
Semantic Diff as the Basis for Knowledge Base Versioning

Enrico Franconi
Free University of Bolzano

Bolzano, Italy
franconi@inf.unibz.it

Thomas Meyer
Meraka Institute, CSIR
Pretoria, South Africa

tommie.meyer@meraka.org.za

Ivan Varzinczak
Meraka Institute, CSIR
Pretoria, South Africa

ivan.varzinczak@meraka.org.za

Abstract

In this paper we investigate the problem of maintain-
ing and reasoning with differentversionsof a knowl-
edge base. We are interested in the scenario where a
knowledge base (expressed in some logical formalism)
might evolve over time and, as a consequence, differ-
ent versions thereof have to be maintained simultane-
ously in aparsimoniousway. Moreover, users of the
knowledge base should be able to access, not only any
specific version, but also thedifferencesbetween two
given versions of the knowledge base. We address this
problem by proposing ageneral semantic framework
for the maintenance of different versions of a knowl-
edge base. It turns out that the notion ofsemantic dif-
ferencebetween knowledge bases plays a central role in
the framework. We show that an appropriate character-
ization produces a unique definition of semantic differ-
ence which is applicable to a large class of logic-based
knowledge representation languages. We then proceed
to restrict our attention to finitely generated proposi-
tional logics, and show that our semantic framework can
be represented syntactically in a particular kind of nor-
mal form, referred to asordered complete conjunctive
normal formor oc-CNF. This is followed by a gener-
alization in which we show that similar results can be
obtained for any syntactic representation (in a finitely
generated propositional logic) of the semantic frame-
work. Of particular interest are representations of ap-
propriately chosen normal forms. We expect that our
constructions for the propositional case can be extended
to more expressive languages, such as description logics
(DLs). In that respect, our results add to the investiga-
tion of the versioning problem for DL-based ontologies.

Introduction
Consider the situation in which we have a knowledge base
(expressed in some logic-based knowledge representation
language) which might evolve over time. By evolution here
we mean modifications (updates, refinements, etc.) made by
a knowledge engineer (or a group of knowledge engineers
working collaboratively). In situations such as these, it is
frequently the case that different users need access to dif-
ferent versions of the knowledge base. Consequently, there
is a need to maintain a number of different versions of a
knowledge base. In addition to being able to access specific
versions of the same knowledge base, users usually need to

be able to distinguish between the different versions as well.
More specifically, users need access to a system which is
able to perform the following two reasoning tasks: (i) de-
termine whether a given piece of information can be derived
from a specific version of the knowledge base (access to a
specific version); (ii) determine from which versions of the
knowledge base it is possible to derive a given piece of in-
formation, and from which versions it is not (articulating the
differences between versions). These requirements highlight
the need for a system with the following characteristics:
• Different versions of the knowledge base have to be main-

tained simultaneously in aparsimoniousway. I.e., one
should not storeall of them, but only some kind ofcore
from which all can somehow be reconstructed;

• Since we are dealing with knowledge bases (and not data
bases), it should be possible not only to identify the dif-
ference in syntax between versions, but also to determine
the difference inmeaningbetween them.

Besides being of interest in general, the problem of man-
aging different versions of a knowledge base has interest-
ing specific applications. A prominent example (and one of
our main motivations in this work) is the problem ofontol-
ogy versioningexpressed in a suitable representational for-
malism such as RDF (Gutiérrezet al. 2004) or one of the
numerous available description logics (Baaderet al. 2003).
When developing or maintaining an ontology collabora-
tively, different simultaneous (possibly conflicting) versions
thereof might exist at the same time (see Figure 1).

O1 O2

O3

O4

O6

. . .
On

. . .

O5

Figure 1: An initial ontology and its subsequent versions.

That can happen due to many reasons, such as different
teams working on different modules of the same ontology in
parallel, or different developers having different views of the
domain, among others. Moreover, modifications performed
on ontologies need not be incremental (monotone): informa-
tion may be added and removed frequently, and it might well

happen that the latest ontology is actually closer to one of its
preliminary versions than its immediate predecessor. In that
respect, in order for the ontology engineers (and users of the
ontology) to be able to coordinate their work in an efficient
way, they need tools allowing them to (i) keep track of all
versions; (ii) determine to what extent two versions of an
ontology differ; (iii) revert from one ontology to another
(possibly previously agreed upon) one; and (iv) given a par-
ticular piece of information, to determine from which of the
current versions of the ontology it can be inferred.

This problem is also relevant to other areas of logic-based
knowledge representation, such as multi-agent systems, re-
gardless of the underlying logical formalism. Because of
that, our focus in this paper is not on a particular application,
but rather on a general framework for maintaining different
versions of a logical theory. In doing so we first investigate
the notion ofsemantic differencebetween knowledge bases.
It turns out that this is a crucial component of the framework
for versioning that we propose.

Our results in this regard are quite broadly applicable. As
we shall see, it holds (at least) for all logics with a Tarskian
consequence relation. These results make it possible to de-
fine a semantic framework with the following structure: We
suppose that there aren versions of a knowledge base that
we need to maintain. We then store acore knowledge base
(Figure 2), which may, or may not, be one of then ver-
sions, together with the semantic differences between the
core knowledge base and the different versions. We refer to
this stored information as thecore. We will show that from
the core it is possible to generate (i) any one of then versions
of the knowledge base, and (ii) the semantic difference be-
tween any two of then versions of the knowledge base. We
shall refer to this information as therequired output.

Kc

K1

K2

K3

K4

K5

K6

Figure 2: The core knowledge base, from which to access
all different versions.

Although applicable to any Tarskian logic, our framework
does not address the question from a computational perspec-
tive, where it becomes important to consider the specific
syntactic representation of the knowledge bases and related
information. To do so, we restrict our attention to finitely
generated propositional logics, and present ways of storing
the core, and generating the required output, in appropriate
syntactic forms. We expect that these results can be used to
find appropriate syntactic representations expressed in richer
logic-based knowledge representation languages (such as
description logic languages) as well.

The rest of the paper is organized as follows. After some
logical preliminaries we define and investigate a notion of

semantic difference. Following that, we present a general
framework for knowledge base versioning which is based
on our notion of diff. We then turn to a specific normal form
with which we illustrate and investigate the issues associated
with compact representations of knowledge bases and the
diffs in propositional logic. This leads to the descriptionof
a general syntactic representation of knowledge bases and
diffs. After a discussion of, and comparison with, related
work, we conclude with future directions of investigation.

Preliminaries
Given a setX , its power set (the set of all subsets ofX) is
denoted byP(X).

In the later parts of the paper we work in a propositional
languageL over a set of propositionalatomsP, together
with the two distinguished atoms⊤ (true) and⊥ (false), and
with the standard model-theoretic semantics. Atoms will be
denoted byp, q, . . . A literal is an atom or the negation of an
atom. We useα, β, . . . to denote classical propositional for-
mulas. They are recursively defined in the usual way, with
connectives¬, ∧, ∨, → and↔.

Given a formulaα, atm(α) denotes the set of atoms oc-
curring inα. As an example, ifα = p → (p → q ∨ r) →
(p → q ∨ r), thenatm(α) = {p, q, r}.

We denote byV the set of all propositional valuations or
interpretationsv : P −→ {0, 1}, with 0 denoting falsity and
1 truth. WithMod(α) we denote the set of allmodelsof α
(propositional valuations satisfyingα).

Classical logical consequence (semantic entailment) and
logical equivalence are denoted by|= and≡ respectively.
Given sentencesα andβ, the meta-statementα |= β means
Mod(α) ⊆ Mod(β). α ≡ β is an abbreviation (in the meta-
language) ofα |= β andβ |= α.

A knowledge baseK is a (possibly infinite) set of formu-
lasK ⊆ L. We extend the above notions of classical en-
tailment and logical equivalence to knowledge bases in the
usual way:K |= α if and only if Mod(K) ⊆ Mod(α).

Given a knowledge base, the set of all logical conse-
quences ofK is defined asCn(K) = {α | K |= α}. The
consequence relationCn(.) associated with a logic is said to
beTarskianif and only if it satisfies the properties ofInclu-
sion: X ⊆ Cn(X); Idempotence: Cn(Cn(X)) ⊆ Cn(X);
andMonotonicity: X ⊆ Y impliesCn(X) ⊆ Cn(Y).

It turns out that the following definitions will also be use-
ful: [α] = {β | α ≡ β}, and[K] =

⋃
α∈K

[α]. For a set of
sentencesα1, . . . , αn we usually write{[α1], . . . , [αn]} for
[α1] ∪ . . . ∪ [αn].

A clauseis a disjunction of literals. Clauses will be de-
noted byχ, χ1, . . . A clauseχ is a complete clauseif and
only if each atom inP appears exactly once in it. Anor-
dered complete clause(aliasoc-clause) is one in which the
atoms appear in sequence according to some pre-established
fixed enumeration. In our examples, in oc-clauses we use
p, q, . . . with the obvious enumeration.

For any sentenceα, theordered complete conjunctive nor-
mal form, or oc-CNFof α is a set of oc-clausesX such that∧
X ≡ α. It is well-known that everyα has an oc-CNF. By

convention, the oc-CNF ofα is the empty set if and only if
α is a tautology.

Semantic Diff
Given two knowledge basesK andK′, the first step in the de-
velopment of our framework is to define a notion ofseman-
tic diff betweenK andK′. For the purposes of this section,
we assume that the knowledge bases can be expressed in
any logic with a Tarskian consequence relation, denoted by
Cn(.). In later sections we will restrict ourselves to finitely
generated propositional logics.

There is an analogy here with the Unixdiff command,
but whereasdiff distinguishes betweensyntacticallydif-
ferent files, oursemantic diffwill highlight the difference
in terms of the (logical)meaningbetween two knowledge
bases. For example, although the (propositional) knowledge
bases{p, q} and{p, p → q} are syntactically different, they
convey exactly the same meaning (they are logically equiv-
alent), and therefore there should be no semantic difference
between them. Hence our first requirement is that the knowl-
edge basesK andK′ are closed under logical consequence.

(P1) K = Cn(K) andK′ = Cn(K′)

We specify the semantic diff ofK andK′ as a pair of sets
of sentences〈A,R〉. The intuition is thatA contains the sen-
tences to beaddedto K, andR the sentences to beremoved
from K to obtainK′. A will therefore be referred to as the
add-setof (K,K′), andR as theremove-setof (K,K′).

(P2) K′ = (K ∪A) \R

In order to avoid redundancy, and to comply with the prin-
ciple of minimal change, we require that the sentences to be
added toK to obtainK′ should be contained inK′.

(P3) A ⊆ K′

Similarly, sentences to be removed fromK to obtainK′

should be inK.

(P4) R ⊆ K

We require the semantic diff to have a certainduality in
the sense that it can be used to generateK′ from K, or to
generateK fromK′.

(P5) K = (K′ ∪R) \A

In other words, the semantic diff should provide for an
‘undo’ operation when moving from one version of a knowl-
edge base to another: one should be able to roll back any
modification performed.

With the above postulates we can now provide a precise
definition of semantic diff between two knowledge bases.

Definition 1 LetK andK′ be two knowledge bases, and let
A andR be sets of sentences. Then〈A,R〉 is semantic diff
compliantwith respect to(K,K′) if and only if(K,K′) and
〈A,R〉 satisfy Postulates P1–P5.

Semantic diff compliance, as defined above, does not, of
course, necessarily guarantee the existence of an operator
which is semantic diff compliant. In the definition below we
provide a specific construction for the semantic diff operator
which we will show to be semantic diff compliant.

Definition 2 Given two knowledge basesK and K′, the
ideal semantic diffof (K,K′) is the pair 〈A,R〉, where
A = K′ \ K, andR = K \ K′.

Note that neitherA norR are logically closed. To witness,
consider the following example:

Example 1 LetK = Cn(p ∧ q)1 andK′ = Cn(¬q), and let
〈A,R〉 be the ideal semantic diff of(K,K′). Then we have
thatA = {[¬q], [¬p ∨ ¬q]}, andR = {[p ∧ q], [p], [q], [p ↔
q], [p∨ q], [¬p∨ q]}. Clearlyp∨¬q ∈ Cn(A), andp∨¬q ∈
Cn(R), but p ∨ ¬q /∈ A andp ∨ ¬q /∈ R. In fact, for any
ideal semantic diff〈A,R〉, ⊤ /∈ A and⊤ /∈ R.

We now show that the ideal semantic diff is the only op-
erator that is semantic diff compliant with respect to a given
pair of knowledge bases.

Theorem 1 Let 〈A,R〉 be the ideal semantic diff ofK and
K′. Then〈A,R〉 is semantic diff compliant with respect to
(K,K′). Moreover,〈A,R〉 is the only pair of sets that is
semantic diff compliant with respect to(K,K′).

We have thus established that there is a unique ideal se-
mantic diff associated with any two knowledge bases. An
interesting consequence of the uniqueness of the semantic
diff is that its two components are disjoint.

Corollary 1 For the ideal semantic diff〈A,R〉 of (K,K′),
A ∩R = ∅.

This is in line with the principle of minimal change, in
the sense that one does not want to place a sentence in the
add-set, only for it to be subsequently removed (by placing it
in the remove-set) or vice versa. Observe also that the ideal
semantic diff〈A,R〉 of K andK′ is closely related to their
symmetric difference: (K′\K)∪(K\K′). Indeed, it is easily
seen that the symmetric difference ofK andK′ is simply the
unionA ∪R of the add-set and the remove-set of(K,K′).

Observe also that, as expected, taking the semantic dif-
ference of a knowledge base with itself is the only case in
which both the add-set and the remove-set are empty.

Corollary 2 For the ideal semantic diff〈A,R〉 of (K,K′),
〈A,R〉 = 〈∅, ∅〉 if and only ifK = K′.

A Framework for Knowledge Base Versioning
The results in the previous section allow us to present our
framework for knowledge base versioning. We have a sce-
nario in which there aren versions,K1, . . . ,Kn, of a knowl-
edge base that need to be stored, and a core knowledge base
Kc. For1 ≤ i, j ≤ n, we will refer to the ideal semantic diff
of (Ki,Kj) as〈Dij , Dji〉 (and the semantic diff of(Kc,Ki)
as〈Dci, Dic〉). Observe that this notation makes sense, pri-
marily because of properties P2 and P5: The add-setDij

1For simplicity, we will writeCn(α) instead ofCn({α}).

of (Ki,Kj) is also the remove-set of(Kj,Ki), and the
remove-setDji of (Ki,Kj) is also the add-set of(Kj ,Ki).

In order to be able to access any version of the knowledge
base, it is sufficient:

• To store thecoreknowledge baseKc, and

• To storeDic andDci for all Ki s.t.1 ≤ i ≤ n.

Given this information, we are able to access any version
of the knowledge base. To see why, observe firstly that by
Theorem 1,Ki = (Kc ∪ Dci) \ Dic for every i such that
1 ≤ i ≤ n. Figure 3 depicts such a scenario.

Kc

• 〈Dc1, D1c〉

• 〈Dc2, D2c〉

•〈Dc3, D3c〉

•〈Dc4, D4c〉

•〈Dc5, D5c〉

•
〈Dc6, D6c〉

Figure 3: Core knowledge base and diffs.

Furthermore, for1 ≤ i, j ≤ n, we are able to generate
the ideal semantic difference〈Dij , Dji〉 of (Ki,Kj) directly
from the stored informationDic,Dci,Dcj andDjc, courtesy
of the following result.

Proposition 1 For 1 ≤ i, j ≤ n,

• Dij = (Dcj \Dci) ∪ (Dic \Djc);
• Dji = (Dci \Dcj) ∪ (Djc \Dic).

Figure 4 shows the overall picture of our framework.

Kc

K1

Ki

Kj

Kn

〈Dc1, D1c〉

〈Dci, Dic〉

〈Dcj , Djc〉

〈Dcn, Dnc〉

〈Dn1, D1n〉

〈Dnj , Djn〉

〈D1i, Di1〉

〈Dij , Dji〉

Figure 4: Core knowledge baseKc, the different versions
and the respective diffs w.r.t.Kc. The grey area depicts the
information that is really stored: the core and the direct diffs.

The observant reader will have noticed that the core
knowledge baseKc is assumednot to be one ofK1 . . .Kn.
The core knowledge base can, for example, be chosen as
the ‘average’ ofK1, . . . ,Kn, i.e., a representation minimiz-
ing the overall semantic diff ofKc to each of the knowledge
basesK1, . . . ,Kn. Because such a computation can be car-
ried out offline, it would not have a negative impact on the
overall performance of the whole system.

On the other hand, there are good reasons to consider
choosing one ofK1, . . . ,Kn as the core knowledge base:

• If Kc = Ki for some1 ≤ i ≤ n, wheneverKi has to be
accessed there is no need to reconstruct it;

• By the principle oftemporal locality(Denning 1970), it is
reasonable to takeKc as one of the most recent versions
(if not the most recent version);

• By the principle ofspatial locality(Denning 1970), it is
reasonable to chooseKc as one of theKis that are closest
(in terms of semantic diff) to the most accessed versions
(if not the most accessed one).

All these issues (and consequences thereof) rely on the
assumption that extra information of some kind is provided.
An analysis of how to choose the core knowledge base and
its impact on the efficiency of the versioning system is be-
yond the scope of this paper. Therefore, we do not de-
velop this further here and we assume thatKc is not one of
K1, . . . ,Kn. Observe that this assumption does not involve
any loss of generality since the basic framework remains es-
sentially the same, regardless of whether the core knowledge
base is one of the versionsKi of the knowledge base.

Compiled Representation
Although our characterisation of semantic diff is on the
knowledge level, from a computational perspective it is nec-
essary to be able to represent it in a compiled format. In
particular, given appropriately compiled representations of
the knowledge basesKi andKj , whatever these represen-
tations may look like, we are interested in the specification
of an intermediaterepresentation of the ideal semantic diff
which will enable us to do the following:

• From the knowledge baseKi together with this intermedi-
ate representation of the ideal semantic diff, generate the
knowledge baseKj ;

• From this intermediate representation, possibly in con-
junction with other information, generate the ideal seman-
tic diff 〈Dij , Dji〉 (cf. Definition 2).

In order to do so, we restrict ourselves from now on to
finitely generated propositional logics.

Ordered Complete Conjunctive Normal Form
Our initial choice for the representation of knowledge bases
is in ordered complete conjunctive normal form(oc-CNF).

Definition 3 For a knowledge baseK, F (K) is defined as
the ordered complete conjunctive normal form ofK. That is,
F (K) is a set of oc-clauses such that Cn(

∧
F (K)) = K.

Example 2 LetP = {p, q}, and letK = Cn(p ∧ q). Then
F (K) = {p ∨ q,¬p ∨ q, p ∨ ¬q}.

Our intermediate representation of the ideal semantic diff
〈Dij , Dji〉 is defined as follows:

Definition 4 For 1 ≤ i, j ≤ n, the intermediate repre-
sentationof 〈Dij , Dji〉 is the pair〈I(Dij), I(Dji)〉, where
I(Dij) = F (Kj) \ F (Ki), andI(Dji) = F (Ki) \ F (Kj).

In Definition 4, the understanding is thatI(Dij) is the
intermediate representation of the add-setDij , andI(Dji) is
the intermediate representation of the remove-setDji, with
respect to knowledge basesKi andKj .

Example 3 Let P = {p, q}, and letKi = Cn(p ∧ q) and
Kj = Cn(¬q). ThenF (Ki) = {p ∨ q,¬p ∨ q, p ∨ ¬q},
F (Kj) = {p ∨ ¬q,¬p ∨ ¬q}, and soI(Dij) = {¬p ∨ ¬q}
andI(Dji) = {p ∨ q,¬p ∨ q}.

As expected, this intermediate representation can be used
to generate the (compiled representation of the) two knowl-
edge bases from one another.

Theorem 2 For 1 ≤ i, j ≤ n,F (Ki) = (F (Kj)\I(Dij))∪
I(Dji)= (F (Kj) ∪ I(Dji)) \ I(Dij).

Example 4 Let P = {p, q}, and letKi = Cn(p ∧ q) and
Kj = Cn(¬q). ThenF (Ki) = {p ∨ q,¬p ∨ q, p ∨ ¬q},
I(Dji) = {p ∨ q,¬p ∨ q}, andI(Dij) = {¬p ∨ ¬q}. So
(F (Ki) \ I(Dji)) ∪ I(Dij) = ({p ∨ q,¬p ∨ q, p ∨ ¬q} \
{p ∨ q,¬p ∨ q}) ∪ {¬p ∨ ¬q} which is equal toF (Kj) =
{p∨¬q,¬p∨¬q}. Similarly,(F (Kj)\ I(Dij))∪ I(Dji) =
({p ∨ ¬q,¬p ∨ ¬q} \ {¬p ∨ ¬q}) ∪ {p ∨ q,¬p ∨ q}, which
is equal toF (Ki) = {p ∨ q,¬p ∨ q, p ∨ ¬q}.

In addition, and very importantly, this intermediate repre-
sentation can also be used to generate theidealsemantic diff
(cf. Definition 2), which was the second of our stated aims.
Before we show that this is the case, we need the following
two definitions.

Definition 5 Given setsX andY , we define

X ⊎ Y = {U ∪ V | U ∈ P(X), ∅ 6= V, V ∈ P(Y)}

So X ⊎ Y is a set containing as elements the union of
every subset ofX with every non-empty subset ofY .

Example 5 For X = {x1, x2} andY = {y1, y2} we have
that X ⊎ Y = {{y1}, {y2} , {y1, y2}, {x1, y1}, {x1, y2},
{x1, y1, y2}, {x2, y1}, {x2, y2}, {x2, y1, y2}, {x1, x2, y1},
{x1, x2, y2}, {x1, x2, y1, y2}}.

Definition 6 For X ⊆ P(L), ∆(X) = {
∧
x | x ∈ X}.

Example 6 For X = {{α}, {β, γ}},∆(X) = {α, β ∧ γ}.

We are now ready to show that the intermediate represen-
tation of the semantic diff can be used to generate a compact
representation of the ideal semantic diff. (In Theorem 3 be-
low, keep in mind that[X] =

⋃
α∈X [α].)

Theorem 3 For 1 ≤ i, j ≤ n,

Dij = [∆ ((F (Ki) \ I(Dji)) ⊎ I(Dij))]

That is,[∆ ((F (Ki) \ I(Dji)) ⊎ I(Dij))] is exactly equal
to Dij , the add-set of(Ki,Kj), while the set of sentences
[∆ ((F (Kj) \ I(Dij)) ⊎ I(Dji))] is exactly equal toDji,
the remove-set of(Ki,Kj). Theorem 3 therefore provides
a method for generating the ideal semantic diff〈Dij , Dji〉
of (Ki,Kj) from Ki, and the intermediate representations
I(Dij) andI(Dji) of Dij andDji, respectively.

Example 7 Continuing with Example 4, observe firstly that
F (K)\I(Dji) = {p∨q,¬p∨q, p∨¬q}\{p∨q,¬p∨q}which
is equal to{p ∨ ¬q}. Furthermore,I(Dij) = {¬p ∨ ¬q},
and so(F (K) \ I(Dji))⊎ I(Dij) = {p∨¬q}⊎{¬p∨¬q},
which is equal to{{¬p ∨ ¬q}, {p ∨ ¬q,¬p ∨ ¬q}}. So
∆((F (K) \ I(Dji)) ⊎ I(Dij)) = {¬p∨¬q, (p∨¬q)∧(¬p∨
¬q)}, and therefore[∆ ((F (K) \ I(Dji)) ⊎ I(Dij))] =
{[¬p ∨ ¬q], [(p ∨ ¬q) ∧ (¬p ∨ ¬q)]}, which is equal to
{[¬p ∨ ¬q], [¬q]}, and which, in turn, is equal toDij .

Although Theorem 3 is a useful result, it still leaves us
somewhat short of the stated aim of being able to generate
Dij andDji directly from the stored informationF (Kc),
I(Dic), I(Dci), I(Djc), andI(Dcj). More specifically, ob-
serve thatDij andDji are currently being generated from
F (Ki),F (Kj), I(Dij) andI(Dji), noneof which are stored
explicitly. Thanks to Theorem 2 we can generateF (Ki) and
F (Kj) from F (Kc), I(Dic), I(Djc), I(Dci), andI(Dcj).
This still leavesI(Dij), andI(Dji) as information not be-
ing stored explicitly. The next result shows thatI(Dij)
andI(Dji) can be defined in terms ofI(Dic) andI(Dci),
I(Djc) andI(Dcj); information thatis stored explicitly as
part of the core.

Theorem 4 For 1 ≤ i, j ≤ n,

I(Dij) = (I(Dcj) \ I(Dci)) ∪ (I(Dic) \ I(Djc))

So Theorems 2, 3 and 4 allow us to generateDij andDji

from information that is all being stored explicitly — at least
in principle. In practice a direct application of these results
yields definitions ofDij andDji that are quite lengthy and
unwieldy, and are omitted here due to space considerations.
Fortunately, it is possible to simplify these definitions con-
siderably, as the next result shows.

Theorem 5 For 1 ≤ i, j ≤ n, let

X = (F (Kc) \ (I(Dic) ∪ I(Djc))) ∪

(I(Dci) ∩ I(Dcj));

Xij = I(Dcj) ∪ I(Dic); and

Xji = I(Djc) ∪ I(Dci).

ThenDij = [∆(X ⊎ (Xij \Xji))].

Example 8 Let Ki = Cn({p ∧ q}), Kj = Cn(¬q), and
Kc = Cn(p). ThenF (Kc) = {p ∨ q, p ∨ ¬q}, I(Dic) = ∅,
I(Djc) = {p ∨ q}, I(Dci) = {¬p ∨ q}, and I(Dcj) =
{¬p ∨ ¬q}. Let X = (F (Kc) \ (I(Dic) ∪ I(Djc))) ∪
(I(Dci) ∩ I(Dcj)), which is equal to{p ∨ ¬q}, let Xij =
I(Dcj) ∪ I(Dic) = {¬p ∨ ¬q}, and letXji = I(Djc) ∪
I(Dci) = {¬p ∨ q, p ∨ q}. ThenX ⊎ (Xij \ Xji) =
{p∨¬q} ⊎ {¬p∨¬q} = {{¬p∨¬q}, {p∨¬q,¬p∨¬q}}.
So[∆(X ⊎ (Xij \Xji))] = {[¬p∨¬q], [¬q]}, which is our
Dij . Similarly,X ⊎ (Xji \Xij) = {p∨¬q}⊎{¬p∨ q, p∨
q} = {{¬p ∨ q}, {p ∨ q}, {p ∨ ¬q,¬p ∨ q}, {p ∨ ¬q, p ∨
q}, {p ∨ ¬q,¬p ∨ q, p ∨ q}}. So[∆(X ⊎ (Xij \Xji))] =
{[¬p∨¬q], [p∨q], [q], [p ↔ q], [p], [p∧q]}, which is ourDji.

The ideal semantic diff〈Dij , Dji〉 can thus be generated
fromX , Xij , andXji as defined in Theorem 5.

A General Syntactic Representation
In the previous section we showed how knowledge base ver-
sioning can be represented in a specific normal form — or-
dered complete conjunctive normal form (oc-CNF). While
oc-CNF is useful in gaining a proper understanding of the
representation of versioning, it is not a compact form of rep-
resentation, and may therefore not be as useful from a com-
putational perspective. In this section we provide a more
general syntactic representation of versioning. We do not
investigate which normal forms are appropriate for version-
ing. This is left as future work. Rather, the results in this
section can provide the basis for such an investigation.

Given a knowledge baseK, we letΦ(K) be a sentence
representingK. That is,Mod(Φ(K)) = Mod(K). In general
Φ(K) can be any sentence representingK, but in practice
Φ(K) will be some normal form forK. We shall there-
fore refer toΦ(K) as thenormal form forK. In what fol-
lows below, we frequently need to refer toΦ(I(Dij)), where
I(Dij) is a component of the intermediate representation
〈I(Dij), I(Dji)〉 of a semantic diff (cf. Definition 4). For
readability we abbreviate this toΦ(Dij), and we refer to it
as the normal form forDij .

In this setting, therefore, thecore, i.e., the information
that we store explicitly, consists of the normal form forKc

together with the normal forms of the semantic diff compo-
nents,Dci andDic for i = 1, . . . , n.

We now proceed to show that all the information we are
interested in can be generated from the core. Firstly, the
normal form of any versionKi of the knowledge base can
be generated from the core.

Theorem 6 For i = 1, . . . , n,

Φ(Ki) ≡ (Φ(Kc) ∨ ¬Φ(Dic)) ∧ Φ(Dci).

Example 9 Continuing from our Example 8, letΦ(Ki) =
p ∧ q, Φ(Kj) = ¬q, Φ(Kc) = p, Φ(Dic) = ⊤, Φ(Djc) =
p ∨ q, Φ(Dci) = ¬p ∨ q, andΦ(Dcj) = ¬p ∨ ¬q. Then
(Φ(Kc) ∨ ¬Φ(Dic)) ∧ Φ(Dci) = (p ∨ ¬(⊤)) ∧ (¬p ∨ q),
which is logically equivalent toΦ(Ki). Similarly,(Φ(Kc) ∨
¬Φ(Djc)) ∧ Φ(Dcj) = (p ∨ ¬(p ∨ q)) ∧ (¬p ∨ ¬q), which
is logically equivalent toΦ(Kj).

Next we show that the ideal semantic diff of any two
knowledge basesKi andKj can be generated from the core.
Recall from Theorem 5 that, in order to do so using oc-CNF,
we first generate the setsX ,Xij , andXji. We first show that
we can generate appropriate normal forms for these sets.

Proposition 2 For 1 ≤ i, j ≤ n, let X andXij be defined
as in Theorem 5. Then

Φ(X) ≡ (Φ(Kc) ∨ ¬(Φ(Dic) ∧ Φ(Djc))) ∧

(Φ(Dci) ∨ Φ(Dcj)); and

Φ(Xij) ≡ Φ(Dic) ∧ Φ(Dcj).

Example 10 Continuing from Examples 8 and 9, observe
that(Φ(Kc)∨¬(Φ(Dic)∧Φ(Djc)))∧ (Φ(Dci)∨Φ(Dcj))
= (p ∨ ¬(⊤ ∧ (p ∨ q))) ∧ ((¬p ∨ q) ∨ (¬p ∨ ¬q)), which
is logically equivalent top ∨ ¬q, and therefore toΦ(X).
Also,Φ(Dic)∧Φ(Dcj) = ⊤∧ (¬p∨¬q), which is logically
equivalent to¬p ∨ ¬q, and therefore toΦ(Xij). Similarly,

Φ(Djc) ∧ Φ(Dci) = (p ∨ q) ∧ (¬p ∨ q), which is logically
equivalent toq, and therefore toΦ(Xji).

This puts us in a position to show how〈Dij , Dji〉 can be
generated from the normal forms ofX , Xij andXji.

Theorem 7 For i ≤ i, j ≤ n, let Φ(X), Φ(Xij) (and
Φ(Xji)) be generated as in Proposition 2. Then

Dij = Cn(Φ(X) ∧ (Φ(Xij) ∨ ¬Φ(Xji))) \ Cn(Φ(X)).

Thus to determine if a sentence is an element ofDij , we
need to do two entailment checks: We need to check whether
it follows from Φ(X) ∧ (Φ(Xij) ∨ ¬Φ(Xji)) but does not
follow from Φ(X). (And similarly forDji, of course.)

Example 11 Continuing from Examples 8 and 10, observe
that Φ(X) ∧ (Φ(Xij) ∨ ¬Φ(Xji)) ≡ (p ∨ ¬q) ∧ ((¬p ∨
¬q)∨¬q) ≡ ¬q. Recall also thatΦ(X) ≡ p∨¬q. Therefore
Cn(¬q)\Cn(p ∨ ¬q) = {[¬q], [¬p∨¬q]}, which is ourDij .
Also, observe thatΦ(X) ∧ (Φ(Xji) ∨ ¬Φ(Xij)) ≡ (p ∨
¬q)∧ (q∨¬(¬p∨¬q)) ≡ p∧ q. And sinceΦ(X) ≡ p∨¬q,
we have Cn(p ∧ q) \ Cn(p ∨ ¬q) = {[p ∧ q], [p], [q], [p →
q], [¬p ∨ ¬q], [p ∨ q]}, which is equal toDji.

Related Work
To the best of our knowledge, the problem of determin-
ing the difference between two (logical) representations of
a given domain is a quite recent topic of investigation. Orig-
inally some work has been done on asyntax-basednotion of
diff between ontologies (Noy and Musen 2002). Here our
focus is different: despite the role that syntax might play in
the evolution of a knowledge base, our primary focus is on
the semantics, i.e., the difference inmeaningbetween two
versions of a knowledge base.

The problem of determining the logical (semantic)
diff between knowledge bases was originally investi-
gated by Kontchakovet al. in the context of DL on-
tologies (Kontchakovet al. 2008). There the need for a
semantic-driven notion of diff, in contrast to a simple
syntax-based one, is motivated, and variants thereof are pre-
sented for the lightweight description logic DL-Lite. Their
notion of diff, however, differs from ours in that (i) there the
difference between ontologiesO1 andO2 is defined with re-
spect to their sharedsignature, i.e., the set of symbols of the
language that are common to bothO1 andO2; and (ii) they
define diff betweenO1 andO2 as arefinementof O1 with
respect toO2, i.e., what we call the add-set ofO1 to getO2.
It can be checked that our Definition 1 encompasses both
(i) and (ii), making the symmetry of diff explicit and also
showing the properties expected from such an operation.

In the same lines of Kontchakovet al.’s work, Konev
et al. (Konevet al. 2008) investigate the problem of logi-
cal diff for another lightweight description logic, namely
EL (Baader 2003), and provide algorithms for determining
the refinement of an ontology with respect to another.

The two aforementioned approaches are specific to a par-
ticular family of DLs. Our general definition of semantic
diff (Definition 1) holds for any logic which has a Tarskian
consequence relation. Moreover, our framework in terms

of compact representations remains the same for more ex-
pressive formalisms, relying essentially on the existenceof
appropriate normal forms for the respective logic. In that
sense, the approach by Kontchakovet al. and Konevet al.
can be seen as a special case of ours.

Jiménez-Ruizet al. address the problem of maintaining
multiple versions of an ontology by adapting the Concur-
rent Versioning paradigm from software engineering to the
ontology versioning case (Jiménez-Ruizet al. 2009). Al-
though their motivations and ours overlap to some extent,
they focus on the definition of a high-level architecture for
versioning, which is based upon the notions of semantic diff
defined by Kontchakovet al.and Konevet al.. For that rea-
son, the work by Jiménez-Ruizet al. is not directly compa-
rable to ours. Nevertheless it is worth mentioning that the
crucial difference between their architecture and ours is that
thereall versions of a given ontology are stored in a server’s
shared repository, whereas with our general framework we
keep only the core information which is sufficient to recon-
struct the entire set of versions (cf. Figure 4).

Observe that the topic investigated here is not the same as
the one usually addressed in the belief change community,
either from a beliefrevision (Gärdenfors 1988) or a belief
update(Katsuno and Mendelzon 1992) perspective. Rather
knowledge base versioning complements it. In traditional
belief change, one has a source knowledge base, a new given
piece of information, and the main task is to determine what
the target knowledge base looks like. On the other hand,
in knowledge base versioning one has a set of knowledge
bases (pairwise different), and the focus resides in determin-
ing the piece of information on which they (pairwise) differ.
So the operators associated with belief versioning (generat-
ing one version from another, and determining the difference
between two versions) can only be appliedafter any belief
change has already taken place.

Also, although there are similarities between the notion of
knowledge base versioning presented here andtruth mainte-
nance systems(Doyle 1979), they are largely superficial. In
the case of truth maintenance systems, the goal is to provide
systems enriched withjustificationsindicating why certain
beliefs are (or are not) held, whereas in our case the add-
and remove-sets fulfill quite a different purpose—that of en-
coding the semantic difference between knowledge bases.

Conclusion and Future Work
We have laid the groundwork for a knowledge base version-
ing system built up on a notion of semantic difference which
is intuitive, simple, and at the same time general: our results
hold for any knowledge bases formalized in a logic with a
Tarskian consequence relation.

With our framework, one does not need to store all the
information regarding all existing versions of a knowledge
base, but rather only part of it, namely, thecore. Our re-
sults show that the core corresponds precisely to the suffi-
cient piece of information required to reconstructanyof the
versions of the knowledge base. They also show that the dif-
ferences in meaning between any two given versions in the
system can be determined through the core, without direct

access to any of the versions at all. This is the case irrespec-
tive of the underlying syntactic representation.

We plan to pursue further work by investigating which
normal forms are more appropriate as syntactical represen-
tations for knowledge base versioning. Our results for oc-
CNF provide us with a basis for such an investigation.

Finally, since our semantic constructions also apply to
more expressive logics (than propositional logic), we are
currently investigating extensions of our framework to the
description logicALC.

References
[Baaderet al.2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. Patel-Schneider, editors.Description
Logic Handbook. Cambridge University Press, 2003.

[Baader 2003] F. Baader. Terminological cycles in a de-
scription logic with existential restrictions. In V. Sorge,
S. Colton, M. Fisher, and J. Gow, editors,Proceedings of
the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 325–330. Morgan Kaufmann Pub-
lishers, 2003.

[Denning 1970] P.J. Denning. Virtual memory.ACM Com-
puting Surveys, 2(3):153–189, 1970.

[Doyle 1979] Jon Doyle. A truth maintenance system.Artif.
Intell., 12(3):231–272, 1979.

[Gärdenfors 1988] P. Gärdenfors.Knowledge in Flux:
Modeling the Dynamics of Epistemic States. MIT Press,
1988.

[Gutiérrezet al.2004] C. Gutiérrez, C.A. Hurtado, and
A.O. Mendelzon. Foundations of semantic web databases.
In Proceedings of the 23rd ACM Symposium on Principles
of Database Systems, pages 95–106. ACM Press, 2004.

[Jiménez-Ruizet al.2009] E. Jiménez-Ruiz, B. Cuenca
Grau, I. Horrocks, and R. Berlanga. Building ontologies
collaboratively using content CVS. In22nd International
Workshop on Description Logics, 2009.

[Katsuno and Mendelzon 1992] H. Katsuno and
A. Mendelzon. On the difference between updating
a knowledge base and revising it. In P. Gärdenfors, editor,
Belief revision, pages 183–203. Cambridge University
Press, 1992.

[Konevet al.2008] B. Konev, D. Walther, and F. Wolter.
The logical difference problem for description logic termi-
nologies. In A. Armando, P. Baumgartner, and G. Dowek,
editors, Proceedings of IJCAR, number 5195 in LNAI,
pages 259–274. Springer-Verlag, 2008.

[Kontchakovet al.2008] R. Kontchakov, F. Wolter, and
M. Zakharyaschev. Can you tell the difference between
DL-Lite ontologies? In J. Lang and G. Brewka, edi-
tors,Proceedings of KR, pages 285–295. AAAI Press/MIT
Press, 2008.

[Noy and Musen 2002] N. Noy and M. Musen. PromptD-
iff: A fixed-point algorithm for comparing ontology ver-
sions. In R. Dechter, M. Kearns, and R. Sutton, editors,
Proceedings of AAAI, pages 744–750. AAAI Press/MIT
Press, 2002.

	Introduction
	Preliminaries
	Semantic Diff
	A Framework for Knowledge Base Versioning
	Compiled Representation
	Ordered Complete Conjunctive Normal Form

	A General Syntactic Representation
	Related Work
	Conclusion and Future Work

