, (c) and (d) require temporalised relations which,
by Theorem 1, lead to undecidability.

5 Conclusion

This work introduces the temporal description logic DLRUS and illustrates its expressive
power. A temporal query language was defined and the problem of query containment
under the constraints defined by a DLRUS conceptual schema is investigated.

Tight complexity results were proved. In particular, reasoning in the full logic DLRUS

was shown to be undecidable, while decidability was obtained using a still expressive
fragment, DLR−

US . We have also shown that the problem of checking query containment
of non-recursive Datalog queries under constraints with arbitrary DLR−

US formulas is
decidable in 2EXPTIME with an EXPSPACE lower bound. This result is the first de-
cidability result we are aware of on containment of temporal conjunctive queries under
expressive constraints.

This work has been partially funded by the EPSRC grants GR/R45369/01, GR/R04348/01,
GR/R09428/01. The second author wishes to thank the University of Manchester, where
most of the work presented in this paper was carried out.
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