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Ontologies—specifications of what exists, or what we can say
about the world—have been around at least since Aristotle. At
various times, philosophers have wondered whether the present
King of France is bald or whether existence is a predicate. Just as
scientists have grappled with the reality of negative numbers,
subatomic particles, or the vital force, so have theologians and
mystics grappled with the reality of God and inner spiritual
experiences. The nature of knowledge is an abiding question
and has resulted in people’s continuous attempts to find ways to
express, word, or convey their own “knowledge.” Physics and
mathematics depend on specific symbolic languages, and many
approaches to AI regard finding the problem’s optimal repre-
sentation as most of the solution.

Recently, we have seen an explosion of interest in ontologies
as artifacts to represent human knowledge and as critical
components in knowledge management, the Semantic Web,
business-to-business applications, and several other application
areas. Various research communities commonly assume that
ontologies are the appropriate modeling structure for repre-
senting knowledge. However, little discussion has occurred
regarding the actual range of knowledge an ontology can suc-
cessfully represent.

How adequate a conception of knowledge is this? Clearly,
we can’t easily represent certain types of knowledge (for ex-
ample, skills or distributed knowledge). We can’t easily trans-
form certain types of representation into ontology-appropri-
ate formats (for example, diagrammatic knowledge). Other
types of knowledge are extremely suited to ontological repre-
sentation, such as taxonomic information. Most, but not all,
definitions of ontology insist that an ontology specifically rep-
resents common, shared conceptual structures. Does this re-
quirement for publicity help guarantee adequacy? And if so,
can we talk of personal ontologies?1

In this installment of Trends and Controversies, we bring
together several practitioners to debate these issues. We have
tried to secure a range of perspectives, from the philosophical
to the practical, because the question of ontology is so multi-
layered. Indeed, we hope these essays exhibit that very multi-
fariousness.

Sociologist and epistemologist Steve Fuller kicks off our

debate by distinguishing between two views of ontology,
which he calls the Newtonian and the Leibnizian. The former
refers to views of ontology as finding elegant simplifying prin-
ciples; the latter hopes to do justice to the extreme complexity
of experience. Clearly, in the context of the Semantic Web and
other knowledge management contexts, the two approaches
offer contrasting advantages. Elegant ontologies might be
easier to manage, but scruffy ones might be easier to apply.

Lining up for the scruffy, Leibnizian team is Yorick Wilks,
who combines philosophy and linguistics to argue that you
can’t take a lofty, unengaged view of what exists. Every onto-
logical theory has a viewpoint and is associated with a set of
interests, and through the terms used—just like any dictionary
or thesaurus—involves covert ontological commitment. New-
tonian abstraction will always be a chimera.

Computer scientist Enrico Franconi represents the elegant
Newtonians. Franconi, while subscribing to a belief in ontolo-
gies with unambiguous semantics, argues that in the absence
of sound and complete inference engines, ontologies’ full for-
mal semantics can’t be exploited. In this case, ontologies revert
to being mere data structures, and Franconi sees the develop-
ment of inference engines as the Semantic Web’s major chal-
lenge and therefore an essential research topic.

“Ontologies with unambiguous meanings” are clear Pla-
tonic descendants as opposed to Wilks’ scruffy, relativistic, and
task-dependent ontologies, which are more Aristotelean in
their practicality. The question is whether the ontology used
depends on what you want to do with it—in other words, the
task for which it is developed. Aristotle’s followers answer
“yes,” and the Platonists say “no.”2 Indeed, although beyond
this introduction’s scope, it’s fascinating to muse about the
relationship between Newton and Leibniz and Plato and Aris-
totle; are they the same distinction? And if not, how do they
influence each other? Surely they can’t be orthogonal. The
articles we’ve selected make many suggestive points.

If ontologies are irrevocably task-relative (that is, we charac-
terize the world differently depending on what we’re trying to
do), several heterogeneous ontologies should exist. But then
will the modeling overhead be too high? Mark Musen, from
his experience in medical informatics, reminds us of when the
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If Everything Always Is, 
Why Hasn’t There Always 
Been Ontology?
Steve Fuller, University of Warwick 

If ontology is indeed the first philoso-
phy—the most fundamental examination of
being “as such”—why did it acquire cur-
rency only in the 18th century, by the end
of which Kant had already deemed it a
pseudoscience? The answer to this question
provides what philosophers call an axiolog-
ical backdrop for contemporary discussions
about ontology’s role in knowledge man-
agement (KM). In other words, the attitude
you have toward ontology reflects what you
believe are the values inquiry exemplifies.

Two views of ontology
Leibniz’s student, Christian Wolff, popu-

larized ontology. Wolff was influenced by
his master’s concerns with Newtonian me-
chanics’ theological implications. Newton
had a rather distinctive way of interpreting
Aristotle’s economic definition of science as
that which explains the most by the least:

most of the most turns out to be not worth
explaining at all. This, in a nutshell, captures
the reductionist sentiment that let Newton
encompass all physical motion—both in the
heavens and on earth—in a neat set of three
laws and one universal principle. It follows
that most of what appears significant to us—
notably, the sensory qualities of moving bo-
dies—is irrelevant to the divine blueprint.
Newton could accept this conclusion as an
operationalization of the qualitative differ-
ence between the clarity of God’s mind and
the confusion of our own, which we can
bridge only if God wills it (as Newton clear-
ly thought, at least in his own case). Cogni-
tion consists of abstracting robust patterns
from noisy data, such that the complex be-
comes simple.

However, Leibniz questioned Newtonian
mechanics’ piety because it seemed to sug-
gest that God routinely generates waste. After
all, His favorite creatures, humans, manage to
register distinctions that are pointless except
as deviations from an ideal type or varia-
tions on a mathematical theme (or simply
“the value of a variable,” to recall Quine’s

notorious definition of being). Why would
God burden us with the distractions of sen-
sory experience when they only serve to
impede our ability to detect the simple pat-
terns Newton postulated? But perhaps in
raising this question, Newton’s own system
is dubious because—at least according to
Leibniz and his followers—God acts in
accordance with the “principle of sufficient
reason.” In other words, God wastes noth-
ing. Nature’s complexity is thus an invita-
tion for us to provide direction for some-
thing that could develop in many different
ways; hence, our need for free will. Cogni-
tion then is tantamount to construction or—
for those who refuse the slide down the
slippery slope from thought to action—
simulated construction.

One thing is clear from this brief early
history of ontology. Both Newton and
Leibniz presuppose that access to reality
requires effort. Ontology is the product of
that effort. The question separating them is
the nature of the effort: Is it a kind of sub-
traction from (Newton) or addition to
(Leibniz) what is given in experience?
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primary focus of research in this area was not ontologies but
problem-solving methods. This research taught us much about
how information gets deployed to achieve tasks, and Musen is
keen that we not forget this knowledge in the rush to address
fashionable representational issues. Both knowledge types are
valuable.

Jeremy Ellman, CTO of Wordmap, discusses a fascinating sur-
vey on how ontologies are actually used; his research shifts the
focus away from the domain properties, and even the task
requirements, and toward the necessity of integration into
existing systems. Given current research assumptions, it is signifi-
cant that less than 10 percent of the ontologies his company has
dealt with involved inferential requirements. Simon Bucking-
ham Shum, from his perspective of research into knowledge
media, endorses this view, arguing that over-engineered sys-
tems simply won’t be applied. An interesting theme that emer-
ges with Buckingham Shum and Musen’s work in particular is
the tight link between ontologies, tasks, and tool building.

Returning to our earlier concern about knowledge that on-
tologies can’t capture, the question arises: what is that know-
ledge? This question sounds philosophical, but it has massive
practical implications for the evaluation of ontologies, the cost-
benefit analysis of modeling and KA programs,3 and the feasi-
bility and suitability of obtaining that knowledge from texts.4

This question might be impossible to answer, at least until we
have a clear consensus about what an ontology actually is. (Ell-
man and Musen, for example, both argue that this consensus
has yet to emerge.) Buckingham Shum points out that organi-

zations’ properties are often inimical to the consensus and
knowledge maintenance required to keep ontologies relevant,
although their integration into existing practices will mitigate
the problem. Even more significantly, he questions whether a
text-based infrastructure is suited to knowledge present in mul-
tiple modalities. 

Wilks, Franconi, and Fuller, in their different ways, imply that
how this final question is framed, and how ontologies are un-
derstood, will dramatically affect the answer. Even in this prag-
matic context, no less than a balance between technical and
philosophical analysis will approach an answer. For this inquiry,
no discipline is dispensable.
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Does cognition replace our confused con-
cepts with clear ones (Newton) or let us
conceptualize open-ended situations (Leib-
niz)? Both metaphysical system-builders
and KM system-builders can explore the
ramifications of these alternatives.

Metaphysically speaking, the difference
between Newton and Leibniz harks back to
alternative conceptions of how the fabric of
reality is woven. Newton focuses on the one
and the many, Leibniz on the part and the
whole. With the former, the issue boils down
to determining the ideal type—“the one”—
next to which “the many” are imperfect ver-
sions. With the latter, the issue is determining
“the whole,” whose properties somehow
transcend those of its constituent “parts.”1

Considerable social psychological evi-
dence exists that this ancient distinction in
metaphysical orientations corresponds to
cross-cultural differences in default reason-
ing patterns.2 For example, when presented
with the test case, “What goes with a cow: a
chicken or a bed of grass?” Westerners chose
the chicken and East Asians the grass. The
Westerners interpreted the task as a search
for a common higher-order category, “the
one” under which cow and chicken count as
“the many.” In contrast, the East Asians
viewed the task as a search for a composite
whole, in which the cow and a bed of grass
are complementary parts. Unsurprisingly,
Leibniz was the biggest Sinophile among
major Western philosophers.

From philosophy to
knowledge management

From the KM standpoint, we can find
Newton’s hand in specialist-driven search
engines, or expert systems, that invite users
to input vague data in return for an exact
output they can use to determine a course of
action. Here, the KM system is designed to
anticipate the various confusions the user is
likely to bring to the cognitive transaction,
disentangle them (perhaps by disaggregating
the likely causes of the effects the user per-
ceives), and present a result that will focus
the user’s efforts, not compound his or her
confusion. Phenomenology is thus the great
enemy that ontology aims to overcome.3

In contrast, we can find Leibniz’s hand
in “self-programming” search engines that
effectively learn to adapt to the user’s needs
through repeated use. In this incarnation,
we can say that the KM system lets users
become aware of the kind of world that
their own inquiries presuppose. Whether

users manage to learn as much as the search
engine in the transaction is an open ques-
tion: Does the self-programming system
serve to deepen knowledge or merely en-
trench prejudice? More generally, does
ontology turn out to be a realization, or
merely a reification, of phenomenology? 

Having followed in Leibniz’s footsteps
for most of his career, Kant’s “critical”
moment arrived when he converted to New-
ton. Thereafter, he ridiculed the pretensions
of ontology as a discipline that tried to confer
metaphysical significance on every aspect of
human experience. Faced with the choice
between a world view that constantly re-
minds humans that their experience normal-
ly falls short of grasping the structure of
reality (Newton) and a world view that
doesn’t let humans distinguish between
perfect correspondence and seamless self-
deception (Leibniz), Kant argued that the
former is the more intellectually responsible
course of action, however daunting it ren-
ders the “interface” between us and what-
ever lies on the other side.

Translated into KM terms, a rich Leib-
nizian sense of ontology might provide a
blueprint for cyborgs that incorporate the
user in a harmonious knowledge system.
However, the more austere Newtonian one
continues to remind us that whatever the
nature of the interaction between human
and computer, it’s not symmetrical.
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Are Ontologies Distinctive
Enough for Computations 
over Knowledge?
Yorick Wilks, University of Sheffield

Is there a problem with ontologies? Are
they really distinct from nets, graphs, the-
sauri, lexicons, and taxonomies, or are peo-
ple just confused about any real or imagined

differences? Does the word “ontology” have
any single, clear, meaning when AI and
natural language processing researchers
use it? If not, does that matter? Are those of
us in AI and NLP just muddled computer
people who need to have our thoughts firmed
up, cleared up, sorted out, and so on by other,
more philosophical, logical, or linguistic
experts so we can better perform our jobs?

I address, if not answer these questions
in this essay. The last is a recurrent ques-
tion in AI to which I shall declare a practi-
cal, and negative, answer. Namely, decades
of experience show that for effective, per-
forming simulations of knowledge-based
intelligence, enhanced representations—
those meeting any criteria derived from
logic—are rarely useful in advancing those
simulations.

My background
Because the topic is metaphysical, I’ll

declare my wrinkled hand at the beginning
as far as these matters are concerned. My
PhD thesis1 was a computational study of
metaphysical arguments, as contained in
classic historical texts. The claim (which
the exiguous computing capacity of those
days barely supported) was that such argu-
ments proceed and succeed using methods
quite different from the explicit, surface
argument structure their authors proposed.
Rather, the methods involve rhetorical
shifts of our sense of key words, and au-
thors might not even be aware of them. For
example, Spinoza’s whole philosophy, set
out in the form of logical proofs that are all
faulty, actually aims to shift our sense for
the word “nature.”2

My early investigation alerted me to the
possibility that representational structures
are not always necessary where deployed,
and that we can’t always be sure when rep-
resentations are or are not adequately com-
plex to express some important knowledge.
I think of Roger Schvaneveltd’s Pathfinder
networks:3 simple, associative networks
derived from word use that seem able, con-
trary to most intuition, to express the kinds
of skills fighter pilots have. I also recall the
dispute Jerry Fodor originated—that con-
nectionist networks could not express re-
cursive grammatical structures,4 an argu-
ment I believe he lost when Jordan Pollack
produced his recursive auto-associative
networks.5

My theme, then, is that man-made struc-
tural objects (namely, ontologies, lexicons,
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and thesauri) for classifying words and
worlds contain more than they appear to, or
more than their authors are aware of. This
is why computational work continues to
mine novelty from analyzing such objects
as Webster’s 7th, the Longman Dictionary
of Contemporary English, Wordnet, or
Roget. Margaret Masterman memorably
claimed that Roget showed his unconscious,
as well as his explicit, structuring—that of a
19th-century Anglican clergyman, an oppo-
sition between good and evil.6

If any of this is true, then what structural
objects that contain knowledge need is not
conceptual clearing up but investigation.
Or, as Ezra Pound once put it: “After Leib-
niz, a philosopher was a guy too damn lazy
to work in a laboratory.”

Defining “ontology”
Those cursed with a memory of meta-

physics are often irritated by modern AI
and NLP, where the word “ontology” rarely
means what it used to—namely, the study
of what there is, of being in general. Recent
exceptions to this are Nicola Guarino’s7

and Graeme Hirst’s8 discussions. However,
almost all modern use refers to hierarchical
knowledge structures whose authors never
discuss what there is but assume they know
it and just want to write down the relations
between the parts/wholes and sets and indi-
viduals that undoubtedly exist.

To a large extent, I’ll go along with this
use, noting that as a Web search term, onto-
logy locates two disjoint literatures with
virtually no personnel in common: the
world of formal ontology specification9

and the world of ontologies for language-
related AI tasks.10 Rare overlaps include
the CYC system,11 which began as an
attempt to record extensive world knowl-
edge in predicate, but which its designer
Douglas Lenat also claimed as a possible
knowledge form for language processing.

We must begin with one of my earlier
questions about the conflation of ontolo-
gies (construed as hierarchical classifica-
tions of things or entities) and thesauri or
taxonomies (hierarchical classifications of
words or lexical senses). A widespread
belief exists that these are different con-
structs—as different (on another dimen-
sion) as encyclopedias and dictionaries—
and should be shown as such. Others will
admit that they are often mixed together.
For example, Wordnet12 is called an ontol-
ogy, which it sometimes is, but this might

not matter as regards its function as the
most popular NLP resource, any more than
it matters that dictionaries contain many
world facts, such as “a chrysanthemum is a
flower that grows at Alpine elevations.”

Problems with formalization
A random paper I reviewed last month

offered an ontological coding scheme,
comprising what it called universal words,
and whose first example item was

(Drink > liquor).

This was included to signify, through “uni-
versal words” that “drink is a type of li-
quor.” At first, this seems the reverse of
common sense—liquors (distilled alcoholic
drinks) are a type of drink, and the symbols
as written suggest that drink includes liquor,
which is broadly true. However, if the text
as written contains a misprint, and “liquid”
is intended instead of “liquor,” the quote is
true, but the symbols are misleading.

We probably can’t interpret the words in
any straightforward way that will make the
quotation true, but the situation is certainly
more complex because “drink” has at least
two relevant senses (potable versus alco-
holic drink) and liquor has two as well (dis-
tillate versus potable distillate). This issue
is always present in systems that claim to
be ontologies, not systems using lexical
concepts or items. As such, these systems
claim to be using symbols that aren’t words
in a language (usually English), but rather
are idealized or arbitrary items that only
contingently look like English words.

It is not sufficient to say, as some such as
Sergei Nirenburg consistently maintain, that
ontological items simply seem like English
words, and he and I have discussed this issue
elsewhere.10 I firmly believe that items in
ontologies and taxonomies are and remain
words in natural languages—the very ones
they seem to be, in fact—and that this strongly
constrains the degrees of formalization we
can achieve using such structures. The word
“drink” has many meanings (for example,
the sea) and attempts to restrict it within
structures by rule, constraint, or the domain
used can only have limited success. More-
over, there is no way out using nonlinguistic
symbols or numbers, for the reasons Drew
McDermott explores.13 Those who continue
to maintain that “universal words” aren’t the
English words they look most like, must at
least tell us which sense of that closest word

is intended to bear under formalization.
When faced with the demand I just men-

tioned, a traditional move is to say that
science doesn’t require that kind of preci-
sion at all levels of a structure, but rather
that “higher-level” abstract terms in a the-
ory gain their meaning from the theory as a
whole. Jerrold Katz adopted this view for
the meaning of terms like “positron.”14

From a different position in the philosophy
of science, writers such as Richard Braith-
waite15 argued that we should interpret
scientific terms (such as “positron”) at the
most abstract level of scientific theory by a
process of what he called semantic ascent
from the interpretations of lower, more
empirical terms.

This argument is ingenious but defective
because a hierarchical ontology or lexicon
isn’t like a scientific theory (although both
have the same top-bottom, abstract-concrete
correlation). The latter isn’t a classification
of life but a sequential proof from axiomatic
forms.

However, what this analogy expresses is
in the spirit of Quine’s later views16—
namely, not all levels of a theory measure
up to the world in the same way, and no
absolute distinction exists between high
and low levels. If this is the case, a serious
challenge remains for ontologies claiming
any degree of formality: How can the de-
signers or users control the sense and ex-
tension of the terms used and protect them
from arbitrary change in use?
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Using Ontologies
Enrico Franconi, Free University of 
Bozen-Bolzano

We now have ontologies all over the
place—or we will have them soon. We have
(or are headed toward) several standard lan-
guages in which to write them so that we can
have a common understanding about their
content. We need such standardization if
ontologies are to automate information
exchange by supporting the retrieval and
understanding of data involved in transac-
tions. The research community has spent
considerable effort giving these ontology
languages a formal semantics, making
ontologies’ meaning completely unambigu-
ous—at least on paper. These logic-based
ontology languages now form the foundation
for the Semantic Web’s layered architecture.

The first step
Having ontologies with unambiguous

meanings is just the first step toward the
Semantic Web vision or toward a fully
automated, ontology-supported business-
to-business scenario. Of course, in certain
fields and applications, just agreeing on the
meaning of the terms involved is an impor-
tant step forward. Consider, for example,
medical terminology or specialized termi-
nologies in different businesses. In fact,
applications in these fields could more eas-
ily interoperate if they were built with a
common understanding of the information
structure. This first step is limited when
applications view terms in the ontologies as
data structures, neglecting the ontology
definitions’ full semantic content.

Why we need ontology
languages

If all we can do with ontologies is use
them as basic abstract data types, the whole
effort of giving a well-founded semantics to
expressive ontology languages is useless.
People tend to use ontologies only as frames
to instantiate their applications, so a simple
frame-based ontology language would suf-
fice. Java or Corba IDL’s class structure is
definitely enough for these purposes. We
don’t need to put an entire legion of compu-
tational logicians to work for that. In fact,
you can already find proposals for novel
ontology languages with no formal seman-
tics. These languages, according to their
proposers, should supposedly overcome
some of the big players’ limitations. How-
ever, they can’t compare with semantically
based approaches, such as OWL. In fact, the
underlying assumption that an ontology lan-
guage should have an unambiguous, well-
understood meaning doesn’t hold anymore.
Ontologies written in these languages can
only play the role of shared data structures
in interoperating applications.

If we accept that an ontology language
should have an unambiguous meaning,
then we probably also want to have the
most expressive language possible in this
framework. This rationale has been behind
the discussions about the OWL Full lan-
guage, which turned out to be very expres-
sive—beyond first-order logic. This means
that OWL Full can express most of the de-
tails we’d want described in an ontology,
but other agents can still understand that
ontology without any problems.

However, just because other agents can

understand expressive ontologies, that doesn’t
mean applications can use them properly.
Unless an application uses an ontology as a
simple data structure, the application must
properly consider the ontology definitions’
full semantic content. This is the only way to
guarantee that the application exploits all the
information the ontology represents. The
information’s explicit structure might change
considerably owing to the information con-
tained in the ontology definitions. In an
interoperability framework, you must exploit
such implicit information because different
applications might use, publish, or subscribe
to data structured in different ways but still
consistent with the shared ontology.

The trouble with incomplete
inference engines

An ontology inference engine (such as
iFaCT or Racer) can offer a reasoning ser-
vice to applications willing to properly use
an ontology. The inferential process’s com-
plexity depends strictly on the adopted
ontology language’s expressivity. We now
have three layers of ontology languages
(OWL Lite, OWL DL, and OWL Full, in
order of expressivity) because the inference
engine becomes increasingly complex as
the ontology language becomes more
expressive. In fact, theoreticians have
proved that you can’t build a complete
inference engine for OWL Full, although
it’s possible to use existing description
logic systems as inference engines for
OWL Lite and OWL DL.

Designing and implementing complete
inference engines for expressive ontology
languages isn’t easy. As a prerequisite, you
must have formal proof that the algorithms
are complete with respect to the ontology
language’s declared semantics. The descrip-
tion logics community has 20-plus years of
experience to help provide theoretical re-
sults, algorithms, and efficient inference
systems for all but the most expressive
OWL languages. We can understand how
important it is for an inference engine to be
complete with the following example.

Suppose a military agency asks you to
write an ontology to recognize whether a
particular individual description indicates
some sort of “enemy” concept so that an
application can take appropriate automatic
action (such as shooting) given the infer-
ence engine’s answer. If the inference en-
gine is sound but incomplete, it will recog-
nize most but not all enemies because it
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isn’t a complete reasoner. Because it is
sound, however, it won’t confuse a friendly
soldier with an enemy. So, the application
will start the automatic shooting procedure
only when the system recognizes without
doubt that someone is an enemy. The appli-
cation could fail to shoot an enemy, but
field soldiers can take traditional backup
(nonautomatic) action. Soundness is more
important because you don’t want to shoot
your own soldiers. So far, so good.

The agency has another application
strictly related to the first one. The task is
now to recognize an individual description
as an allied soldier to activate automatic
procedures that will alert the soldier to the
headquarters’ secret position. Again, the
system must have a sound inference engine
because the agency doesn’t want to dis-
close secret information to enemies. More-
over, incompleteness is not a major prob-
lem because the defense system can still be
valid even if a soldier doesn’t know where
the headquarters is located.

The agency decides, of course, to use the
same shared ontology for both applications.
After all, the task in one case is to decide
whether a soldier is an enemy and in the
other case decide whether he or she isn’t.
So the second application can use the same
ontology as the first, but it exploits the out-
come in a dual way. Unfortunately, it turns
out that the agency can’t use the same
ontology for both tasks if the ontology
language’s inference engine is sound but
incomplete. If a sound but incomplete rea-
soning system exists for solving, say, the
first problem (recognizing enemies), you
can’t use the same reasoning system as a
sound (and possibly incomplete) procedure
for solving the second problem (recogniz-
ing allies). In fact, using the same proce-
dure for solving the second problem would
be unsound—it will say an individual isn’t
an enemy when he or she actually is. Al-
though this is harmless for the first prob-
lem, it is bad for the second, dual one. It
would disclose valuable military secrets to
enemies.

To solve this problem, you must have
both a sound and complete inference
engine for the ontology language. This
rules out using OWL Full seriously for
interoperating applications because having
a complete inference engine with this lan-
guage is impossible. This also rules out
using inference engines with unknown
completeness. And no formal property is

known for most of the inference engine
proposals for OWL family ontology lan-
guages implemented in the Semantic
Web—both for ontology reasoning and for
query answering with ontologies. Usually,
developers perform a check against only a
small class of benchmarks and use cases.
Clearly, this is a bad practice, and I hope
Semantic Web tool developers will con-
sider the problem of properly using ontolo-
gies more seriously in the future.

Ontologies: Necessary—Indeed
Essential—but Not Sufficient
Mark A. Musen, Stanford University

After more than a decade of discussion,
the AI community still hasn’t reached com-
plete consensus on what, precisely, an on-
tology is. The arguments have become more
polite and heads bob more in unison, but
messiness still exists. Tom Gruber’s defini-
tion, that an ontology is an explicit specifi-
cation of a conceptualization,1 still holds
true, but it has some rough edges.

The main problem is that there are no
agreed-upon borders concerning what is in
a specification. Certainly, a taxonomic hi-
erarchy of concepts is an appropriate speci-
fication, although taxonomies by them-
selves are rather impoverished in what they
can represent. Add the notion of concepts’
attributes, and you’ll hear no arguments.
Constraints on attributes’ values seem rea-
sonable, but with what degree of expres-
siveness? Do we allow only simple role
restrictions, as in most description logics,
or is there room for statements in more ex-
pressive logics, as in Ontolingua?1 Do we
allow instances as well as classes? If so,
which kinds? For many developers of intel-
ligent systems, UML comes to mind first
when you say “ontology specification lan-
guage”; for others, it’s OWL (www.w3.org/
TR/owl-features); and for still others, it’s
CycL (www.opencyc.org). When it comes
time to commit a conceptualization to
some specification, we can choose from a
wide range of languages. These ontology
languages differ greatly in their expressive
power, their support for inference, their
integration with software engineering envi-
ronments, and their perspicuity and com-
prehensibility. 

Questions such as, “How much knowl-
edge can ontologies represent?” and “How

adequate are ontologies for knowledge
representation?” view ontologies as knowl-
edge representations. Such questions are
simply unanswerable, given that ontology-
specification languages vary so greatly in
their expressive power. It’s much more
helpful to concentrate on what’s in a con-
ceptualization in the first place, rather than
dwell on the expressiveness of particular
vehicles for encoding ontologies.

Although no simple predicate tells us
unambiguously whether a particular specifi-
cation is an ontology, we can still agree on
certain things. We can agree that ontologies
enumerate the salient concepts in an appli-
cation area. We can agree that ontologies
typically define concepts’ properties and the
relationships among concepts and often in-
dicate constraints on those properties and
relationships. An ontology provides a do-
main of discourse for discussing a given
application area, but it does not—and can-
not—represent all of an agent’s knowledge.

Ontologies are radically
incomplete knowledge
representations

In his classic paper, Alan Newell2 char-
acterized knowledge as a behavioral phe-
nomenon. He viewed knowledge in terms
of an agent’s goals, the actions of which the
agent might be capable, and the means by
which the agent selects actions to achieve
its goals. A key observation was that know-
ledge lets an agent enact procedures to
attain its goals, and that we attribute know-
ledge to an agent because we observe it
behaving in the world in an apparently
rational manner.

This view of knowledge goes well beyond
the notion of a specification of a conceptual-
ization, of an enumeration of concepts and
relationships. From Newell’s perspective,
knowledge does more than account for
what exists in the world; it directly links
goals to actions. In that sense, knowledge
has a strongly procedural element. When
intelligent-system developers can model and
discuss those procedures explicitly, they gain
insight into how a system should use propo-
sitional knowledge to achieve its goals and
what additional knowledge the system might
require when reasoning fails.

Nearly 20 years ago, Bill Clancey3 and
B. Chandrasekaran4 spotlighted the recurrent
patterns of inference in various knowledge-
based systems, emphasizing the importance
of clarifying the procedural aspects of
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problem solving in addition to proposi-
tional knowledge about the domain. Their
observations launched significant work in
the knowledge-acquisition community to
identify, model, and codify problem-solving
methods (PSMs) that could form the basis
for the procedural components of knowl-
edge-based systems. These efforts led to
libraries of planners, classifiers, constraint
satisfaction engines, case-based reasoners,
and other PSMs that define procedurally
how systems can use domain knowledge to
solve specific tasks. Methodologies for
building intelligent systems such as Com-
monKADS and Protégé provided specific
guidance for using PSMs to encode the
procedural knowledge needed to solve
domain tasks in a computationally expedi-
tious manner.5

The notion of a PSM was different from
that of a traditional “inference engine,” such
as backward chaining. Inference engines
operate on data structures, as in the case of
a backward chainer programmed to search a
database of rules for one whose conclusion
contains the same parameters as those on its
left-hand side. PSMs, unlike inference en-
gines, operate at the knowledge level.4 They
provide abstract procedures by which agents
can use their knowledge to achieve particu-
lar goals. PSMs do not construe problem
solving in terms of operations on data struc-
tures such as rules or frames. Instead, they
construe problem solving in terms of opera-
tions on propositional knowledge (for
example, knowledge specified as ontolo-
gies).

In the 1990s, the idea of encapsulating
procedural knowledge as PSMs caught on
like wildfire in the academic community.
Developers around the world began to
apply well-known PSMs such as heuristic
classification and propose-and-revise to
various application tasks. Our laboratory6

and many others7 began to focus on experi-
ments with PSMs.

True, with enough theorem-proving
power, there is no need to extract out prob-
lem-solving knowledge if we can find a
problem’s solution somewhere within the
deductive closure of a large set of axioms.
However, the PSM approach has obvious
advantages. Developers suddenly have
insight concerning how a system can use its
domain knowledge to achieve task goals.
When the developers inspect the proposi-
tions in a knowledge base, the role that any
entry plays in problem solving is immedi-

ately apparent by noting how the relevant
PSM used the knowledge at runtime.
PSMs identify the additional propositions
a knowledge base should receive for maxi-
mum computational efficiency. Knowledge
bases also achieve considerable
parsimony: If an axiom is irrelevant to a
given PSM’s problem-solving
requirements, there is no need to include
the axiom in the knowledge base.

Where have all the problem
solvers gone?

In recent years, the excitement over
ontologies has eclipsed almost everything
else in applied AI. Nearly every issue of
IEEE Intelligent Systems has articles about
ontologies. As of this writing, Google has
indexed 1,620,000 Web pages that contain
the string “ontology.” The very word has

gone from a technical term that people
once uttered tentatively in academic cir-
cles to a buzz word that pervades current
thought about knowledge-based systems.

This new emphasis on ontologies isn’t
surprising. It reflects the important role that
ontologies play in structuring our collec-
tions of propositional knowledge and in
providing shared domain descriptions for
various purposes. The notion of reusable
ontologies has been a pivotal idea for AI,
but ontologies aren’t enough.

If we care about problem-solving tasks
for which we have enough knowledge in
advance to predict that certain solution
strategies will be particularly well suited,
then we need PSMs as a part of our basic
set of knowledge-base building blocks. If
we know that a particular problem-solving
approach is appropriate for addressing a
domain task that we wish to automate, then

the corresponding PSM’s knowledge
requirements can help guide knowledge
acquisition. The knowledge requirements
can also ensure that our knowledge bases
make the distinctions necessary to enable
successful and efficient problem solving.

The fiery debates over the virtues of
procedural versus declarative knowledge
representations (which bogged down AI 30
years ago) might be casting a long shadow
over our current work. We left the 1970s
convinced that procedural knowledge rep-
resentations had significant limitations, but
many people in AI seem to have extended
this condemnation to procedural knowl-
edge itself. The ability to follow procedures
is an inherent element of intelligence and
of knowledge-based systems as well. When
a system must solve a real-world problem
such as designing an artifact or classifying
an abnormal pattern, a strong representa-
tion of the necessary problem-solving pro-
cedure not only makes the runtime system
more computationally efficient, but also
enhances the software engineering of the
knowledge base. The use of an explicit
PSM links each knowledge-base entry to
its role in problem solving and thus makes
the system more understandable and trace-
able. Many intelligent systems are de-
signed primarily to answer queries about
large bodies of knowledge. In these cases,
ontologies provide most of the representa-
tional muscle needed to build complete
systems. To build systems that solve real-
world tasks, however, we must not only
specify our conceptualizations, but also
clarify how problem solving ideally will
occur. We must link our ontologies to the
knowledge requirements of appropriate
PSMs.
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Corporate Ontologies as
Information Interfaces
Jeremy Ellman, Wordmap

Internet access has made huge informa-
tion resources available on corporate desk-
tops. However, this has often led to confu-
sion as intranet, content, and document
management systems use different and
competing access methods. Recognizing
this, corporate information architects are
embracing ontologies to unify and simplify
navigation and search.

Defining corporate ontologies
“Ontology” in this sense is a generic,

rarely defined, catch-all term. Some ontolo-
gies are strict hierarchies of category names
and nothing more. Others are taxonomies or
graphs where categories occur in more than
one place and loops are allowed in the data
structure. Still others support corporate
vocabularies of preferred terms and their
synonyms that might be multilingual. Oth-
ers require complex metadata structures that
you can use to prioritize retrieval, to indicate
retention policy or legislative compliance,
or for the technical support of linked appli-
cations. Consequently, there’s a unity of
purpose rather than technology.

Corporate ontologies, whatever their
level of sophistication, aim to support the
systematization of large volumes of infor-
mation using abstraction. This is almost
completely at odds with the AI ontologies
of the mid 1970s and early 1980s, where
the aim was often to represent a small
domain in high detail.

Corporate ontologies then face several
issues not generally considered in acade-
mic research. These include security and
ownership, trust, the intended audience,
and the media used to view the ontology.

It seems obvious that the ontologies used
in enterprises reflect the size of those enter-
prises. As such, they are likely to be large
and partitioned according to the enterprise’s
interests. If the ontology is internal, it will
likely reflect the divisions seen within the
organization, such as marketing, R&D,
human resources, and so on. If the ontology
is for external use, it might represent prod-
uct categories, support and sales divisions,
and so on. In both cases, a separate part of
the organization will “own” each section of
the ontology and will be (or will want to
be) responsible for its development and
maintenance. So, security mechanisms are
required so that only those authorized can
edit or even view the ontology sections for
which they’re responsible.

Audiences are critical of corporate ontolo-
gies because they might have different in-
formation requirements. For example, an
audience might be multilingual and prefer
to view its ontology in its local language.
However, audiences might have completely
different interests and perspectives that re-
quire wholly (or seemingly) different rep-
resentations of or interfaces to the same
ontology.

Consider, for example, a corporate inter-
nal ontology: marketing’s view of R&D is
going to be quite different than R&D’s
view of itself because marketing doesn’t
need to be aware of technological intrica-
cies. Similarly, R&D will have a simple
view of marketing, although human resour-
ces might have a more balanced, but differ-
ent, view of both.

The media you use to visualize an ontol-
ogy also plays a role because it imposes
different constraints. For example, organi-
zations often have catalogs of products or
services that they can distribute in print, on
CD, or over the Web. Obviously, the infor-
mation structure they use should be identi-
cal to minimize development and mainte-
nance costs. Yet, size is a factor with paper
because it rapidly becomes both heavy and
expensive, while the branching factor is an
issue with screen-based media because too
many alternatives rapidly exhaust end users.
We could even say that function and use
drive the corporate ontology.

Quantifying ontology issues
So far, I have pointed out several factors

that occur when you use ontologies as infor-
mation interfaces. These factors don’t often
appear in the ontology literature, such as the

intended audience and the interface’s usage
context, ownership issues, protection, and
security. These issues are not equally preva-
lent, however. To quantify some of these
arguments, Wordmap has briefly analyzed
22 ontologies or taxonomies that we have
encountered over the past three years. From
the knowledge representation viewpoint, all
were hierarchical, although at least two were
purposely designed to be no more than four-
ply deep to simplify navigation. Nineteen
ontologies required metadata to be associ-
ated with their categories, while 14 included
synonyms for headwords. Seven ontologies
included at least one language in addition to
English headwords (these categories are not
mutually exclusive). Interestingly, eight
ontologies out of the 22 were based on exist-
ing resources such as thesauri or subject
catalogs. This indicates the value in ontol-
ogy content and the requirement to reuse
existing work through data conversion. Note
that developing a new ontology formalism is
far easier than developing the content to
populate it in sufficient depth to make it
useful in a real application.

When we consider what their owners
would use these ontologies for, 12 out of 22
were either subject or product catalogs that
help provide navigable or searchable Web
interfaces. Ten link to what we might loose-
ly interpret as either content or document
management systems, and six are used in
text-classification systems. These might be
either automatic or manual as part of the
document metadata assignment carried out
by people entering documents into retrieval
systems.

Only two ontologies’ representations
vary depending on the media being used,
and two more have forms that change de-
pending on the viewing audience. Although
these proportions are small, we must con-
sider that supporting software for these
aspirations is not available. Additionally,
just two ontologies have clear inference
requirements for which knowledge-based
systems technology is necessary.

Finally, four ontologies had been derived
from authoritative industry-standard vocab-
ularies. This reflects the understandable
desire to adhere to a common conceptual
representation while avoiding the develop-
ment costs associated with building content
for new ontologies. 

The UK government is promoting two
further ontologies as standards for organiz-
ing public information in national and local
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government. This would make searching
skills learned in the context of one official
Web site transferable to others.

I doubt that anything in my discussion
would surprise a corporate information
architect. The challenges in representing
knowledge with ontologies don’t seem to
lie in issues of representational adequacy or
underlying formalism. Rather, we find them
in the mechanics of integration with exist-
ing systems and the design or acquisition of
content that’s appropriate to the required
function in the information interface.

Contentious, Dynamic,
Multimodal Domains …
and Ontologies?
Simon Buckingham Shum,
The Open University

As journalists and politicians know too
well, sometimes simply asking a particular
question is enough to make a point. Swing-
ing the spotlight onto issues that people
rarely discuss is a good mental hygiene
exercise for the Semantic Web at this point
in its young life.

It’s about time to consider a six-month
health-check for this increasingly active
toddler, where we verify more rigorously
than its doting parents can manage that the
child is indeed seeing and hearing clearly.

The challenge
In the spirit of this collection of essays, I

adopt a contentious stance to make my
point. I focus on arguably the most contro-
versial application proposed for the Seman-
tic Web—namely, knowledge management
in organizations. (The fact that it’s not al-
ways seen as controversial demonstrates
that all is not well). Now that KM has be-
gun to mature, those who didn’t see through
the technocentric hype in the early days are
rapidly realizing what others sought to em-
phasize above the roar of computing ven-
dors and AI researchers revving their en-
gines: the dominant metaphor in much
real-world knowledge work is not the ab-
stracted, indexed, textual knowledge object,
but rather the situated, embodied sense-
making process.

Organizations need to make sense of
rapidly changing environments where the
questions (never mind the answers) might
not be clear, where organizational and

other politics make certain ideas untenable,
where incomplete knowledge and back-
grounds make understanding perspectives
central, where expertise must be combined
and reconfigured in the light of discussion,
and where information must be interpreted
in a timely manner. Contentious, dynamic
domains, requiring good enough, timely,
collective sensemaking on incomplete,
multimedia information—quite a sobering
reality check for any prospective knowl-
edge infrastructure to confront. However,
such considerations are well documented
by leading thinkers such as Karl Weick1

and John Seely Brown.2

Enter ontologies
What do ontologies require to operate?

• Consensus: An ontology is an agreed
conceptualization of how the world is.

• Hand-crafting: We can’t automatically
construct nontrivial ontologies at present.

• Maintenance: Our world view changes,
and so must our ontologies, or we’re
modeling a fiction.

• Textual expression: “If you can’t type it, it
doesn’t mean anything” is not a promis-
ing precondition for a world where mean-
ing is clothed in multiple modalities.

On the face of it, ontologies don’t shape
up as promising contenders for the knowl-
edge infrastructure backbone.

May many Semantic Webs
bloom

Clearly, ontology-based knowledge rep-
resentation is relevant for stable, well-
understood problems with well-known
problem-solving methods. Organizations
have a huge requirement for database inte-
gration and machine-machine interoper-
ability. In such domains, we can even trust
ontology-based agents to negotiate auto-
nomously within the well-defined bound-
aries. The clear implication is that if
deployed for KM, we’re talking about
innumerable Semantic Webs—islands of
coherence whose members subscribe to
that world view enough to publish and con-
sume services with a degree of trust.

But away from these quiet backwaters,
on the wilder rapids of organizational sense-
making, the brittle ontological canoe might
snap. So, many conclude that this vessel is
simply not the one to ride when shooting
these rapids.

Making ontologies less brittle
Semantic Web adherents, however, keep

the faith and are demonstrating how we can
make the canoe more flexible. To adopt a
less confrontational stance, I’m more than
happy to recognize that this is where we find
some of the most interesting work at present.
The emphasis by people such as Jim Hendler
on “scruffy” reasoning is absolutely right, as
exemplified in the Advanced Knowledge
Technologies project (www.aktors.org),
some of whose work I’ll turn to next.

Simple reasoning over multiple databases
might prove an interesting strategy. The on-
tologies assist with the data capture, data
integration, and the reasoning service defini-
tions, resulting in added value through pro-
ductive combinations of previously dis-
parate data sources (see www.aktors.org/
technologies/csaktivespace). Language
technologies hold at least one key for
addressing the capture bottleneck that
plagues any formal representation. Agents
can harvest text from the Web or other live
sources and interpret it ontologically to
keep ontologies populated with up-to-date
instances.3 This doesn’t, however, revise
the ontological structure itself, only in-
stances. Services that we can rapidly de-
fine, publish, and configure within a corpo-
rate Semantic Web intranet can exploit
distributed expertise.4 In principle, service
providers with completely different ontolo-
gies could still interoperate, but we know
how hard making this work really is, and in
business practice, the case is not yet proven.

Mixing formality and
informality to support
collaborative knowledge work

My own work deals with collaborative
analysis and sensemaking. A large “collab-
oration technologies graveyard” exists of
over-engineered systems that didn’t recog-
nize the target end-user community’s work
practices, and so were dumped.

My strategy combines semiformal and
formal semantics with the informality
inherent in collaborative work. For exam-
ple, the e-Science CoAKTinG project
(www.aktors.org/coakting) combines free-
text instant messaging, visual online pres-
ence cues, and “dialog mapping” using a
semiformal concept mapping tool with
audio and video records of virtual meet-
ings. There’s also a project ontology of the
people, events, technologies, and organiza-
tions to provide integration with other
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ontology-based resources and services.5

How people want to communicate leads the
requirements that the tools deliver. If the
tools don’t help the work you have to do,
then you just don’t use them.

Supporting conflicting
interpretations and
perspectives

A second example is the Scholarly Onto-
logies project. What can the Semantic Web
offer in domains where there is little con-
sensus, no master view, and conflicting
perspectives? In the Scholarly Ontologies
project (www.kmi.open.ac.uk/projects/
scholonto), we’re developing a semantic
digital library server that provides services
for researchers whose business is, of course,
constructing and debating world views. Our
tools provide a discourse ontology for mak-
ing, extending, and challenging claims.
Although we still want to deliver useful
knowledge services, we must relax many of
our normal knowledge engineering assump-
tions for nonengineers who want to con-
struct distributed, collaborative knowledge
bases.6 Although currently being applied to

research literatures, the underlying
approach applies to any domain where it’s
as important to capture principled disagree-
ment as it is to capture consensus.

Diagnosis
So, health-check over; is the infant okay,

doctor? It’s probably too early to tell. Some
early heart murmurs might cause concern,
but they could pass with time. The key is
not to smother the child in cotton wool.
The recommended regime is lots of exer-
cise out in the dirt with other children to
make sure that the child is properly social-
ized and develops the right immunities in
the rough and tumble competitive world. If
in the end, no one will play with him, you’ll
only have yourself to blame, Mrs. Ann
O’Tate. Next, please.
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