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Abstract

Information integration systems allow users to express queries over high-level conceptual models.
However, such queries must subsequently be evaluated over collections of sources, some of which are likely
to be expensive to use or subject to periods of unavailability. As such, it would be useful if information
integration systems were able to provide users with estimates of the consequences of omitting certain
sources from query execution plans. Such omissions can affect both the soundness (the fraction of returned
answers which are returned) and the completeness (the fraction of correct answers which are returned) of the
answer set returned by a plan. Many recent information integration systems have used conceptual models
expressed in description logics (DLs). This paper presents an approach to estimating the soundness and
completeness of queries expressed in the ALCQZ DL. Our estimation techniques are based on estimating
the cardinalities of query answers. We have have conducted some statistical evaluation of our techniques,
the results of which are presented here. We also offer some suggestions as to how estimates for cardinalities
of subqueries can be used to aid users in improving the soundness and completeness of query plans.
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1. Introduction

In recent years, a number of distributed query-processing systems have been developed in which
the global schema and user queries are expressed in some form of description logic (DL) (for
example, TAMBIS [1], DWQ [2], Information Manifold [3], PICSEL [4], SIMS [5]). The use of a
DL as both high-level data description language and query language has several advantages:

e it provides an expressive global modelling language;

e it enables the use of reasoning support for the DL to assist in building consistent conceptual
models [2];

e experience [6,7] has shown that reasoning support is useful in assisting users in the formation of
queries which accurately reflect their needs; and

¢ intensional knowledge captured in a DL ontology can be used in query translation and optimi-
sation [9];

Typically in these systems, the first stage of query processing is to rewrite user queries expressed
over some DL ontology into DL expressions using only atoms that can be mapped to source
databases where each source contains a set of instances of some atomic DL concept or role. This
mapping of sources to concepts and query rewriting may be done using either a global-as-view
(e.g., SIMS, TAMBIS) or a local-as-view approach (e.g., DWQ, Information Manifold, PICSEL).
A comparison between the two approaches is given in [8]. Since our methods are applied to the
rewritten query, they could be applied (with suitable modifications to adapt them to different
DLs) to either type of system.

For some concepts and roles there may be several sources available to provide extents. The user
of the system may wish to use only some of the available sources to reduce financial costs or
response times. Furthermore, some sources may be unavailable at any given time, and the user
may need to decide whether to wait for all sources to be available or to proceed with the query
using the sources that are currently available. In order to evaluate such trade-offs, we need to be
able to estimate the amount of information lost by only using a subset of the existing data, and the
effects of such information loss on the quality of query answers. It is this problem that is addressed
in this paper.

If the DL query language contains non-monotonic operations such as negation and universal
quantification (under a closed-world assumption), the omission of source data can lead to the
inclusion of incorrect answers in the query answer set, as well as the exclusion of correct answers.
One therefore needs to be concerned about both incompleteness (‘“how many of the answers to the
query do we fail to retrieve?”’) and unsoundness (‘“how many of the answers we retrieve are in-
correct?”’) of query plans.

In [9], we describe a (global-as-view) distributed DL query-processing system (with multiple
sources for each source atom) in which queries are formulated in a relatively expressive DL,
ALCQT. This paper presents a method for estimating soundness and completeness of ALCQT
query plans, by estimating the cardinality of the extents of associated ALCQT expressions (see [10]
for an account of the estimation the cardinalities of intermediate results in relational algebra
expressions in the context of database query optimisation). Our methods make use of statistical
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information which can be gathered from the source databases in advance of query processing (for
comparison, in [11], the authors use information from database profiles and statistical sampling to
estimate cardinalities of derived relations in database query processing).

Soundness and completeness of source data and query answers can be thought of as measures
of data quality (see [12] for a classification of data quality dimensions). In recent years, much
attention has been given to data quality issues in information systems research. A tool for data
quality analysis using data profiling is described in [13]. Data quality issues in the setting of Data
Warehousing are addressed in [14]. In particular an approach is presented to the problem of
satisfying data currency constraints when answering queries.

An extension of Wang’s Total Data Quality Management [15] (TDQM) framework to the
domain of Cooperative Information Systems (CIS) is proposed in [16]. Cooperating organisations
are expected to export conceptual models of the quality of their data along with models of the
data, a data quality model is proposed for expressing data quality schemas and an indication is
given of how an extended TDQM cycle might be used to manage data quality in a cooperative
environment. A proposal for a service-based framework, using XML for underlying data and
quality models, and a data quality broker service for the management of data quality issues in a
CIS is given in [17]. The broker service can supply query answers meeting users’ quality specifi-
cations, and can also offer potentially more reliable data from previous query answers to infor-
mation providers. In contrast to these approaches, our work is focused on assessing the quality of
query answers, rather than improving the quality of the source data.

In [18], the authors propose a model for specifying soundness and completeness of relational
database table instances, and a method of using these specifications to estimate the quality of
query answers, working in an extension of relational algebra. They also show how their tech-
niques can be used to assist in value-conflict resolution in the Multiplex multidatabase system.
Our work is concerned with similar problems in the case where the the high-level schema language
is a DL. We do not require the sources to publish additional metadata but can rely on cardinality
statistics which can be gathered by examining the source data. Our emphasis also differs from [18]
in that we consider soundness or completeness of one query with respect to another, rather than of
a query answer with respect to a notional real-world answer.

The notion of completeness as a quality measure in distributed query planning is also con-
sidered (along with other quality criteria such as response time, accuracy and timeliness) in [19]
(our notion of completeness corresponds to their notion of relevancy). A focus in [19] is on ex-
ploiting quality information in query planning, which is further pursued in [20]. However, the
query language considered in these papers is much simpler than a DL. For example, it has no
negation, so that soundness is not an issue, and the only merge operation in query planning is join.

In [21], an approach is presented to the selection and ranking of information sources and
unions of sources based on the grounds of content and quality metadata provided by those
sources. The application domain considered is scientific data on the World Wide Web. Com-
pleteness is one of the quality dimensions considered, although in contrast to our work and that in
[19], sources are only combined by union operations with no joins being performed.

Information integration systems typically provided users with a high-level query interface
which is designed to hide the details of individual informations sources. When quality issues are of
concern, it is useful to relax this source transparency somewhat to allow users to evaluate data
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quality and make selections between sources. Section 7 of this paper indicates how this might be
done in our framework. A more fine-grained approach to removal of source transparency can be
found in [22], which describes a data lineage facility associated to a mediator-based data inte-
gration system, in which the provenance of each query result can be traced.

Closely related to data quality is the area of data cleansing, which is concerned with improving
data by removing errors and inconsistencies. An overview of data cleansing is given in [23], which
also gives a comparison of several methods of detecting errors in data sets. In [24], a data cleaning
framework is proposed which incorporates an exception mechanism and a data lineage facility.
The lineage facility enables the tuning of data cleaning programs. A scheme is proposed in [25] for
handling data quality issues arising from data integration by providing data quality metadata (in
the form of possibly time-dependent quality comparison assertions) which can be used to modify
dynamically the resolution of semantic conflicts between sources.

The paper is organised as follows. Section 2 contains a brief account of query processing over
DLs, in particular ALCQZ. Section 3 presents our definitions of soundness and completeness for
query plans. Section 4 describes our estimation method for concept cardinalities. Section 5 pre-
sents some results of statistical testing of our methods. Our estimation methods rely on the
availability of statistics for the cardinalities of conjunctions of atomic concepts. Since values for
all these cardinalities are unlikely to be available in practice, we present a simple estimation
technique in Section 6. Section 7 is concerned with how the user interface may be used to help
users to improve the quality of their query plans by suggesting which subqueries would benefit
most from consulting additional data sources. Finally, Section 8 contains some conclusions and
suggestions for further work.

2. Query answering over the description logic ALCOT

The basic types of a DL are concepts and roles. A concept expression is a description gathering
the common properties among a collection of individuals; from a logical point of view it is a unary
predicate ranging over the domain of individuals. Inter-relationships between these individuals are
represented by means of role expressions (which are interpreted as binary relations over the
domain of individuals). Roles can be seen as denoting properties of individuals, since they as-
sociate values for the property to individuals of a given class.

ALCQOT is a DL featuring a rich combination of constructors, including full boolean operators,
qualified number restrictions, inverse roles and general inclusion assertions. The syntax rules at
the left-hand side of Fig. 1 define valid concept and role expressions. In the figure, C and R denote
concept and role expressions, 4 is an atomic concept name and P is an atomic role name.

The semantics of ALCQT can be given in terms of an interpretation Z = (47, -7) consisting of a
non-empty set A% of individuals (the domain of T) and a function -* (the interpretation function of
7) satisfying the rules given on the right-hand side of Fig. 1. Every concept is interpreted as a
subset of A% and every role as a subset of 47 x 4. An ontology (or knowledge base) is a finite set X
of axioms of the form C C D, involving concept or role expressions C,D; we write C=D as a
shortcut for both C C D and D C C. An interpretation Z satisfies C C D if and only if the in-
terpretation of C is included in the interpretation of D, i.e., C* C D. The set of admissible in-
terpretations for an ontology is limited to those which satisfy the axioms. Given concept or role
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C,D— A]
T T =A%
1| 1T=0
-C | (-C)t = AT\ C*
CcnD| (cnD)? =ctnD?
CuD | (CuD)Y =ctuD?
VR.C | (VR.C)T = {i € AT | V4. R%(i,5) = C*(j)}
3R.C | (3R.C)t = {i € AT | 35. R%(3,5) A C%(4)}
32 "R.C | (32"R.C)* = {i € AT | #{j € AT | R%(i,5) A CT(j)} > n}
I<nR.C 3srR.0)T = {i € AT | §{j € AT | RZ(4,5) A CZ(j)} < n}
R— P|
R~ (R)* = {(5,5) € AT x AT | R%(j,1)}

Fig. 1. Syntax of ALCQZ concept expressions (C,D) and role expressions (R), and their semantics under an inter-
pretation Z. A4 is an atomic concept name and P is an atomic role name. There are no restrictions on the interpretations
of atomic names.

expressions C and D, if C C D7 for all admissible interpretations Z, we say that C is subsumed (or
contained) by D. Since our estimation methods do not take axioms into account, we omit any
further discussion of them. Given an ontology, a legal database is a finite admissible interpretation
for it.

As an example, we consider an application dealing information about students at a particular
university. The ontology for this application refers, among others, to the following atomic con-
cepts:

e science-std, whose instances are all students registered in the Science Faculty.
e s-std, representing students in the Computer Science Department.

o phys-std, representing students registered with the Physics Department.

o hall-std, representing students living in university accommodation.

There is also a role flat-mate, whose instances are pairs of students who share their accom-
modation (for the purpose of this example the flat-mate relationship is assumed to be irreflexive—
one is not considered to be one’s own flat-mate). The ontology contains axioms such as

e cs-std C science-std, which declares that all CS students are science students.

e cs-std M phys-std C |, which states that no student can be registered in both CS and Physics.

o hall-std C Vflat-mate.hall-std, which expresses the constraint that, if a student lives in a hall,
then so do all of his or her flat-mates.

A query over an ALCQT ontology is simply a concept expression. Some examples of queries
over our example ontology are:



110 M. Peim et al. | Data & Knowledge Engineering 47 (2003) 105-129

e (O, = hall-std LI science-std, which asks for all students who either are registered in the Science
Faculty or live in university accommodation.

e (O, = hall-std 'l =science-std which asks for all non-science students living in halls.

e (O; = hall-std M 3<!flat-mate.science-std which asks for all hall students, at most one of whose
flat-mates is registered with the Science Faculty.

Given a legal database, the answer to a query is simply the interpretation of the query concept
expression with respect to the legal database, i.e., it is the set of instances of the query concept
expression itself. We restrict our attention to safe queries, where a query is considered safe if
answering that query does not involve looking up information not referred to in the query. This is
crucial to restrict the scope of a query. For example, the query VR.C is unsafe because answering it
involves, among other things, finding all individuals with no R-fillers, and this information cannot
be obtained by examining the instances of R and C. In the presence of incomplete information, we
cannot reasonably expect to estimate cardinalities of unsafe queries, since that would involve
estimating the cardinality of ““the rest of the world”. To check if a query Q is safe we rewrite it into
a negation normal form ! (/. Then Q is safe if it has the form L, 4 (where 4 is atomic), 3R.C or
32"R.C (n = 1). It is unsafe if it has the form T, -4, VR.C or 35"R.C. A conjunction is safe if and
only if at least one of its conjuncts is safe. A disjunction is safe if and only if all of its disjuncts are
safe. Note that, under this definition, a concept expression is safe if and only if its negation is
unsafe.

We present below a proposal for estimating soundness and completeness of query plans. The
measures we use are based on estimations of the cardinalities of concept extensions. We assume
throughout that we have a fixed ALCQZ ontology B and a fixed (finite) interpretation Z of B. For
any concept expression C over the symbols of B we define the cardinality of C, denoted #(C), to be
the number of elements in its extension CZ.

3. Soundness and completeness

In order to assess trade-offs between soundness and completeness of query plans and factors
such as cost and availability of data sources, we need quantitative measures of soundness and
completeness. In this section we define a pair of such measures. They are based on the cardinalities
of DL concepts. We will express our definitions in terms of the ALCQZ DL, but similar definitions
could be made for other DLs.

We assume that all queries are expressed in terms of a set of basic concept and role names
(atoms) and that for each basic atom we have a set of sources available. In a complete query-
processing system, we would have other concept names in the ontology and a mechanism for
rewriting user queries into queries involving only the basic names. Each source for a concept C is
represented by a concept name C’ which is subsumed by C—this is called the sound view as-
sumption. That is, in any admissible model for the ontology, each instance of the C’ is an instance

! By pushing negations inwards in the usual way, one can rewrite any ALCQT concept expression into an equivalent
expression in negation normal form or NNF, where negations only appear in front of concept names.
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of C. Similarly, each role source for a role R is a role R’ which is subsumed by R. The representing
concepts and roles will be referred to as source concepts and source roles.

In our example application, we assume that hall-std, cs-std and phys-std are source concepts,
whose instances are to be retrieved from databases maintained by the University Accommodation
Office, the CS Department and the Physics Department, respectively. The role flat-mate is a
source role, also with a single source. The sources for the concept science-std are cs-std and phys-
std (perhaps this is a newly established university, which only has two science departments as yet).

For the purposes of this document, a query plan is simply a selection from the available set of
sources for each role and concept name in the query; only the selected sources are to be used to
answer the query. Other, lower-level, choices (such as the order in which sources are accessed)
may be made in the query-planning process, but we assume that such choices do not affect the
set of concept instances which are returned by the plan, and so do not affect soundness or
completeness. More formally, a plan P for an ALCOZ query Q is an ALCQT expression in which
the atomic concepts and roles in O have been replaced by unions of smaller subconcepts and
subroles:

Definition 1. Let Q be a query (that is, an ALCQZ expression). A plan P for Q is a query that can
be obtained from Q by substituting a concept expression C’' for each occurrence of an atomic
concept C in Q, and a role R’ for each occurrence of an atomic role R in Q, subject to the following
restrictions:

e Foreach C, C'is a union C| U - - - U C}, where each C; is an atomic concept which is subsumed
by C.
e For each R, R’ is an atomic role which is subsumed by R.

For example, the query Q; defined above admits a plan P, = hall-std Ll cs-std, 0> admits a plan
P, = hall-std I —cs-std and Q3 admits a plan P; = hall-std M 3<!flat-mate.cs-std. These plans are
all obtained by omitting the source phys-std for the concept science-std, perhaps because the
Physics Department’s database is currently off-line.

Our notions of soundness and completeness are analogous to the notions of precision and
recall, respectively in the field of Information Retrieval. The soundness of a plan P with respect to
a given query Q, denoted S(P, Q), is a measure of how many of the answers it produces are in fact
members of the set of instances defined by the query. Although the definition given below depends
on the contents of the databases, we will suppress the database state from the notation, and take it
as read that we have in mind a particular database state.

Definition 2. Let P be a plan for a query Q. The soundness of P for Q, denoted S(P, Q) is:
S(P,Q) = #(PT1Q)/#(P). (1)

Note that soundness always takes values between 0 and 1. Furthermore, the soundness of an
empty plan (one which produces no answers) is not defined by the above formula. Since an empty
plan clearly produces no wrong answers, we adopt the convention that the soundness of such a
plan is 1.
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Similarly, the completeness C(P, Q) of a plan P for a query Q is a measure of how many of the
answers to Q are actually found by P.

Definition 3. Let P be a plan for a query Q. The completeness of P for Q, denoted C(P, Q) is:
C(P,Q) = #(PT1Q)/#(0Q). (2)

Again, we note that completeness takes values in the range [0,1]. In this case, the formula
cannot be applied when the guery is empty. Since we cannot miss any answers to an empty query,
we also assign a value of 1 in this case.

So we can measure (or estimate) the soundness and completeness of a plan if we can measure
(or estimate) the cardinality of an arbitrary concept expression.

4. Estimating cardinalities of DL concept extensions
4.1. Propositional expressions

We begin by considering the propositional fragment of ALCQT, where the only connectives
used are MM, U and —. This fragment is equivalent to classical propositional logic. In order to
compute the cardinality of any safe propositional expression, it suffices to know the cardinalities
of all conjunctions of atomic concepts. We can obtain them from the databases in advance of any
query processing. Since the number of such conjunctions is exponential in the number of atomic
concepts, it is not generally feasible to collect and store the cardinalities of all of them, except in
cases where most of the cardinalities are zero. For example, it might be that the concept atoms can
be divided into small “clusters’ such that only concepts in the same cluster can have non-empty
intersections. In such cases, we must choose a data structure and lookup algorithm so that the
empty cases can be detected efficiently. In the general case, we must estimate the cardinalities of
atomic conjunctions. A study of one possible estimation technique is given in Section 6.

Given such input, we can compute the cardinalities of all safe propositional concept expressions
by (recursively) using the equations

#(CLID) = #(C) + #(D) — #(C1 D), (3)
#(CM—D) = #(C) — #(CN D). (4)

It may be noted that for large concept expressions the application of Egs. (3) and (4) could involve
a large amount of computation. For example, calculating the cardinality of a union (J._, C; of
atomic concepts C; by rule (3) involves a summation of 2" — 1 terms (one for each non-empty
subset of {1,...,n}):

#(Uq): Y (=D(C,n- NGy, (5)
i=1 {i,

This formula, which is easily proved by induction on #, is the well-known inclusion—exclusion
principle of combinatorics (see [26, pp. 178-179], for example). However, in practice it is likely to
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Table 1

Cardinalities for example sources
Concept Cardinality
hall-std 1000
cs-std 1000
phys-std 1000
hall-std M cs-std 500
hall-std 1 phys-std 100
cs-std M phys-std 0
hall-std M cs-std M phys-std 0

be the case that most of the intersections are empty. In such cases much of the recursion may be
avoided by not evaluating the (necessarily zero) last term on the right-hand side of Eq. (3) if either
of the first two terms is zero. Similarly, we should not evaluate the second term on the right-hand
side of Eq. (4) if the first term is zero.

Suppose that, in the example application described in Sections 2 and 3, the cardinalities of the
sources and their intersections are given by Table 1. To find the soundness and completeness of
the plan P, with respect to the query Q;, we need to compute the cardinalities of P, O; and
P, M Q. But in this case, we have P, M QO = P, since P, is subsumed by Q. In fact, this is always
the case when the query expression contains no negative operators—that is no negations, universal
quantifiers or upper-bound number restrictions (3<"R.C). So we immediately have S(P;,0;) = 1.
Now

#(Q,) = #(hall-std U cs-std LI phys-std)
= #(hall-std) 4 #(cs-std) + #(phys-std) — #(hall-std M cs-std)
— #(hall-std M phys-std) — #(cs-std M phys-std)
+ #(hall-std M cs-std M phys-std) = 2400
and
#(P) = #(hall-std U cs-std) = #(hall-std) + #(cs-std) — #(hall-std M cs-std) = 1500,

so that C(P;, Q) = #(P M O1)/#(01) = #(P1)/#(01) = 1500/2400 = 0.625.

Now consider the query O, and the plan P,. Since in this case the incomplete data is used for a
concept which is under a negation, we have P, 1 0, = Q, so that C(P,, 0,) = 1. For soundness, we
have

#(0,) = #(hall-std M —(cs-std LI phys-std))

(hall-std) — #(hall-std M (cs-std M phys-std))
(

(

hall-std) — #((hall-std M cs-std) LI (hall-std 1 phys-std))
hall-std) — #(hall-std M cs-std) — #(hall-std M phys-std)
#(hall-std M cs-std M phys-std) = 1000 — 500 — 100 4+ 0 = 400

#
#
#
+
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and
#(P,) = #(hall-std M —cs-std) = #(hall-std) — #(hall-std M cs-std) = 1000 — 500 = 500,

4.2. Quantified expressions

In order to estimate the cardinalities of quantified formulae, we adopt a probabilistic approach.
As in the case of propositional expressions, the data required for our calculations can (in prin-
ciple) be obtained by running a finite (though possibly large) number of queries in advance of
general query processing. However, we cannot expect to obtain precise cardinality results, even
with precise input data, since the filler concept C in an expression such as 3R.C may be an ar-
bitrary complex concept expression. The data we require concerns the distributions of the
numbers of fillers for elements in the domain of each role. First, we assume that we have concept
expressions domain(R) and range(R) for the domain and range of any role R. These should be
unions of atomic concepts (in an application, the atomic concepts will be the concepts domains
and ranges of the corresponding database relations). The best results are likely to be obtained if
the expression range(R) accurately captures the actual range of filler values of R, rather than just
the potential values. That is, if there are not too many instances y of R with no x such that (x,y) is
an instance of R. For each i > 0, let g; be the probability that an element of domain(R) has exactly
i R-fillers (so Y.~y ¢; = 1). That is,

¢, = (#(3”'R.T)—#(3>"'R.T))/#(domain(R)). (6)

As with the cardinalities of intersections of source concepts, we could evaluate the ¢; for each role
in advance of query processing, and update the values periodically. If the g; are calculated directly
from Eq. (6), then only finitely many of them are non-zero for each R. In fact, if R is single-valued
then ¢; = 0 for i > 1. In general, we require that this finiteness condition holds for any set of
values which we use for the ¢;. (In some situations, we might approximate the g; by, say, a Poisson
distribution with a given mean, suitably truncated.)

To estimate the cardinality of an existentially quantified formula, 3> "R.C, where n > 1, let
P(n,R, C) be the probability that an element of domain(R) has at least n R-fillers in C. Then

#(37"R.C) = #(domain(R))P(n,R, C), (7)
so we need to estimate P(n, R, C).
Let p be the probability that any given R-filler is in C. We can estimate p by the formula
p ~ #(range(R) M C)/#(range(R)) (8)
(we can assume that #(range(R)) # 0 since otherwise we have P(n, R, C) = 0 for any C). Note that

the expression range(R) M C is safe (even if C is unsafe) and contains fewer quantifiers than
32"R.C so, by induction, we can estimate its cardinality. Then

P(n,R,C) = Zq" (probability that at least n out of i fillers are in C). 9)
i=1

Since only finitely many of the ¢, are non-zero for each R, the sum in Eq. (9) is actually finite.
Now let us assume that the probabilities of distinct R-fillers (for a given object) being in C are
independent of each other. Then, given that we have exactly i fillers, the probability that j of them
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are in C is given by a binomial distribution. The probability that j out of i fillers are in C is

(;) P/(1—p)"~, where <]> denotes the binomial coefficient i!/(;!(i — j)!). This formula derives

from the fact that there are <J> j-element subsets of the i fillers and, for each subset, the

probability that all of its elements and none of the other fillers are in C is p/(1 — p)" /. Then we can
estimate P(n, R, C) by O(n,R, C) where

O(n,R,C) Zq,z<j> P —p). (10)

j=n

Note that when i > 2n, the calculation of the inner sum can be simplified by using the identity

i(;)ﬂ(l— " —1—}72_1:(;)17(1—1))”7 (11)

Jj=n j=0

where the sum on the right-hand side has fewer terms than the one on the left. (Eq. (11) is easily
derived from the fact that the two summations taken together form the binomial expansion of
p+(1— )) ). In particular, if n = 1 (so we are considering the concept IR.C), we can compute

O(1,R,C) as
O(1LR.C) =3 g1 — (1 = p)). (12)

In general, if ¢; is non-zero for large i we can approximate the inner sum in Eq. (10) for large
values of i by using a normal (Gaussian) distribution with mean u = ip and standard deviation

¢ = (ip(1—p))"”?

[ i (1 — p) 7 ~ 7(1/2)):2

Jj=n

The value of this integral can be approximated by interpolation in standard statistical tables.
So we can estimate #(3~"R.C) by the formula

#(37"R.C) =~ #(domain(R))Q(n, R, C). (14)

More generally, let D be a concept expression, and suppose we wish to estimate #(D 13> "R.C). If
we assume that both the distribution of numbers of R-fillers (the ¢; defined above) and the
probability p that a given R-filler is in C are statistically independent of membership of D, we have
the approximation

#(DM3”"R.C) ~ #(D M domain(R))Q(n, R, C). (15)

Note that the expression D M domain(R) is safe, and therefore we can estimate its cardinality, since
the form of the expression for domain(R) specified in Section 4.2 is safe.

Similarly, suppose we wish to estimate #(D 1 3>"R,.C; M3*™R,.C;). We assume as above
that the values of p or the ¢; for both R| and R, are independent of membership in D, and that the
values for R; and R, are independent of each other. Then we use the approximation
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#(D mn3 > nR1.C1 = z nRz.Cz) ~ #(D M domain(Rl) M domain(Rz))Q(nl,Rl, Cl)
X Q(na, Ra, C3) (16)

and so on.

By combining rules like (15) and (16) with rules (3) and (4) we can estimate the cardinality of
any safe ALCQT concept expression. A complete algorithm is given in Appendix A.

Suppose that, in our example application, the data we need concerning the role flat-mate are
given by Table 2. Consider the plan P; for query Q;. As with the example involving Q,, we have
Py M Q5 = Q5 and so C(P;, 03) = 1. Since, in general, 35"R.C = -3>"*'R.C, we have

#(Q;) = #(hall-std M —3 > *flat-mate. (cs-std LI phys-std))
= #(hall-std) — #(hall-std 1 3> *flat-mate. (cs-std LI phys-std))
~ #(hall-std) — #(hall-std M domain(flat-mate))Q(2, flat-mate, cs-std LI phys-std).

To evaluate Q = Q(2, flat-mate, cs-std LI phys-std), we need to compute

_ #(range(flat-mate) 1 (cs-std LI phys-std))

B #(range(flat-mate))

_ (#(range(flat-mate) Mcs-std) +#(range(flat-mate) M phys-std) — #(range(flat-mate) Mcs-std M phys-std))
B #(range(flat-mate))

= (600+400 — 0)/1500 ~0.67.
Then

ooy o( (21 () ruli- (oo (Do)

= 0.18(1(4/9)) + 0.08(3 (4/27)+1 8/27)) + 0.02(1 — 1(1/81) — 4(2/81)) ~ 0.16,

Table 2
Cardinality data for the example role flat-mate

Domain and range

Concept Cardinality
hall-std M domain(flat-mate) 800
range(flat-mate) 1500
cs-std Mrange(flat-mate) 600
phys-std M range(flat-mate) 400
cs-std M phys-std M range(flat-mate) 0
i qi
Filler count distribution

0 0.35
1 0.37
2 0.18
3 0.08
4 0.02
=5 0
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so our approximation to #(Qs) is
#(05) ~ 1000 — 800 x 0.16 ~ 870.
For #(P;) we make a similar calculation for Q(2, flat-mate, cs-std), except that we use the value
#(range(flat-mate) M cs-std)
#(range(flat-mate))
for p. This yields the value 0.056. So
#(P;) = #(hall-std M —3 > *flat-mate.cs-std)
= #(hall-std) — #(hall-std 1 3> *flat-mate.cs-std)
~ #(hall-std) — #(hall-std M domain(flat-mate))Q(2, flat-mate, cs-std)
~ 1000 — 800 x 0.056 =~ 960.

So our estimate of the soundness is

(PsT1Qs) _#(Q3)N@N091
#(Py)  #(P) 960

= 600/1500 = 0.4

S(P?n Q3) = il

5. Statistical evaluation of estimation methods

In order to validate the method proposed in Section 4.2 for estimating cardinalities of quan-
tified expressions and, by extension, for estimating soundness and completeness of evaluation
plans for such expressions, we have run some statistical tests using randomly generated data.

We consider the expression JR.C, which is equivalent to 3% 'R.C. For given values of d =
#(domain(R)), r = #(range(R)), and s = #(R) the test system generates a random s-element
subset of {1,...,d} x {1,...,r}, to represent the instances of R. This is done by using uniformly
distributed random numbers for the domain and range values until s distinct pairs have been
generated. The system also generates two ““sources’” C; and C, for the filler relation C by gener-
ating two random subsets of {1,...,r} with specified cardinalities ¢; and ¢,. We then use our
estimation techniques to compute estimates of #(C;) and of the completeness C(Cy, C) of C; with
respect to C = C; U C,. We have examined the behaviour of our estimation techniques for varying
values of the specified cardinalities.

Table 3 indicates the accuracy of our cardinality estimations. It contains data for varying values
of #(C)) for the case where #(domain(R)), #(range(R)) and #(R) have all been fixed at 100.
Results are shown for 1000 trials for each value of #(C). The table shows the mean of the actual
values of #(3R.C). As a measure of the accuracy of our methods in estimating #(3R.C} ), the table
shows a normalised error value. The normalised error is calculated by taking the root mean square
(RMYS) of the differences between the estimated and true values and dividing by the mean of all the
true values, so that it represents a relative, rather than absolute, error.

Table 4 shows results for completeness estimations, using the same generated data as in Table 3
with the addition of a set of instances for C,, which in these examples always has cardinality 50.
The table shows the mean of the true values of the completeness C(3R.Cy, 3R.C) and the RMS
deviation of the estimated value from the true value.

We observe from these tables (and from further test results which have been omitted to save
space) that our estimation methods appear to be reasonably successful in cases where the
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Table 3

Cardinality estimation for 1000 trials with #(domain(R)) = #(range(R)) = #(R) = 100
#(C) #(C,) Mean of #(3R.C)) Normalised error
10 50 9.42 0.29
20 50 18.26 0.18
30 50 25.78 0.14
40 50 33.18 0.11
50 50 39.47 0.09
60 50 45.20 0.07
70 50 50.62 0.06
80 50 55.36 0.05
90 50 59.59 0.03

Table 4

Completeness estimation with #(domain(R)) = #(range(R)) = #(R) = 100
#(C) #(Cy) Mean completeness RMS error
10 50 0.26 0.07
20 50 0.40 0.07
30 50 0.53 0.07
40 50 0.65 0.07
50 50 0.75 0.06
60 50 0.82 0.05
70 50 0.88 0.04
80 50 0.92 0.03
90 50 0.97 0.02

cardinalities are not too small, but tend to break down for small answer sets. This is what one
might expect. For example, if the cardinality of a set is estimated as 0.2, then in most cases the true
figure will be either 0 or 1, and which one it is will make a difference which is more significant than
the difference between, say 99 and 100. In the context of our query-processing system, we may be
able to improve the accuracy of our soundness and completeness estimates by evaluating sub-
queries which we estimate to have a small number of elements. If the access times for the sources
involved in the subqueries have a latency which is not too high, we will be able to run such
subqueries quickly in most cases. The size threshold below which we would use this technique
would be determined by experiment.

6. Estimating conjunction cardinalities

The cardinality estimation method described in Section 4 requires, as input, values for the
cardinalities of all possible conjunctions of atomic concepts. In an application with many po-
tentially overlapping concepts or where answering queries to obtain these conjunction cardina-
lities is expensive, it may be impractical to gather and store all this data. In such cases it is
necessary to find a means of estimating these basic cardinalities.
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As a simple example of such an estimation technique, suppose we estimate the cardinality of an

intersection A, M--- M A4, of distinct atomic concepts by

#(Alﬂ---ﬂAn)zw. (17)
This method is unlikely to give us very accurate results for the cardinalities themselves, but in
some applications it might serve to give a reasonable estimate of whether a query plan has ac-
ceptable levels of soundness and completeness.

Tables 5-9 show some results of our completeness estimation algorithm, where the intersection
cardinalities are estimated by using Eq. (17). The tests were performed by drawing evenly dis-
tributed random subsets from the set {1,...,1000} with specified cardinalities as shown in the
tables. The tables show completeness estimates and mean completeness values for C(P, Q) when
using the plan P = AM B to answer the query Q = A M (B; U B,). In each case 1000 trials were
performed. Since the concept sizes used in the tests were fairly large, the standard deviations of the
completeness values were quite small in all cases, and they are not shown in the tables.

Table 5 shows results for #(4) = 500 and #(B,) = #(B,) = k. In each case, C(P, Q) is estimated
as 3/4, since #(P M Q) is estimated as min(k, 500)/2 and #(Q) as 2min(k, 500)/3. The actual
completeness is lower than estimated when k is small compared to the range size of 1000, and

Table 5

Results for #(4) = 500, #(B,) = #(B,)
#(4) #(By) #(B») Estimated completeness Mean completeness
500 100 100 0.75 0.53
500 200 200 0.75 0.56
500 300 300 0.75 0.59
500 400 400 0.75 0.63
500 500 500 0.75 0.67
500 600 600 0.75 0.71
500 700 700 0.75 0.77
500 800 800 0.75 0.83
500 900 900 0.75 0.91

Table 6

Results for #(4) = #(B,) = #(B,)
#(4) #(By) #(B») Estimated completeness Mean completeness
100 100 100 0.75 0.52
200 200 200 0.75 0.55
300 300 300 0.75 0.59
400 400 400 0.75 0.63
500 500 500 0.75 0.67
600 600 600 0.75 0.71
700 700 700 0.75 0.77
800 800 800 0.75 0.83

900 900 900 0.75 0.91




120 M. Peim et al. | Data & Knowledge Engineering 47 (2003) 105-129

Table 7

Results for #(4) = #(B,) = 500
#(A4) #(By) #(B,) Estimated completeness Mean completeness
500 500 100 0.94 0.91
500 500 200 0.88 0.83
500 500 300 0.83 0.77
500 500 400 0.79 0.71
500 500 500 0.75 0.67
500 500 600 0.75 0.63
500 500 700 0.75 0.59
500 500 800 0.75 0.56
500 500 900 0.75 0.53

Table 8

Results for #(4) = 500, #(B;) = 100
#(A4) #(By) #(B,) Estimated completeness Mean completeness
500 100 100 0.75 0.53
500 100 200 0.43 0.36
500 100 300 0.30 0.27
500 100 400 0.23 0.22
500 100 500 0.19 0.18
500 100 600 0.19 0.16
500 100 700 0.19 0.14
500 100 800 0.19 0.12
500 100 900 0.19 0.11

Table 9

Results for #(4) = 500, #(B;) = 900
#(4) #(B)) #(B,) Estimated completeness Mean completeness
500 900 100 0.94 0.99
500 900 200 0.88 0.98
500 900 300 0.83 0.97
500 900 400 0.79 0.96
500 900 500 0.75 0.95
500 900 600 0.75 0.94
500 900 700 0.75 0.93
500 900 800 0.75 0.92
500 900 900 0.75 0.91

higher when £ is large. This is due to the fact that there will be more overlap between B; and B,
(and hence less loss of completeness) when they are more densely distributed within their range of
possible values. Table 6 shows results for #(4) = #(B;) = #(B,). The completeness figures are
very similar to those in Table 5, which suggests that the results for C(P, Q) are not particularly
sensitive to variations in #(4).
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Table 7 shows results for #(4) = #(B;) = 500, for varying values of #(B,). As one would ex-
pect, the actual completeness values decrease as the size of the omitted extent B, increases. The
estimated values show the same general trend, but stop decreasing once #(B,) becomes greater
than #(4) =500. This is because we estimate #(PM Q) as 250 and #(Q) as 250+
min(500,#(B,))/6. Tables 8 and 9 also show results for varying #(B,), but with #(By) fixed at 100
and 900 respectively. Here again the estimates follow the general decreasing trend as the true
values, but stop decreasing when #(B,) reaches the same value as #(A4).

7. Interactive improvement of soundness and completeness

Having formulated a query, the user of the system must choose a set of concept and role
sources to be used in a plan for answering that query. The user will then be given soundness and
completeness estimates for the plan. If he/she is not satisfied with either the soundness or com-
pleteness of the plan, the system should be able to provide some assistance in selecting additional
sources which will be of most benefit in improving the plan’s expected quality. If adding new sources
causes problems with cost estimates, the user may also require some assistance in selecting sources
for removal from the plan without causing too much harm to the quality estimates. We present
below a set of heuristic measures for analysing a query in order to provide such assistance, and
some suggestions for how these measures might be presented in the user interface.

If queries are rewritten in terms of source concepts and roles by a simple global-as-view ex-
pansion process, as in [9], we can present the query to the user in its original, unexpanded form
and expand concept names in subqueries as required when the user chooses to investigate par-
ticular subqueries. For example, if the current query contains the concept biopolymer which has
the expansion protein LI dna, the user would have the option of treating biopolymer as an atomic
concept, whose sources are the union of all protein and dna sources, or of expanding and treating
the disjuncts separately. If a more sophisticated rewriting system is used, as in DWQ [2] or
PICSEL [4], it might be necessary for the user to work with the rewritten form of the query, as
there may be little or no relation between the syntactic forms of the user’s query and the plan.

7.1. Improving disjunctive expressions

If a disjunctive query is safe, then each disjunct must be safe. So we can assume our query is
0= 0, U---UQ, where each Q; is safe. Then our plan can be expressed as P = P, LI - - - LI P, where
each P, is a plan for Q,.

In order to improve the completeness of O, we need to identify disjuncts for which adding new
sources is likely to generate the most new answers. So we should look for disjuncts such that #(Q;)
is large and C(P;, O;) is small. As a numerical measure of how promising each disjunct Q; is for
improving completeness, we can use the quantity #(Q;)(1 — C(P;, Q;)) or, equivalently, #(Q;) —
#(P, M Q;). We can display these quantities to the user in the form of a histogram showing, for
each disjunct either the estimated values of #(Q;) and #(P, M Q;) for each i, as in Fig. 2, or just the
differences, as in Fig. 3. The query (or subquery) under investigation in the figures is science-
std LI engineering-std Ll business-std. In both cases, we have indicated the scale of the graph by
displaying the greatest of the cardinalities involved.



122 M. Peim et al. | Data & Knowledge Engineering 47 (2003) 105-129

Number of elements

1532 f === === - mmmmmmmmm e

I

dil d2 d3 Disjunct

Disjuncts:

dl: science-std

d2: engineering-std
d3: business-std

Key:
|:| Query answers |:| Correct plan answers
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Fig. 3. Alternative completeness histogram showing numbers of extra elements available for each disjunct.

Similarly, to improve the soundness of a plan we look for disjuncts where adding new sources is
likely to remove the greatest number of wrong answers (by improving the completeness of sub-
queries which lie under an odd number of negations). So we look for disjuncts such that #(P) is
large and S(P, Q;) is small. As a numerical measure, we can take #(5)(1 — S(P, O;)) or, equiva-
lently #(P;) — #(P, M Q;). The information can be displayed to the user in graphs similar to those
in Figs. 2 and 3. Fig. 4 illustrates the former option for the query science-std Ll engineering-
std U business-std.

Of course, the numerical measures suggested above ignore possible overlaps between disjuncts.
For example, suppose QO = Q) LU Q> L Q;. If C(P,0y) is close to 1 and Q; and Q, have a high
proportion of elements in common, then it may more productive to improve C(P;,Q;) than
C(Py, 0,), since any new elements generated by P, may well be covered by P;. However, a more
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Fig. 4. Histogram for comparison of soundness of disjuncts, showing (estimated) sizes of current plan answers and
correct plan answers.

sophisticated approach which took overlaps into account would have to be based on better es-
timates or data for intersection cardinalities than those given in Section 6.

7.2. Improving conjunctive expressions

A safe conjunction has the form Q=8 n1---ns,N---AU MN---MNU, where m>=>1, n >0,
each S; is safe and each U; is unsafe. We answer such a query (at least in principle) by answering
each safe conjunct S; and the negation —U, of each unsafe conjunct. We then filter the elements of
the intersection of the S; for non-membership in any of the —U..

To improve the completeness of a plan P for O, we can either improve the completeness of some
of the S; or the soundness of the negation of one of the U; (so that we do not incorrectly filter any
elements out). Unlike the case of disjunctions (Section 7.1) a lack of completeness in any of the
safe conjuncts can have a large impact on the completeness of the overall query, even if that
conjunct has low cardinality. It therefore seems appropriate to use the completeness/soundness
values themselves as a numerical indication of which conjuncts should be considered for im-
provement. The information about the various conjuncts could be presented to the user in a graph
similar to Fig. 5, where the query (or subquery) under examination is hall-std M science-std I
—phys-std (so m = 2 and n = 1). Alternatively, it might be better to hide the distinction between
safe and unsafe conjuncts from the user by presenting them in the same way in this part of the
interface so that we refer to the “completeness’ of, say, —phys-std or Vflat-mate.science-std rather
than soundness of phys-std or Iflat-mate.—science-std even though the unsafe versions will never
actually be evaluated.

As it was with disjunctive queries, the problem of improving soundness of a query is dual to the
problem of improving completeness. We can improve the soundness of a conjunction either by
improving the soundness of a safe conjunct or by improving the completeness of the negation of
an unsafe conjunct.
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7.3. Improving quantified expressions

A safe quantified expression is equivalent to one of the form 3> "R.C. The concept expression C
may be either safe or unsafe. To improve the completeness of 32 ”R.C, we can either improve the
“completeness” of R (that is, add more sources for R) or improve the completeness of C (if C is
safe) or the soundness of —C (if C is unsafe). To improve soundness, we can improve the
soundness of C (if C is unsafe) or the completeness of —C (if C is safe). Note that, since ALCQT
allows only atomic role expressions and their inverses, the use of restricted information for R has
no impact on the soundness of a plan for 3= "R.C. In the case of completeness, it is not easy to see
how the statistical information about the role R which is used in cardinality estimation (Section 4)
could be used to decide whether improving the plan for R or the plan for C is likely to be more
effective. It may be best simply to point out both possibilities to the user.

8. Conclusions

DL based global conceptual models have been widely proposed for use in information inte-
gration systems. However, it is not always practical or possible for queries over such models to
access all the extensional data in remote sources. Thus it is important that query-processing en-
vironments are able to provide indications to users of the consequences for the soundness and
completeness of results when specific sources are omitted. The methods presented in this paper
represent a direct approach to providing such indications, and we have offered some suggestions
as to how they should be presented to users in order to assist them in source selection. The
soundness and completeness measures considered here are just two examples of data quality di-
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mensions. Our work represents a first step in considering data quality issues in a DL based in-
tegration setting. Compared with earlier work on data quality estimation (for example [19]), the
results presented here:

e act over a DL-based query language;
e include evaluation of the results obtained;
e address how quality measures can be conveyed to users.

Query cardinality estimation is a well-studied area in database research, as it is an important
part of cost estimation in query optimisation (see [10], for example). However, we are not aware of
any previous work on cardinality or quality estimation for expressive DL queries.

The results of the statistical validation tests (Section 5) suggest that our methods give good
results in cases where the cardinality of the result is not too small, at least in the case of random
data. Further tests, against real data and ontologies, will be made as soon as the system described
in [9] has been fully implemented. Further work which could be done to improve our estimation
technique might involve the use of domain-specific or application-specific knowledge to replace
the many statistical independence assumptions made in the estimation process. One such ap-
proach might be to investigate the incorporation of statistical/probabilistic information about
relations between cardinalities of concepts into the ontology, along the lines described in [27], to
see whether this information could be used to improve our cardinality estimates. Another tech-
nique for improving estimates would be to replace the simple approximation method for atomic
conjunctions in Section 6 by a more sophisticated one, which might, for example, use statistics
gathered while answering previous queries.
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Appendix A. Cardinality estimation algorithm

In this appendix, we present an algorithm which can be used to estimate concept cardinalities in
accordance with the approach described in Section 4. The algorithm begins with rewriting the
concept expression into an equivalent expression in disjunctive normal form (DNF)—that is,
e=(ciyM---Mecpy)U---U(c M---Mcym,), where each ¢;; is an atom A4 (safe), a negated atom
-4 (unsafe), a quantified expression 3Z*R.C, k > 1 (safe) or a quantified expression IS*R.C,
k = 0 (unsafe). In the case of quantified expressions, C should itself be in DNF. A DNF ex-
pression is safe if and only if at least one conjunct in each disjunct is safe. It is a straightforward
matter to show that any ALCQT expression has an equivalent expression in DNF, and that the
expression is safe if and only if its DNF equivalent is safe. The rewriting step may be compu-
tationally expensive, however, and other algorithms may be possible which avoid this step.
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The function dnf-estimate returns a cardinality estimate for a safe ALCQZ expression e in
DNEF.

function dnf-estimate(safe-dnf-expression e)
ife=1
return 0
else if ¢ has only one disjunct, d
return conj-estimate(d)
else
letd=d Ud,U---Ud,,n=2
ny < conj-estimate(d)
ny < dnf-estimate(d, U - - - Ll d,,)
ifn, =0
return n,
else if n, =0
return n;
else
return n; + ny — dnf-estimate((d, Mdy) U---U (dy MNd,))

The function conj-estimate returns a cardinality estimate for a single disjunct of a safe DNF
expression—a conjunction of terms as described above, at least one of which is safe.

function conj-estimate(safe-conjunction e)
lete=S1---08§nNU M---NU,S; safe, U; unsafe, k > 1

if /=0

return safe-conj-estimate(e)

else

n «— conj-estimate(S, M--- NS, N U, MN---MU,)

ifn=0
return 0

else
return n — conj-estimate(S, M--- NS, N (=U)NU,M---NU))

The function safe-conj-estimate returns a cardinality estimate for a non-empty conjunction of
safe terms. Here Q(k;, R;, C;) is the function defined in Section 4.2. Note that evaluating Q involves
recursive calls to dnf-estimate to evaluate the right-hand side of Eq. (8).

function conj-estimate(all-safe-conjunction e)
lete=4,1---MA4,N3I=hR,.C;N---M3I=&R,.C,
x « lookup-card(4, M --- M A,, Mdomain(R;) M- --Mdomain(R,))

ifx=0
return 0
else

return x x Q(kth Cl) ¥k Q(knaRna Cn)
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