
The GMD Data Model for Multidimensional

Information: a brief introduction

Enrico Franconi and Anand Kamble

Faculty of Computer Science, Free Univ. of Bozen-Bolzano, Italy
franconi@inf.unibz.it — anand.kamble@unibz.it

Abstract. In this paper we introduce a novel data model for multi-
dimensional information, GMD, generalising the MD data model first
proposed in Cabibbo et al (EDBT-98). The aim of this work is not to
propose yet another multidimensional data model, but to find the gen-
eral precise formalism encompassing all the proposals for a logical data
model in the data warehouse field. Our proposal is compatible with all
these proposals, making therefore possible a formal comparison of the
differences of the models in the literature, and to study formal prop-
erties or extensions of such data models. Starting with a logic-based
definition of the semantics of the GMD data model and of the basic al-
gebraic operations over it, we show how the most important approaches
in DW modelling can be captured by it. The star and the snowflake
schemas, Gray’s cube, Agrawal’s and Vassiliadis’ models, MD and other
multidimensional conceptual data can be captured uniformly by GMD.
In this way it is possible to formally understand the real differences in
expressivity of the various models, their limits, and their potentials.

1 Introduction

In this short paper we introduce a novel data model for multidimensional in-
formation, GMD, generalising the MD data model first proposed in [Cabibbo
and Torlone, 1998]. The aim of this work is not to propose yet another data
model, but to find the most general formalism encompassing all the proposals
for a logical data model in the data warehouse field, as for example summarised
in [Vassiliadis and Sellis, 1999]. Our proposal is compatible with all these propos-
als, making therefore possible a formal comparison of the different expressivities
of the models in the literature. We believe that the GMD data model is already
very useful since it provides a very precise and, we believe, very elegant and
uniform way to model multidimensional information. It turns out that most of
the proposals in the literature make many hidden assumptions which may harm
the understanding of the advantages or disadvantages of the proposal itself. An
embedding in our model would make all these assumptions explicit.

So far, we have considered, together with the classical basic star and snowflake
ER-based models and multidimensional cubes, the logical data models intro-
duced in [Cabibbo and Torlone, 1998; Golfarelli et al., 1998; Agrawal et al.,
1997; Gray et al., 1996; Vassiliadis, 1998; Vassiliadis and Skiadopoulos, 2000;
Franconi and Sattler, 1999; Gyssens and Lakshmanan, 1997; Tsois et al., 2001].
A complete account of both the GMD data model (including and extended alge-
bra) and of the various encodings can be found in [Franconi and Kamble, 2003];

in this paper we just give a brief introduction to the basic principles of the data
model.

GMD is completely defined using a logic-based approach. We start introduc-
ing a data warehouse schema, which is nothing else than a set of fact definitions
which restricts (i.e., constrains) the set of legal data warehouse states associ-
ated to the schema. By systematically defining how the various operators used
in a fact definition constrain the legal data warehouse states, we give a formal
logic-based account of the GMD data model.

2 The syntax of the GMD data model

We introduce in this Section the notion of data warehouse schema. A data ware-
house schema basically introduces the structures of the cubes that will populate
the warehouse, together with the types allowed for the components of the struc-
tures. The definition of a GMD schema that follows is explained step by step.

Definition 1 (GMD schema). Consider the signature < F ,D,L,M,V ,A >,
where F is a finite set of fact names, D is a finite set of dimension names, L is
a finite set of level names – each one associated to a finite set of level element
names, M is a finite set of measure names, V is a finite set of domain names –
each one associated to a finite set of values, A is a finite set of level attributes.

➽ We have just defined the alphabet of a data warehouse: we
may have fact names (like SALES, PURCHASES), dimension names
(like Date, Product), level name (like year, month, product-brand,
product-category) and their level elements (like 2003, 2004, heineken,
drink), measure names (like Price, UnitSales), domain names (like in-
tegers, strings), and level attributes (like is-leap, country-of-origin).

A GMD schema includes:

– a finite set of fact definitions of the form

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
},

where E,F ∈ F ,Di ∈ D,Li ∈ L,Mj ∈ M,Vj ∈ V.

We call the fact name F a defined fact, and we say that F is based on
E. A fact name not appearing at the left hand side of a definition is called
an undefined fact. We will generally call fact either a defined fact or an
undefined fact. A fact based on an undefined fact is called basic fact. A fact
based on a defined fact is called aggregated fact. A fact is dimensionless if
n = 0; it is measureless if m = 0. The orderings in a defined fact among
dimensions and among measures are irrelevant.

➽ We have here introduced the building block of a GMD schema:
the fact definition. A basic fact corresponds to the base data of
any data warehouse: it is the cube structure that contains all the
data on which any other cube will be built upon. In the following
example, BASIC-SALES is a basic fact, including base data about
sale transactions, organised by date, product, and store (which are
the dimensions of the fact) which are respectively restricted to the
levels day, product, and store, and with unit sales and sale price as
measures:

BASIC-SALES
.
=

SALES {Date|day, Product|product, Store|store} :
{UnitSales|int, SalePrice|int}

– a partial order (L,≤) on the levels in L.
We call � the immediate predecessor relation on L induced by ≤.

➽ The partial order defines the taxonomy of levels. For example, day
� month � quarter and day � week; product � type � category

– a finite set of roll-up partial functions between level elements

ρLi,Lj
: Li 7→ Lj

for each Li,Lj such that Li � Lj.
We call ρ∗Li,Lj

the reflexive transitive closure of the roll-up functions

inductively defined as follows:

ρ∗
Li,Li

= id

ρ∗
Li,Lj

=
⋃

k ρLi,Lk
◦ ρ∗

Lk,Lj
for each k such that Li � Lk

where

(ρLp,Lq
∪ ρLr ,Ls

)(x) = y iff

ρLp,Lq
(x) = ρLr,Ls

(x) = y, or
ρLp,Lq

(x) = y and ρLr ,Ls
(x) = ⊥, or

ρLp,Lq
(x) = ⊥ and ρLr ,Ls

(x) = y

➽ When in a schema various levels are introduced for a dimension,
it is also necessary to introduce a roll-up function for them. A roll-
up function defines how elements of one level map to elements of a
superior level. Since we just require for the roll-up function to be a
partial order, it is possible to have elements of a level which roll-up
to an upper level, while other elements may skip that upper level
to be mapped to a superior one. For example, ρday,month(1/1/01)
= Jan-01, ρday,month(2/1/01) = Jan-01, . . . ρquarter,year(Qtr1-01) =
2001, ρquarter,year(Qtr2-01) = 2001, . . .

– a finite set of level attribute definitions:

L
.
= {A1 |V1

, . . . ,An |Vn
}

where L ∈ L, Ai ∈ A and Vi ∈ V for each i, 1 ≤ i ≤ n.

➽ Level attributes are properties associated to levels. For example,
product

.
= {prodname|string, prodnum|int, prodsize|int, prodweight|int}

– a finite set of measure definitions of the form

N
.
= f(M)

where N, M ∈ M, and f is an aggregation function f : B(V) 7→ W, for some
V,W ∈ V. B(V) is the finite set of all bags obtainable from values in V whose
cardinality is bound by some finite integer Ω.

➽ Measure definitions are used to compute values of measures in an
aggregated fact from values of the fact it is based on. For example:
Total-UnitSales

.
= sum(UnitSales) and Avg-SalePrice

.
= aver-

age(SalePrice)

Levels and facts are subject to additional syntactical well-foundedness conditions:

– The connected components of (L,≤) must have a unique least element each,
which is called basic level.

➽ The basic level contains the finest grained level elements, on top
of which all the facts are identified. For example, store � city �
country; store is a basic level.

– For each undefined fact there can be at most one basic fact based on it.

➽ This allows us to disregard undefined facts, which are in one-to-
one correspondence with basic facts.

– Each aggregated fact must be congruent with the defined fact it is based on,
i.e., for each aggregated fact G and for the defined fact F it is based on such
that

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F {D1 |R1

, . . . ,Dp |Rp
} : {N1 |W1

, . . . ,Nq |Wq
}

the following must hold (for some reordering on the dimensions):

• the dimensions in the aggregated fact G are among the dimensions of the
fact F it is based on:

p ≤ n

• the level of a dimension in the aggregated fact G is above the level of the
corresponding dimension in the fact F it is based on:

Li ≤ Ri for each i ≤ p

• each measure in the aggregated fact G is computed via an aggregation
function from some measure of the defined fact F it is based on:

N1
.
= f1(Mj(1)) . . . Nq

.
= fq(Mj(q))

Moreover the range and the domain of the aggregation function should
be in agreement with the domains specified respectively in the aggregated
fact G and in the fact F it is based on.

➽ Here we give a more precise characterisation of an aggregated
fact: its dimensions should be among the dimensions of the fact it
is based on, its levels should be generalised from the corresponding
ones in the fact it is based on, and its measures should be all com-
puted from the fact it is based on. For example, given the basic fact
BASIC-SALES:

BASIC-SALES
.
=

SALES {Date|day, Product|product, Store|store} :
{UnitSales|int, SalePrice|int}

the following SALES-BY-MONTH-AND-TYPE is an aggregated
fact computed from the BASIC-SALES fact:

SALES-BY-MONTH-AND-TYPE
.
=

BASIC-SALES {Date|month, Product|type} :
{Total-UnitSales|int, Avg-SalePrice|real}

with the following aggregated measures:

Total-UnitSales
.
= sum(UnitSales)

Avg-SalePrice
.
= average(SalePrice)

2.1 Example

The following GMD schema summarises the examples shown in the previous
Section:

– Signature:

• F = {SALES, BASIC-SALES, SALES-BY-MONTH-AND-TYPE,
PURCHASES}

• M = {UnitSales, Price, Total-UnitSales, Avg-Price}
• D = {Date, Product, Store}
• L = {day, week, month, quarter, year, product, type, category, brand,

store, city, country }
day = {1/1/01, 2/1/01, . . . , 1/1/02, 2/1/02, . . . }
month = {Jan-01, Feb-01, . . . , Jan-02, Feb-02, . . . }
quarter = {Qtr1-01, Qtr2-01, . . . , Qtr1-02, Qtr2-02, . . . }
year = {2001, 2002}
· · ·

• V = {int, real, string}
• A = {dayname, prodname, prodsize, prodweight, storenumb}

– Partial order over levels:

• day � month � quarter � year, day � week; day is a basic level
• product � type � category, product � brand; product is a basic level
• store � city � country; store is a basic level

– Roll-up functions:
ρday,month(1/1/01) = Jan-01, ρday,month(2/1/01) = Jan-01, . . .
ρmonth,quarter(Jan-01) = Qtr1-01, ρmonth,quarter(Feb-01) = Qtr1-01, . . .
ρquarter,year(Qtr1-01) = 2001, ρquarter,year(Qtr2-01) = 2001, . . .
ρ
∗

day,year(1/1/01) = 2001, ρ
∗

day,year(2/1/01) = 2001, . . .
· · ·

– Level Attributes:
day

.
= {dayname|string, daynum|int}

product
.
= {prodname|string, prodnum|int, prodsize|int, prodweight|int}

store
.
= {storename|string, storenum|int, address|string}

– Facts:
BASIC-SALES

.
=

SALES {Date|day, Product|product, Store|store} :
{UnitSales|int, SalePrice|int}

SALES-BY-MONTH-AND-TYPE
.
=

BASIC-SALES {Date|month, Product|type} :
{Total-UnitSales|int, Avg-SalePrice|real}

– Measures:
Total-UnitSales

.
= sum(UnitSales)

Avg-SalePrice
.
= average(SalePrice)

3 GMD Semantics

Having just defined the syntax of GMD schemas, we introduce now their se-
mantics through a well founded model theory. We define the notion of a data
warehouse state, namely a specific data warehouse, and we formalise when a
data warehouse state is actually in agreement with the constraints imposed by
a GMD schema.

Definition 2 (Data Warehouse State). A data warehouse state over a schema
with the signature < F ,D,L,M,V ,A > is a tuple I = < ∆, Λ, Γ, ·I >, where

– ∆ is a non-empty finite set of individual facts (or cells) of cardinality smaller
than Ω;

➽ Elements in ∆ are the object identifiers for the cells in a multi-
dimensional cube; we call them individual facts.

– Λ is a finite set of level elements;
– Γ is a finite set of domain elements;
– ·I is a function (the interpretation function) such that

FI ⊆ ∆ for each F ∈ F , where FI is disjoint from any other EI

such that E ∈ F
LI ⊆ Λ for each L ∈ L, where LI is disjoint from any other HI

such that H ∈ L
VI ⊆ Γ for each V ∈ V, where VI is disjoint from any other WI

such that W ∈ V
DI = ∆ 7→ Λ for each D ∈ D

MI = ∆ 7→ Γ for each M ∈ M
(AL

i)I = L 7→ Γ for each L ∈ L and AL

i ∈ A for some i

(Note: in the paper we will omit the ·I interpretation function applied to
some symbol whenever this is non ambiguous)

➽ The interpretation functions defines a specific data warehouse
state given a GMD signature, regardless from any fact definition.
It associates to a fact name a set of cells (individual facts), which
are meant to form a cube. To each cell corresponds a level element
for some dimension name: the sequence of these level elements is
meant to be the “coordinate” of the cell. Moreover, to each cell
corresponds a value for some measure name. Since fact definitions in
the schema are not considered yet at this stage, the dimensions and
the measures associated to cells are still arbitrary. In the following,
we will introduce the notion of legal data warehouse state, which is
the data warehouse state which conforms to the constraints imposed
by the fact definitions. A data warehouse state will be called legal for
a given GMD schema if it is a data warehouse state in the signature
of the GMD schema and it satisfies the additional conditions found
in the GMD schema.

A data warehouse state is legal with respect to a GMD schema if:

– for each fact F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
} in the

schema:

• the function associated to a dimension which does not appear in a fact
is undefined for its cells:

∀f. F(f) → f 6∈ dom(D)

for each D ∈ D such that D 6= Di for each i ≤ n

➽ This condition states that the level elements associated to a cell
of a fact should correspond only to the dimensions declared in the
fact definition of the schema. That is, a cell has only the declared
dimensions in any legal data warehouse state.

• each cell of a fact has a unique set of dimension values at the appropriate
level:

∀f. F(f) → ∃l1, . . . , ln. D1(f) = l1 ∧ L1(l1) ∧ . . . ∧Dn(f) = ln ∧ Ln(ln)

➽ This condition states that the level elements associated to a cell
of a fact are unique for each dimension declared for the fact in the
schema. So, a cell has a unique value for each declared dimension in
any legal data warehouse state.

• a set of dimension values identifies a unique cell within a fact:

∀f, f ′, l1, . . . , ln.
F(f) ∧ F(f ′) ∧
D1(f) = l1 ∧D1(f

′) = l1 ∧ . . . ∧ Dn(f) = ln ∧ Dn(f ′) = ln →
f = f ′

➽ This condition states that a sequence of level elements associated
to a cell of a fact are associated only to that cell. Therefore, the
sequence of dimension values can really be seen as an identifying
coordinate for the cell. In other words, these conditions enforce the
legal data warehouse state to really model a cube according the
specification given in the schema.

• the function associated to a measure which does not appear in a fact is
undefined for its cells:

∀f. F(f) → f 6∈ dom(M)

for each M ∈ M such that M 6= Mi for each i ≤ n

➽ This condition states that the measure values associated to a cell
of a fact in a legal data warehouse state should correspond only to
the measures explicitly declared in the fact definition of the schema.

• each cell of a fact has a unique set of measures:

∀f. F(f) → ∃m1, . . . , mm. M1(f) = m1 ∧ V1(m1) ∧ . . . ∧ Mm(f) =
mm ∧ Vm(mm)

➽ This condition states that the measure values associated to a cell
of a fact are unique for each measure explicitly declared for the fact
in the schema. So, a cell has a unique measure value for each declared
measure in any legal data warehouse state.

– for each aggregated fact and for the defined fact it is based on in the schema:

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F {D1 |R1

, . . . ,Dp |Rp
} : {N1 |W1

, . . . ,Nq |Wq
}

N1
.
= f1(Mj(1)) . . . Nq

.
= fq(Mj(q))

each aggregated measure function should actually compute the aggregation of
the values in the corresponding measure of the fact the aggregation is based
on:

∀g, v. Ni(g) = v ↔ ∃r1, . . . , rp. G(g) ∧ D1(g) = r1 ∧ . . . ∧Dp(g) = rp∧
v = fi({|Mj(i)(f) | ∃l1, . . . , lp. F(f)∧

D1(f) = l1 ∧ . . . ∧ Dp(f) = lp∧
ρ∗
L1,R1

(l1) = r1 ∧ . . . ∧ ρ∗
Lp,Rp

(lp) = rp|})

for each i ≤ q, where {| · |} denotes a bag.

➽ This condition guarantees that if a fact is the aggregation of an-
other fact, then in a legal data warehouse state the measures associ-
ated to the cells of the aggregated cube should be actually computed
by applying the aggregation function to the measures of the corre-
sponding cells in the original cube. The correspondence between a
cell in the aggregated cube and a set of cells in the original cube is
found by looking how their coordinates – which are level elements –
are mapped through the roll-up function dimension by dimension.

According to the definition, a legal data warehouse state for a GMD schema is
a bunch of multidimensional cubes, whose cells carry measure values. Each cube
conforms to the fact definition given in the GMD schema, i.e., the coordinates
are in agreement with the dimensions and the levels specified, and the measures
are of the correct type. If a cube is the aggregation of another cube, in a legal
data warehouse state it is enforced that the measures of the aggregated cubes
are correctly computed from the measures of the original cube.

3.1 Example

A possible legal data warehouse state for (part of) the previous example GMD
schema is shown in the following.

BASIC-SALESI = {s1, s2, s3, s4, s5, s6, s7}

SALES-BY-MONTH-AND-TYPEI = {g1, g2, g3, g4, g5, g6}

Date(s1) = 1/1/01
Date(s2) = 7/1/01
Date(s3) = 7/1/01
Date(s4) = 10/2/01
Date(s5) = 28/2/01
Date(s6) = 2/3/01
Date(s7) = 12/3/01

Product(s1) = Organic-milk-1l
Product(s2) = Organic-yogh-125g
Product(s3) = Organic-milk-1l
Product(s4) = Organic-milk-1l
Product(s5) = Organic-beer-6pack
Product(s6) = Organic-milk-1l
Product(s7) = Organic-beer-6pack

Store(s1) = Fair-trade-central
Store(s2) = Fair-trade-central
Store(s3) = Ali-grocery
Store(s4) = Barbacan-store
Store(s5) = Fair-trade-central
Store(s6) = Fair-trade-central
Store(s7) = Ali-grocery

UnitSales(s1) = 100
UnitSales(s2) = 500
UnitSales(s3) = 230
UnitSales(s4) = 300
UnitSales(s5) = 210
UnitSales(s6) = 150
UnitSales(s7) = 100

EuroSalePrice(s1) = 71,00
EuroSalePrice(s2) = 250,00
EuroSalePrice(s3) = 138,00
EuroSalePrice(s4) = 210,00
EuroSalePrice(s5) = 420,00
EuroSalePrice(s6) = 105,00
EuroSalePrice(s7) = 200,00

Date(g1) = Jan-01
Date(g2) = Feb-01
Date(g3) = Jan-01
Date(g4) = Feb-01
Date(g5) = Mar-01
Date(g6) = Mar-01

Product(g1) = Dairy
Product(g2) = Dairy
Product(g3) = Drink
Product(g4) = Drink
Product(g5) = Dairy
Product(g6) = Drink

Total-UnitSales(g1) = 830
Total-UnitSales(g2) = 300
Total-UnitSales(g3) = 0
Total-UnitSales(g4) = 210
Total-UnitSales(g5) = 150
Total-UnitSales(g6) = 100

Avg-EuroSalePrice(g1) = 153,00
Avg-EuroSalePrice(g2) = 210,00
Avg-EuroSalePrice(g3) = 0,00
Avg-EuroSalePrice(g4) = 420,00
Avg-EuroSalePrice(g5) = 105,00
Avg-EuroSalePrice(g6) = 200,00

daynum(day) = 1 prodweight(product) = 100gm storenum(store) = S101

4 GMD Extensions

For lack of space, in this brief report it is impossible to introduce the full GMD
framework [Franconi and Kamble, 2003], which includes a full algebra in addition
to the basic aggregation operation introduced in this paper. We will just mention
the main extensions with respect to what has been presented here, and the main
results.

The full GMD schema language includes also the possibility to define aggre-
gated measures with respect to the application of a function to a set of original
measures, pretty much like in SQL. For example, it is possible to have an aggre-
gated cube with a measure total-profit being the sum of the differences between
the cost and the price in the original cube; the difference is applied cell by cell in

the original cube (generating a profit virtual measure), and then the aggregation
computes the sum of all the profits.

Two selection operators are also in the full GMD language. The slice oper-
ation simply selects the cells of a cube corresponding to a specific value for a
dimension, resulting in a cube which contains a subset of the cells of the original
one and one less dimension. The multislice allows for the selection of ranges of
values for a dimension, so that the resulting cube will contain a subset of the
cells of the original one but retains the selected dimension.

A fact-join operation is defined only between cubes sharing the same di-
mensions and the same levels. We argue that a more general join operation is
meaningless in a cube algebra, since it may leads to cubes whose measures are
no more understandable. For similar reasons we do not allow a general union
operator (like the one proposed in [Gray et al., 1996]).

As we were mentioning in the introduction, one main result is in the full
encoding of many data warehouse logical data models as GMD schemas. We
are able in this way to give an homogeneous semantics (in terms of legal data
warehouse states) to the logical model and the algebras proposed in all these
different approaches, we are able to clarify ambiguous parts, and we argue about
the utility of some of the operators presented in the literature.

The other main result is in the proposal of a novel conceptual data model
for multidimensional information, that extends and clarifies the one presented
in [Franconi and Sattler, 1999].

References

[Agrawal et al., 1997] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimen-
sional databases. In Proc. of ICDE-97, 1997.

[Cabibbo and Torlone, 1998] Luca Cabibbo and Riccardo Torlone. A logical approach
to multidimensional databases. In Proc. of EDBT-98, 1998.

[Franconi and Kamble, 2003] Enrico Franconi and Anand S. Kamble. The GMD data
model for multidimensional information. Technical report, Free University of Bozen-
Bolzano, Italy, 2003. Forthcoming.

[Franconi and Sattler, 1999] E. Franconi and U. Sattler. A data warehouse conceptual
data model for multidimensional aggregation. In Proc. of the Workshop on Design
and Management of Data Warehouses (DMDW-99), 1999.

[Golfarelli et al., 1998] M. Golfarelli, D. Maio, and S. Rizzi. The dimensional fact
model: a conceptual model for data warehouses. IJCIS, 7(2-3):215–247, 1998.

[Gray et al., 1996] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: a
relational aggregation operator generalizing group-by, cross-tabs and subtotals. In
Proc. of ICDE-96, 1996.

[Gyssens and Lakshmanan, 1997] M. Gyssens and L.V.S. Lakshmanan. A foundation
for multi-dimensional databases. In Proc. of VLDB-97, pages 106–115, 1997.

[Tsois et al., 2001] A. Tsois, N. Karayiannidis, and T. Sellis. MAC: Conceptual data
modelling for OLAP. In Proc. of the International Workshop on Design and Man-
agement of Warehouses (DMDW-2001), pages 5–1–5–13, 2001.

[Vassiliadis and Sellis, 1999] P. Vassiliadis and T. Sellis. A survey of logical models for
OLAP databases. In SIGMOD Record, volume 28, pages 64–69, December 1999.

[Vassiliadis and Skiadopoulos, 2000] P. Vassiliadis and S. Skiadopoulos. Modelling and
optimisation issues for multidimensional databases. In Proc. of CAiSE-2000, pages
482–497, 2000.

[Vassiliadis, 1998] P. Vassiliadis. Modeling multidimensional databases, cubes and
cube operations. In Proc. of the 10th SSDBM Conference, Capri, Italy, July 1998.

