
Foundations of Temporal

Conceptual Data Models

Alessandro Artale and Enrico Franconi

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
{artale,franconi}@inf.unibz.it

Abstract. This chapter considers the different temporal constructs ap-
peared in the literature of temporal conceptual models (timestamping
and evolution constraints), and it provides a coherent model-theoretic
formalisation for them. It then introduces a correct and succinct en-
coding in a subset of first-order temporal logic, namely DLRUS – the
description logic DLR extended with the temporal operators Since and
Until. At the end, results on the complexity of reasoning in temporal
conceptual models are presented.

1 Introduction

Conceptual data models describe an application domain in a declarative and
reusable way while constraining the use of the data by understanding what can
be drawn from it. A number of conceptual modelling languages has emerged
as de facto standards; in particular, we mention entity-relationship (ER) for the
relational data model, UML and ODMG for the object-oriented data model, and
RDF and OWL for the web ontology languages.

We consider here conceptual modelling languages able to represent
dynamic and evolving information in the context of temporal databases
[21, 26, 27, 32, 33, 38–40]. We provide in this chapter a mathematical foun-
dation for them by summarising the various efforts appeared in the literature
[4, 7, 23, 34, 35]. The main temporal modelling constructs we analyse can be
distinguished in two main categories, timestamping and evolution constraints.
To support timestamping, the data model should distinguish between tempo-
ral and atemporal modelling constructors; this is usually realised by a temporal
marking of classes, relationships and attributes that translates into a timestamp-
ing mechanism in the corresponding database. A data model supports evolution
constraints if it is able to keep track of how the domain elements evolve along
time. In particular, status classes describe how elements of classes change their
status from being a potential member till they cease forever to be member of
the class; transitions deal with the fact that an object may migrate from one
class to another one; while generation constraints describe processes that are
responsible for the creation/disappearance of objects from classes.

The formalisation is based on a model-theoretic semantics that captures the
meaning of both timestamping and evolution constraints. The semantics is ob-
tained as a temporal extension of the model-theoretic semantics associated to

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 10–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Foundations of Temporal Conceptual Data Models 11

conceptual models [14, 18]. The advantage of associating a set-theoretic seman-
tics to a language is not only to clarify the meaning of the language constructors
but also to give a semantic definition to relevant modelling notions. In particular,
we are able to give a rigorous definition to the notions of: schema satisfiability
– when a schema admits a non empty interpretation which guarantees that the
constraints expressed by the schema are not contradictory; class and relation-
ships satisfiability – when a class or a relation admits at least an interpretation
in which it is not empty; logical implication when a new (temporal) constraint
is necessarily true in a schema even if not explicitly mentioned; and finally the
special case of logical implication involving subsumption between classes (resp.
relationships) – when the interpretation of a class (resp. relationship) is neces-
sarily a subset of the interpretation of another class (resp. relationship).

Building on the provided model-theoretic semantics we provide a correspon-
dence between temporal conceptual models and logical theories expressed in a
fragment of first order temporal logic, namely as a Description Logics (DLs)
theory. DLs allow for the logical reconstruction and the extension of conceptual
models (see [9, 14, 19]). The advantage of using a DL to formalise a concep-
tual data model lies basically on the fact that complete logical reasoning can
be employed using an underlying DL inference engine to verify a conceptual
specification, to infer implicit facts and stricter constraints, and to manifest
any inconsistencies during the conceptual design phase. In addition, given the
high complexity of the modelling task when complex data are involved, there
is the demand for more sophisticated and expressive languages than for nor-
mal databases. Again, DL research is very active in providing more expressive
languages for conceptual modelling (see [13, 14, 17, 18, 18, 19, 24, 31]).

In this context, we consider the temporal description logic DLRUS [5], a com-
bination of the expressive and decidable description logic DLR [17] (a description
logic with n-ary relationships) with the linear temporal logic with temporal op-
erators Since (S) and Until (U) which can be used in front of both classes and
relations. We use DLRUS both to capture the temporal modelling construc-
tors in a succinct way, and to use reasoning techniques to check satisfiability,
subsumption and logical implication. The mapping towards DLs presented in
this chapter builds on top of a mapping which has been proved correct in [3, 4]
while complexity results and algorithmic techniques can be found in [1, 5, 11].
Even if full DLRUS is undecidable we address interesting modelling scenarios
where subsets of the full DLRUS logic is needed and where reasoning becomes
a decidable problem.

The chapter is organised as follows. Section 2 describes the temporal con-
structs that will be the subject of the formalisation. Section 3 shows the mod-
elling requirements that lead us to elaborate the rigorous definition of the
framework presented here. Section 4 introduces the model-theoretic semantics
and the notions of satisfiability, subsumption and logical implication for temporal
conceptual models. The two Sections 5, 6 are the core sections where we describe
how timestamping and evolution constraints can be formalised. After present-
ing the DLRUS logic in Section 7 we proceed with a DLRUS encoding of the

12 A. Artale and E. Franconi

Department S InterestGroup

OrganizationalUnit

d

Member S

(1,n)

org

mbr
Employee S

Name(String)

S

PaySlipNumber(Integer)

S Salary(Integer)

T

Manager T

TopManagerAreaManager

Works-for T

(3,n)

act

emp

Project

ProjectCode(String)

S

Manages
man

(1,1)

prj

(1,1)

Fig. 1. The Company example

various temporal constructs in Section 8. Section 9 investigates the complexity of
reasoning over temporal conceptual models and presents various scenarios where
sound, complete and terminating procedures can be used. In Section 10 we state
our final remarks.

2 Temporal Modelling Constructors

Temporal constructs are usually added to the classical constructs to capture the
temporal behaviour of the different components of a conceptual schema. In this
chapter we distinguish them in two generic classes: Timestamping and Evolution
constructs.

Timestamping. It is concerned with the discrimination at the schema level
between those elements of the model that change over time and others that are
time invariant. Timestamping applies to classes, relationships and attributes.
Data models should allow for both temporal and atemporal modelling construc-
tors. Timestamping for attributes allows keeping how an attribute of a given
object changes over time. For example (see Figure 1), the salary of an employee
emp-123 has value “2.5K $” for the period from 01/2004 to 12/2005, then “3.0K
$” from 01/2006 to 12/2007, then “3.2K $” from 01/2008 to 12/2009.

Similarly, temporal periods can characterise an object or relationship in-
stance as a whole rather than through its attributes. Membership in a class
(relationship) can be characterised as limited in time or, vice versa, global—
possibly modelling legacy classes (relationships). For example, the company
schema (Figure 1) models the membership of objects in the Employee class
as time-invariant while objects in the Manager class have a limited lifespan
as member of that class. Timestamping is the basis for associating the no-
tion of lifecycle [37] to the object/relationship instances as members of a given
class/relationship (more details are given in Section 6.1). Section 5 shows how
evolution constraints can be formalised.

Foundations of Temporal Conceptual Data Models 13

Evolution Constraints. They control the mechanism that rules dynamic as-
pects, i.e., what are the permissible transitions from one state of the database
to the next one [6, 7, 22, 38]. When applied to classes we talk about Object
Migration, i.e., the evolution of an object from being member of a class to be-
ing member of another class [29]. For example, an object in the Employee class
may migrate to become an object of the Manager class or an object of the
AreaManager class can evolve into a TopManager class. When object migration
combines with timestamping we talk about Status Classes. In this case we spec-
ify constraints on the membership of an object in a class by splitting it into
periods according to a given classification criterion. For example, existence of a
manager object in the Manager class can include periods where the object is an
active member of the class (e.g., the manager is currently on payroll), periods
where its membership is suspended (e.g., the manager is on temporary leave),
and a period where its membership is disabled (e.g., the manager has left the
company) [22]. The notion of status for classes allows also for a fine grained no-
tion of lifecycle which can now depend on the membership to a particular status
of a class.

Evolution-related knowledge may be conveyed also through relationships.
Generation relationships [28] between objects of class A and objects of class
B (possibly equal to A) describe the fact that objects in B are generated by ob-
jects in A. For example, in a company database, the splitting of a department
translates into the fact that the original department generates two (or more) new
departments. Clearly, if A and B are temporal classes, a generation relationship
with source A and target B entails that the lifecycle of a B object cannot start
before the lifecycle of the related A object. This particular temporal framework,
where related objects do not coexist in time, is a form of, so called, across-time
relationships [7, 38]. Section 6 shows how timestamping can be formalised.

In the conceptual modelling literature, different notion of ’time’ have been
considered. Notably, the most relevant distinction is between the so called valid
time—which is the time when a property holds, i.e., it is true in the representa-
tion of the world—and transaction time—which records the history of database
states rather than the world history, i.e., it is the time when a fact is current in
the database and can be retrieved. In the following, we will consider both times-
tamping and evolution constructs as ranging over the valid time dimension.

3 Modelling Requirements

This Section briefly illustrates the requirements that are frequently advocated
in the literature on temporal data models when dealing with temporal con-
straints [34, 38].

– Orthogonality. Temporal constructors should be specified separately and in-
dependently for classes, relationships, and attributes. Depending on appli-
cation requirements, the temporal support must be decided by the designer.

– Upward Compatibility. This term denotes the capability of preserving the
non-temporal semantics of conventional (legacy) conceptual schemas when
embedded into temporal schemas.

14 A. Artale and E. Franconi

– Snapshot Reducibility. Snapshots of the database described by a temporal
schema are the same as the database described by the same schema, where
all temporal constructors are eliminated and the schema is interpreted atem-
porally. Indeed, this property specifies that we should be able to fully rebuild
a temporal database by starting from the single snapshots.

These requirements are not so obvious when dealing with evolving objects. The
formalisation carried out in this chapter provides a data model able to respect
these requirements also in presence of evolving objects. In particular, orthogo-
nality affects mainly timestamping [37] and our formalisation satisfies this prin-
ciple by introducing temporal marks that could be used to specify the temporal
behaviour of classes, relationships, and attributes in an independent way (see
Section 5). Upward compatibility and snapshot reducibility [34] are strictly re-
lated. Considered together, they allow to preserve the meaning of atemporal
constructors. In particular, the meaning of classical constructors must be pre-
served in such a way that a designer could either use them to model classical
databases, or when used in a genuine temporal setting their meaning must be
preserved at each instant of time. We enforce upward compatibility by using
global timestamps over legacy constructors (see Section 5). Snapshot reducibil-
ity is hard to preserve when dealing with generation relationships where involved
object may not coexist. We enforce snapshot reducibility by a particular treat-
ment of relationship typing (see Section 6.3).

4 A Formalisation of Temporal Data Models

To give a formal foundation to temporal conceptual models we briefly describe
here how to associate a textual syntax to a generic EER/UML modelling lan-
guage. Having a textual syntax at hand will facilitate the association of a
model-theoretic semantics. In the next sections we will take advantage of such a
model-theoretic temporal semantics to formally describe the temporal constructs
we are interested in.

We consider a temporal conceptual model over a finite alphabet, L, partitioned
into the sets: C (class symbols), A (attribute symbols), R (relationship symbols),
U (role symbols), and D (domain symbols). We consider n-ary relationships
where roles from the U alphabet are used to distinguish the different components
of a relationship, i.e., an n-ary relationship, R, connecting the (not necessarily
distinct) classes C1, . . . , Cn, is defined as R = 〈U1 : C1, . . . , Un : Cn〉. Standard
EER/UML constructs can also be textually defined, like Attributes for both
classes and relationships (we use the notation att(C) = 〈A1 : D1, . . . , Ah : Dh〉
to denote all the attributes of a class C, and similarly for attributes of relation-
ships); Participation Constraints denoting the cardinality in the participation
of a class into a relationship; Isa for both classes and relationships (denoted as
C1isaC2 or R1isaR2, respectively); Disjointness and Covering constraints over
a class hierarchy. For a complete set of EER/UML constructs and their textual
definition we refer to [3, 4, 19].

Foundations of Temporal Conceptual Data Models 15

In Figure 1 we show our running example of an EER schema for a company
database where classes and relationships are denoted by boxes and diamonds,
respectively; directed arrows stand for isa; double arrows denote a covering con-
straint; a circled ‘d’ denotes a disjoint hierarchy; participation constraints are
indicated with numbers in round brackets; timestamps are denoted with S (snap-
shot) and T (temporary).

The model-theoretic semantics that gives a foundation to temporal mod-
elling languages adopts the so called snapshot1 representation of abstract tem-
poral databases and temporal conceptual models [20]. Following the snapshot
paradigm, relations of a temporal database are interpreted by a mapping func-
tion depending on a specific point in time. The flow of time T = 〈Tp, <〉, where
Tp is a set of time points (or chronons) and < is a binary precedence relation on
Tp, is assumed to be isomorphic to either 〈Z, <〉 or 〈N, <〉. Thus, a standard re-
lational database can be regarded as the result of mapping a temporal database
from a specific time point in T to an atemporal database, with the assumption
that the interpretation of both constants and the domain are invariant over time.

Definition 1 (Temporal Schemas Semantics). Let Σ be a temporal schema.
A temporal database state for the schema Σ is a tuple B = (T , ΔB∪ΔB

D, ·B(t)),
such that: ΔB is a nonempty set of abstract objects disjoint from ΔB

D; ΔB
D =⋃

Di∈D ΔB
Di

is the set of basic domain values used in the schema Σ; and ·B(t) is
a function that for each t ∈ T maps:

– Every basic domain symbol Di into a set D
B(t)
i = ΔB

Di
.

– Every class C to a set CB(t) ⊆ ΔB.
– Every relationship R to a set RB(t) of U-labeled tuples over ΔB—i.e., let

R = 〈U1 : C1, . . . , Un : Cn〉 be an n-ary relationship connecting the classes
C1, . . . , Cn, then, ∀t ∈ T .∀r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈
{1, . . . , n}.oi ∈ C

B(t)
i). We adopt the convention: 〈U1 : o1, . . . , Un : on〉 ≡

〈o1, . . . , on〉, when U-labels are clear from the context.
– Every attribute A to a set AB(t) ⊆ ΔB × ΔB

D, such that, for each C ∈ C,
if att(C) = 〈A1 : D1, . . . , Ah : Dh〉, then, ∀t ∈ T .∀o ∈ CB(t) → (∀i ∈
{1, . . . , h}, ∀ai.〈o, ai〉 ∈ A

B(t)
i → ai ∈ D

B(t)
i).

B is said a legal temporal database state if it satisfies all of the constraints
expressed in the schema2.

Given such a set-theoretic semantics we are able to rigorously define some rele-
vant modelling notions such as satisfiability, subsumption and derivation of new
constraints by means of logical implication.

Definition 2. Let Σ be a schema, C ∈ C a class, and R ∈ R a relationship.
The following modelling notions can be defined:
1 The snapshot model represents the same class of temporal databases as the so called

timestamp model [33, 34] which adds a temporal attribute to each relation [20].
2 We don’t report here the semantics for temporal constraints since they will be dis-

cussed in details in the next Sections. As for the semantics of participation con-
straints, isa, disjointness and covering constraints we refer to [4].

16 A. Artale and E. Franconi

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ
such that CB(t) �= ∅ (RB(t) �= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ such
that at least one class of Σ is not empty (B is also said a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state
for Σ is also a legal temporal database state for C1isaC2 (R1isaR2);

4. A schema Σ′ is logically implied by a schema Σ over the same alphabet if
every legal temporal database state for Σ is also a legal temporal database
state for Σ′.

5 Timestamping

A temporal model supports timestamping if it is able to distinguish between
snapshot constructors—i.e., constructors with a global lifespan associated to
each of their instances—temporary constructors—i.e., each of their instances
has a limited lifespan—or mixed constructors—i.e., their instances can have ei-
ther a global or a temporary existence. In the following, a class, relationship or
attribute is called temporal if it is either temporary or mixed. The two temporal
marks, S (snapshot) and T (temporary), introduced at the conceptual level (see
Figure 1), together with unmarked constructors capture the temporal distinction
between snapshot, temporary and mixed constructors. Notice that, the temporal
behaviour of an attribute can be either globally forced, or locally defined when
associated to single classes. Since the local constraint is more general we assume
that attributes are locally temporally constrained. At the end of this section
we also introduce two notions strictly related to timestamping: that one of a
(temporal) key, and a variant of participation constraints called lifespan partic-
ipation constraints. We now proceed with the semantics of timestamping that
can be defined as follows (not quantified variables are assumed to be universally
quantified):

o∈CB(t) → ∀t′∈T .o∈CB(t′) XSnapshot Class

o∈CB(t) → ∃t′ �= t.o �∈CB(t′) Temporary Class

r∈RB(t) → ∀t′∈T .r∈RB(t′) Snapshot Relationship

r∈RB(t) → ∃t′ �= t.r �∈RB(t′) Temporary Relationship

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∀t′ ∈ T .〈o, ai〉 ∈ A

B(t′)
i Snapshot Attribute

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∃t′ �= t.〈o, ai〉 �∈ A

B(t′)
i Temporary Attribute

The following “classical” desirable features found in the literature of temporal
conceptual modelling come as almost trivial logical implications form the above
formalisation.

Proposition 1. (Timestamps: Logical Implications [4]) In every tempo-
ral schema supporting timestamping, the following temporal properties hold:

Foundations of Temporal Conceptual Data Models 17

1. Subclass of temporary classes are also temporary (similarly for relationships).
2. If exactly one of a whole set of snapshot subclasses partitioning3 a snapshot

superclass is temporary, then, the whole set of classes is unsatisfiable.
3. Participants of snapshot relationships are either snapshot or unmarked classes.
4. Participants of snapshot relationships are snapshot when they participate at

least once in the relationship.
5. A relationship is temporary if one of the participating classes is temporary.

On the other hand, nothing can be said about subclasses of snapshot or un-
marked classes and classes participating to temporary or unmarked relation-
ships: they can be snapshot, temporary, or unmarked classes. Since the domain
of an attribute is not restricted to the classes they are attached to, the temporal
behaviour of a class is independent of that of its attributes.

Example 1. Considering our running example of Figure 1, the following logical
implications hold:

– Because Manager is a temporary class, then both AreaManager and
TopManager are temporary classes; constraining either AreaManager or
TopManager as snapshot classes would lead to a contradiction. On the other
hand, even if Employee is a snapshot class, it is consistent to have Manager—
a temporary class—as a subclass of Employee.

– Because OrganizationalUnit participates at least once in a snapshot rela-
tionship, then, it must be a snapshot class.

– Since InterestGroup participates in a partition of snapshot classes it must
be a snapshot class, too.

– The fact that Manages must be a temporary relationship follows logically
from our theory because the temporary class TopManager participates in the
relationship.

– Since the temporal behaviour of classes is independent from that one of its
attributes, the fact the Salary is a temporary attribute of the snapshot class
Employee is admitted.

Key Constraints. As a byproduct of attribute timestamping we can define
single-attribute keys (visualised in a schema as an underlined attribute, e.g.,
PaySlipNumber is a key for the class Employee) as a mandatory and single-
valued snapshot attribute that uniquely identifies objects of the class. Assuming
that Akey is a key for the class C, then the the following formalisation holds:

(o ∈ CB(t) ∧ 〈o, akey〉 ∈ A
B(t)
key) → ∀t′ ∈ T .〈o, akey〉 ∈ A

B(t′)
key Snapshot Attribute

o ∈ CB(t) → ∃=1akey ∈ ΔB
D.〈o, akey〉 ∈ A

B(t)
key Mandatory &

Single-Valued

akey ∈ ΔB
D → ∃≤1o ∈ CB(t).〈o, akey〉 ∈ A

B(t)
key Uniqueness

3 The partition must be a disjoint covering.

18 A. Artale and E. Franconi

TopManager Manages Project
[1,5]

(1,1)

Fig. 2. Lifespan and “classical” participation constraints

Lifespan Participation Constraints. While classical participations
constraints are evaluated at each point in time lifespan participation constraints
(represented in a schema by a pair of values in square brackets) [26, 37, 39] are
evaluated during the entire existence of the object. Notice that, since the set of
instances of snapshot relationships does not change in time, there is no difference
between “classical” and lifespan participation constraints for snapshot relation-
ships. For example, if we want to state that a top manager should manage at
most five different projects in his entire existence while still being constrained
in managing exactly one project at a time, we can use a combination of the
two participation constraints (see Figure 2). The model-theoretic semantics for
lifespan participation is the following:

o∈CB(t) → k ≤ #
⋃

t′∈T {r∈RB(t′) | r[U]=o} ≤ m Lifespan

Participation Constraint

6 Evolution Constraints

Evolution constraints contribute in modelling the temporal dynamic of an ob-
ject. In this section we propose a formalisation of the basic temporal concepts
that are at the root of advanced conceptual temporal models: status classes, dis-
tinguished in scheduled, active, suspended and disabled; transitions of objects
between different classes; generation relationships asserting evolution constraints
on objects linked by temporal relationships. In this section we aim at present-
ing a formal characterisation of the temporal conceptual modelling constructors
capturing the evolution of objects.

6.1 Status Classes

The Status [7, 22, 37] is a conceptual notion associated to temporal classes to
rule the lifecycle of their objects. It records the evolving state of membership
of each object in the class. Following [37], status modelling includes up to four
different statuses, and the allowed transitions between them:

– Scheduled. An object is scheduled if the planning of its existence within
the class has to be recorded while its membership in the class will only
become effective (active) some time later. For example, if a new project
is approved but will not start until a later date the given project can be
created as a new object in the Project class, with status scheduled for the
valid time interval starting at the date of the approval decision and ending at
the expected launching date. Each scheduled object will eventually become

Foundations of Temporal Conceptual Data Models 19

an active object. Supporting a scheduled status avoids the introduction of a
new time type, the decision time [22].

– Active. The status of an object is active if the object is a full member of the
class (and therefore conforms to its type). For example, a currently ongoing
project is an active member, at time now, of the Project class.

– Suspended. This status qualifies objects that exist as members of the class,
but are to be seen as temporarily inactive members of the class [22]. An
employee taking a temporary leave of absence is an example of what can be
considered as a suspended employee. Only active objects can be suspended.
A suspended object was in the past an active one.

– Disabled. This status is used to specify that the object’s membership in the
class has expired. While logically deleted, disabled objects are kept for some
specific application purposes, e.g., statistical analyses. A disabled object was
in the past an active member of the class (an object cannot be created in
the disabled status). It can never again become a non-disabled member of
that class (e.g., an expired project cannot be reactivated).

Let C be a temporal (i.e., temporary or mixed) class. We capture status
transition of membership in C by associating to C the following status classes:
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are con-
strained by the hierarchy of Figure 3 (where C may also be mixed) that classifies
C instances according to their actual status. To preserve upward compatibility
we do not explicitly introduce an active class, but assume by default that the
name of the class itself denotes the set of active objects, i.e., Active-C ≡ C. Note
that, since membership of objects into snapshot classes is global, i.e., objects are
always active, the notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc con-
straints and then show that such constraints capture the evolving behaviour of
status classes as described in the literature [22, 37]. First of all, disjointness and
isa constraints between statuses of a class C can be described as illustrated in

Top S

Exists-C

Scheduled-C

Disabled-C

C T Suspended-C

d

d

Fig. 3. Status classes

20 A. Artale and E. Franconi

Figure 3, where Top is supposed to be a snapshot class which represents the
universe of abstract objects (i.e., TopB(t) ≡ ΔB). Other than hierarchical con-
straints, the intended semantics of status classes induces the following rules that
are related to their temporal behaviour:

(Exists) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(Disab1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(Disab2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)

(Susp) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(Sch1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(Sch2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o �∈ Scheduled-CB(t′)

As a consequence of the above formalisation the following set of new rules can
be derived.

Proposition 2 (Status Classes: Logical Implications [7]). Given a tem-
poral schema supporting status classes, then, the following logical implications
hold:

1. Disabled classes will never become active anymore.
2. The scheduled status persists until the class become active.
3. A scheduled class cannot evolve directly into a disabled status.

Temporal applications often use concepts that are derived from the notion
of object statuses, e.g., the lifespan of a temporal object or its birth and death
instants. Hereinafter we provide formal definitions for these concepts.

Lifespan and related notions. The lifespan of an object w.r.t. a class describes
the temporal instants where the object can be considered a member of the class.
With the introduction of status classes we can distinguish between the following
notions: ExistenceSpanC , LifeSpanC , ActiveSpanC , BeginC , BirthC and
DeathC . They are functions which depend on the object membership to the
status classes associated to a temporal class C.

The existencespan of an object describes the temporal instants where the
object is either a scheduled, active or suspended member of a given class. More
formally, ExistenceSpanC : ΔB → 2T , such that:

ExistenceSpanC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespan of an object describes the temporal instants where the object
is an active or suspended member of a given class (thus, LifeSpanC(o) ⊆
ExistenceSpanC(o)). More formally, LifeSpanC : ΔB → 2T , such that:

Foundations of Temporal Conceptual Data Models 21

LifeSpanC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

The activespan of an object describes the temporal instants where the object is
an active member of a given class (thus, ActiveSpanC(o) ⊆ LifeSpanC(o)).
More formally, ActiveSpanC : ΔB → 2T , such that:

ActiveSpanC(o) = {t ∈ T | o ∈ CB(t)}

The functions BeginC and DeathC associate to an object the first and the
last appearance, respectively, of the object as a member of a given class, while
BirthC denotes the first appearance as an active object of that class. More
formally, BeginC , BirthC , DeathC : ΔB → T , such that:

BeginC(o) = min(ExistenceSpanC(o))
BirthC(o) = min(ActiveSpanC(o)) ≡ min(LifeSpanC(o))
DeathC(o) = max(LifeSpanC(o))

We could still speak of existencespan, lifespan or activespan for snapshot classes,
but in this case they all collapse to the full time line, T . Furthermore, BeginC(o)
= BirthC(o) = −∞, and DeathC(o) = +∞ either when C is a snapshot class
or in cases of instances existing since ever and/or living forever.

6.2 Transition

Transition constraints [29, 37] have been introduced to model the phenomenon
called object migration. A transition records objects migrating from a source
class to a target class. At the schema level, it expresses that the instances of the
source class may migrate into the target class. Two types of transitions have been
considered: dynamic evolution, when objects cease to be instances of the source
class to become instances of the target class, and dynamic extension, when the
creation of the target instance does not force the removal of the source instance.
For example, considering the company schema (Figure 1), if we want to record
data about the promotion of area managers into top managers we can specify
a dynamic evolution from the class AreaManager to the class TopManager. We
can also record the fact that a mere employee becomes a manager by defin-
ing a dynamic extension from the class Employee to the class Manager (see
Figure 4). Regarding the graphical representation, as illustrated in Figure 4, we
use a dashed arrow pointing to the target class and labeled with either dex or
dev denoting dynamic extension and evolution, respectively.

Specifying a transition between two classes means that: a) We want to keep
track of such migration; b) Not necessarily all the objects in the source or in the
target participate in the migration; c) When the source class is a temporal class,
migration only involves active or suspended objects—thus, neither disabled nor
scheduled objects can take part in a transition.

In the following, we present a formalisation that satisfies the above require-
ments. We represent transitions by introducing a new class denoted by either
dexC1,C2 or devC1,C2 for dynamic extension and evolution, respectively. More

22 A. Artale and E. Franconi

Employee S

Manager T

TopManager TAreaManager T

dev

dex

Fig. 4. Transitions employee-to-manager and area-to-top manager

formally, in case of a dynamic extension between classes C1, C2 the following
semantic equation holds:

o ∈ dex
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧ o ∈ C
B(t+1)
2)

In case of a dynamic evolution between classes C1, C2 the source object cannot
remain active in the source class. Thus, the following semantic equation holds:

o ∈ dev
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧
o ∈ C

B(t+1)
2 ∧ o �∈ C

B(t+1)
1)

Finally, we formalise the case where the source (C1) and/or the target (C2)
totally participate in a dynamic extension/evolution (at schema level we add
mandatory cardinality constraints on dex/dev links):

o∈C
B(t)
1 → ∃t′ > t.o∈dex

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈dex

B(t′)
C1,C2

Target Total Transition

o∈C
B(t)
1 → ∃t′ > t.o∈dev

B(t′)
C1,C2

Source Total Evolution

o∈C
B(t)
2 → ∃t′ < t.o∈dev

B(t′)
C1,C2

Target Total Evolution

An interesting set of consequences of the above proposed modelling of dynamic
transitions are shown in the following proposition.

Proposition 3 (Transition: Logical Implications [7]). Given a schema
supporting transitions for objects, then the following logical implications hold:

1. The classes dexC1,C2 and devC1,C2 are temporary classes; actually, they
hold at single time points.

2. Objects in the classes dexC1,C2 and devC1,C2 cannot be disabled as C2.
3. The target class C2 cannot be snapshot (it becomes temporary in case of both

Source Total Transition and Target Total Evolution constraints).
4. As a consequence of dynamic evolution, the source class, C1, cannot be

snapshot (and it becomes temporary in case of Source Total Evolution
constraints).

Foundations of Temporal Conceptual Data Models 23

5. Dynamic evolution cannot be specified between a class and one of its
sub-classes.

6. Dynamic extension between disjoint classes logically implies Dynamic
evolution.

6.3 Generation Relationships

Generation relationships [7, 28, 36, 37] represent processes that lead to the emer-
gence of new objects starting from a set of existing objects. In their most generic
form, a generation relationship can have a collection of objects as source and
a collection of objects as target. For example (see Figure 5), assuming an or-
ganisation remodels its departments, it may be that an existing department is
split into two new departments, while two existing departments are merged into
a single new department and three existing departments are reorganised as two
new departments. Cardinality constraints can be added to specify the cardinality
of sets involved in a generation. For example, if we want to record the fact that
a group of managers proposes at most one new project at a time a generation
relationship from Manager to Project can be defined with the cardinality “at
most one” on the manager side.

Depending whether the source objects are preserved (as member of the source
class) or disabled by the generation process, we distinguish between production
and transformation relationships, respectively. Managers creating projects is an
example of the former, while departmental reorganisation is an example of the
latter. At the conceptual level we introduce two marks for generation relation-
ships: GP for production and GT for transformation relationships, and an arrow
pointing to the target class (see Figure 5).

We model generation as binary relationships connecting a source class to a
target one, with the target being in its scheduled status: rel(R) = 〈source :
C1, target : Scheduled-C2〉. The semantics of production relationships, R, is
described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2)

Department ReOrganize GT

Manager Propose GP Project
(0,1)

Fig. 5. Production and transformation generation relationships

24 A. Artale and E. Franconi

Thus, objects active in the source class produce objects active in the target class
at the next point in time. A production relationship is a case of across-time
relationships [7]—i.e., relationships connecting objects which are active in the
connected classes at different points in time—where the use of status classes
allows us to preserve snapshot reducibility. Indeed, for each pair of objects,
〈o1, o2〉, belonging to a generation relationships o1 is active in the source while
o2 is scheduled in the target.

The case of transformation is captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2)

Thus, objects active in the source generate objects active in the target at the next
point in time while the source objects cease to exist as member of the source.
As for production relationships, transformations are special cases of across-time
relationships.

Proposition 4 (Generation: Logical Implications [7]). The following log-
ical implications hold as a consequence of the generation semantics:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
2. The target class, C2, cannot be snapshot (C2 must be temporary if it partic-

ipates at least once).
3. Objects participating as target cannot be disabled.
4. If R is a transformation relationship, then, C1 cannot be snapshot (C1 must

be temporary if it participates at least once).

Note that the Department class that is both the source and target of a trans-
formation relationship (Figure 5) can no longer be snapshot (as it was in Ex-
ample 1) and must be changed to temporary. Furthermore, as a consequence of
this new timestamp for the Department class, InterestGroup is now a genuine
mixed class.

Starting with the next section we provide a correspondence between temporal
conceptual schemas and theories expressed in temporal description logics.

7 The Temporal Description Logic

As the description logicDLR has been used to reason over conceptual models [14,
17, 18] in this chapter we use a temporal extension of DLR to capture temporal
conceptual models. The temporal description logic DLRUS [5, 25] combines
the propositional temporal logic with Since and Until and the (non-temporal)
description logic DLR [13, 17]. DLRUS can be regarded as a rather expressive
fragment of the first-order temporal logic L{since, until} (cf. [20, 30]).

The basic syntactical types of DLRUS are concepts (unary predicates) and
n-ary relations of arity ≥ 2. Starting from a set of atomic concepts (denoted

Foundations of Temporal Conceptual Data Models 25

C → � | ⊥ | CN | ¬C | C1 C2 | ∃≶k[Uj]R |
�+C | �−C | �+C | �−C |⊕ C | � C | C1UC2 | C1SC2

R → �n | RN | ¬R | R1 R2 | Ui/n : C |
�+R | �−R | �+R | �−R |⊕R | �R | R1UR2 | R1SR2

�I(t) = ΔI

⊥I(t) = ∅
CNI(t) ⊆ �I(t)

(¬C)I(t) = �I(t) \ CI(t)

(C1 C2)
I(t) = C

I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj]R)I(t) = { d ∈ �I(t) | �{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}
(C1UC2)

I(t) = { d ∈ �I(t) | ∃v > t.(d ∈ C
I(v)
2 ∧ ∀w ∈ (t, v).d ∈ C

I(w)
1)}

(C1SC2)
I(t) = { d ∈ �I(t) | ∃v < t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (v, t).d ∈ C

I(w)
1)}

(�n)I(t) ⊆ (ΔI)n

RNI(t) ⊆ (�n)I(t)

(¬R)I(t) = (�n)I(t) \ RI(t)

(R1 R2)
I(t) = R

I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) | di ∈ CI(t)}
(R1UR2)

I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |
∃v > t.(〈d1, . . . , dn〉 ∈ R

I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(R1SR2)
I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |

∃v < t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(�+R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
(�−R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(�R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Fig. 6. Syntax and semantics of DLRUS

by CN), a set of atomic relations (denoted by RN), and a set of role symbols
(denoted by U) we hereinafter define inductively (complex) concepts and rela-
tion expressions as is shown in the upper part of Figure 6, where the binary
constructors (�,�,U ,S) are applied to relations of the same arity, i, j, k, n are
natural numbers, i ≤ n, and j does not exceed the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both concept
and relation expressions all the Boolean constructors are available. The selec-
tion expression Ui/n : C denotes an n-ary relation whose argument named Ui

(i ≤ n) is of type C; if it is clear from the context, we omit n and write (Ui : C).
The projection expression ∃≶k[Uj]R is a generalisation with cardinalities of the
projection operator over the argument named Uj of the relation R; the plain
classical projection is ∃≥1[Uj]R (we will use ∃[Uj]R as a shortcut). It is also pos-
sible to use the pure argument position version of the language by replacing role
symbols Ui with the corresponding position numbers i. To show the expressive
power of DLRUS we refer to the next sections where DLRUS is used to capture
various forms of temporal constraints.

26 A. Artale and E. Franconi

The model-theoretic semantics of DLRUS assumes a flow of time T = 〈Tp, <〉,
where Tp is a set of time points (or chronons) and < a binary precedence relation
on Tp, is assumed to be isomorphic to 〈Z, <〉. The language of DLRUS is inter-
preted in temporal models over T , which are triples of the form I .= 〈T , ΔI , ·I(t)〉,
where ΔI is non-empty set of objects (the domain of I) and ·I(t) an inter-
pretation function such that, for every t ∈ T (in the following the notation
t ∈ T is used as a shortcut for t ∈ Tp), every concepts C, and every n-ary
relation R, we have CI(t) ⊆ ΔI and RI(t) ⊆ (ΔI)n. The semantics of con-
cept and relation expressions is defined in the lower part of Figure 6, where
(u, v) = {w ∈ T | u < w < v}. For concepts, the temporal operators �+ (some
time in the future), ⊕ (at the next moment), and their past counterparts can be
defined via U and S: �+C ≡ �UC, ⊕C ≡ ⊥UC, etc. The operators �+ (always
in the future) and �− (always in the past) are the duals of �+ (some time in the
future) and �− (some time in the past), respectively, i.e., �+C ≡ ¬�+¬C and
�−C ≡ ¬�−¬C, for both concepts and relations. The operators �∗ (at some
moment) and its dual �∗ (at all moments) can be defined for both concepts and
relations as �∗C ≡ C ��+C ��−C and �∗C ≡ C ��+C ��−C, respectively.

A knowledge base, K, is a finite set of DLRUS axioms of the form C1 � C2

and R1 � R2, with R1 and R2 being relations of the same arity. The notation
C1

.= C2 (R1
.= R2) is a shortcut for C1 � C2, C2 � C1 (R1 � R2, R2 � R1). An

interpretation I satisfies C1 � C2 (R1 � R2) if and only if the interpretation of
C1 (R1) is included in the interpretation of C2 (R2) at all time, i.e., C

I(t)
1 ⊆ C

I(t)
2

(RI(t)
1 ⊆ R

I(t)
2), for all t ∈ T . Various reasoning services can be defined in

DLRUS . A knowledge base, K, is satisfiable if there is an interpretation that
satisfies all the axioms in K (in symbols, I |= K). A knowledge base, K, logically
implies an axiom, C1 � C2 (R1 � R2), and write K |= C1 � C2 (Σ |= R1 � R2),
if we have I |= C1 � C2 (I |= R1 � R2) whenever I |= K. In this latter case, the
concept C1 (relation R1) is said to be subsumed by the concepts C2 (relation R2)
in the knowledge base K. A concepts C is satisfiable, given a knowledge base K, if
there exists a model I of K such that CI(t) �= ∅ for some t ∈ T , i.e., K �|= C � ⊥.
A relation R is satisfiable, given a knowledge base K, if there exists a model I of
K such that RI(t) �= ∅ for some t ∈ T , i.e., K �|= R � ⊥. Finally, knowledge base
satisfiability, concepts subsumption and relation satisfiability can be reduced to
concepts satisfiability in the following way: K �|= � � ⊥, K |= C1 � ¬C2 � ⊥,
K �|= ∃≥1[Uj]R � ⊥ for some j ≤ n where n is the arity of R, respectively.

While DLR knowledge bases are fully able to capture atemporal EER/UML
schemas [14, 17, 18]—i.e., given an EER schema there is an equi-satisfiable DLR
knowledge base—in the following sections we use DLRUS knowledge bases to
capture temporal EER/UML schemas with both timestamping and evolution
constraints.

8 Encoding Temporal Schemas in Description Logics

We start by briefly summarising how knowledge bases in the description logic
DLR can capture conceptual schemas. The correspondence we report here is
based on a mapping introduced by [14, 18, 19] for atemporal EER models.

Foundations of Temporal Conceptual Data Models 27

Informally, the encoding works as follows. Class and relationship symbols in
a conceptual diagram are mapped into DLR concept names and relation names
(with the same arity of the original relationship), respectively. Domain symbols
are mapped into additional concept names, pairwise disjoint. Attributes of classes
are mapped to binary relation names in DLR with number restrictions stating
the cardinality of the attribute to distinguish between single- and multi-valued
attributes. Isa links between classes or between relationships are mapped using
DLR axioms. Generalised hierarchies with disjointness and covering constraints
can be captured using Boolean connectives. Cardinality constraints are mapped
using number restriction in DLR.

Let us consider the class diagram depicted in Figure 1 and representing (a
portion of) a company database. According to the diagram, all managers are
employees and are partitioned into area managers and top managers. This in-
formation can be represented by means of the following DLR axioms:

Manager � Employee

AreaManager � Manager

TopManager � Manager

AreaManager � ¬TopManager
Manager � AreaManager� TopManager

Binary relation names of the form A � From :��To :� capture attributes. Each
employee has three functional attributes (by default, we assume that attributes
are single-valued and mandatory), Salary, PaySlipNumber, with integer values,
and Name, with string values; here we show only the first:

Employee � ∃=1[from]Salary� ∃=1[from](Salary� to/2 : Integer)

The binary relationship Works-for has Employees as domain, while the range is
restricted to Projects:

Works-for � emp/2 : Employee� act/2 : Project

Each top manager manages exactly one project, while a project must involve at
least three employees:

TopManager � ∃=1[man]Manages

Project � ∃≥3[act]Works-For

Temporal properties expressed in the diagram are mapped using temporal
operators in DLRUS . In the following we will show how to extend the above
translation in order to capture both timestamping and evolution constraints.

Encoding Timestamping

Timestamping is the ability to distinguish between snapshot constructors—i.e.,
constructorswith a global lifespan associated to each of their instances—temporary

28 A. Artale and E. Franconi

constructors—i.e., each of their instances has a limited lifespan—or mixed
constructors—i.e., their instances can have either a global or a temporary exis-
tence. Timestamps for both classes and relationships are captured by the following
DLRUS axioms (remember that �∗ is the “at all time” operator while �∗ is the
“at some time” operator, see Section 7):

(SnapC) C � �∗C Snapshot Class
(TempC) C � �∗¬C Temporary Class
(SnapT) R � �∗R Snapshot Relationship
(TempR) R � �∗¬R Temporary Relationship

Considering timestamping for attributes we first recall that attributes are cap-
tured in DLR as binary relations. Thus, the following DLRUS axioms hold4:

(SnapA) C � ¬∃[From](A � �∗¬A) Snapshot Attribute
(TempA) C � ¬∃[From](�∗A) Temporary Attribute

Key Constraints. We now show the DLRUS axioms that capture the notion of
single-attribute keys (see the case of a pay slip number that uniquely identifies
an employee in Figure 1). We need three axioms: the first to specify that a key is
a snapshot attribute, the second to characterise a key as mandatory and single-
valued, and the last axiom to specify uniqueness. Assuming that Akey is a key
for the class C, then its semantics is captured by the following DLRUS axioms:

(Key1) C � ¬∃[From](Akey � �∗¬Akey) Snapshot Attribute
(Key2) C � ∃=1[from]Akey Mandatory & Single-Valued
(Key3) � � ∃≤1[to](Akey � from : C) Uniqueness

Lifespan Participation Constraints. Lifespan participation constraints (see
Figure 2) are formalised in DLRUS using a combination of number restrictions
and temporal operators for relations:

(LPC) C � ∃≥k[U]�∗R � ∃≤m[U]�∗R Lifespan Participation Constraint

The standard logical implications due to timestamping and showed in Propo-
sition 1 can be rephrased in terms of DLRUS logical implications.

Proposition 5 (Timestamps: Logical Implications [4])). In every tempo-
ral schema supporting timestamping, the following temporal properties hold:

1. Subclass of temporary classes are also temporary (similarly for relationships).
{C1 � C, C � �∗¬C} |= C1 � �∗¬C1

2. If exactly one of a whole set of snapshot subclasses partitioning a snapshot
superclass is temporary, then, the whole set of classes is unsatisfiable (we
consider a three class partition).
{C0

.= C1 � C2, C1 � ¬C2, C0 � �∗C0, C1 � �∗C1, C2 � �∗¬C2} |= Ci �
⊥, i = 0, 1, 2

4 The axioms consider a local temporal behaviour for attributes. To associate a global
behaviour to an attribute we consider it as a binary relationship and apply the
axioms for timestamping relationships.

Foundations of Temporal Conceptual Data Models 29

3. Participants of snapshot relationships are either snapshot or unmarked classes.
{R � �∗R, R � Ui : Ci, Ci � �∗¬Ci} |= R � ⊥

4. Participants of snapshot relationships are snapshot when they participate at
least once in the relationship.
{R � �∗R, R � Ui : Ci, Ci � ∃[Ui]R} |= Ci � �∗Ci

5. A relationship is temporary if one of the participating classes is temporary.
{R � Ui : Ci, Ci � �∗¬Ci} |= R � �∗¬R

Encoding Status Classes

Status classes record the evolving state of membership of each object in the
class. We distinguish four status: scheduled, active, suspended and disabled.
DLRUS axioms are able to fully capture the hierarchical constraints of Figure 3.
Moreover, the semantic equations formalising status classes are captured by the
following set of DLRUS axioms:

(Exists) Exists-C � �+(Exists-C � Disabled-C)
(Disab1) Disabled-C � �+Disabled-C
(Disab2) Disabled-C � �−C
(Susp) Suspended-C � �−C
(Sch1) Scheduled-C � �+C
(Sch2) C � �+¬Scheduled-C

We denote with Σst the above set of axioms together with the DLRUS ax-
ioms that capture the hierarchy of Figure 3. We can now rephrase the logical
implications involving status classes showed in Proposition 2 as DLRUS logical
implications.

Proposition 6 (Status Classes: Logical Implications [7]). Given the set of
DLRUS axioms Σst that capture status classes, the following logical implications
hold:

1. Disabled will never become active anymore.
Σst |= Disabled-C � �+¬C

2. Scheduled persists until active.
Σst |= Scheduled-C � Scheduled-CUC

3. Scheduled cannot evolve directly to Disabled.
Σst |= Scheduled-C � ⊕¬Disabled-C

Encoding Transition

Transition constraints model the so called object migration. They are distin-
guished in dynamic evolution—when objects cease to be instances of the source
class to become instances of the target class—and dynamic extension—when
the creation of the target instance does not force the removal of the source in-
stance. We represent transitions by introducing a new class denoted by either
dexC1,C2 or devC1,C2 for dynamic extension and evolution, respectively. The
DLRUS axioms capturing these temporal constraints are:

30 A. Artale and E. Franconi

(Dex) dexC1,C2 � (Suspended-C1 � C1) � ¬C2 �⊕C2

(Dev) devC1,C2 � (Suspended-C1 � C1) � ¬C2 �⊕ (C2 � ¬C1)

The DLRUS axioms capturing the cases where the source (C1) and/or the target
(C2) totally participate in a dynamic extension/evolution are:

(Stt) C1 � �+
dexC1,C2 Source Total Transition

(Ttt) C2 � �−
dexC1,C2 Target Total Transition

(Ste) C1 � �+
devC1,C2 Source Total Evolution

(Tte) C2 � �−
devC1,C2 Target Total Evolution

We can now rephrase the logical implications involving transition constraints
showed in Proposition 3 as DLRUS logical implications.

Proposition 7 (Transition: Logical Implications [7]). Let Σtr = {(Dev),

(Dex)}, then the following logical implications hold:

1. The classes dexC1,C2 and devC1,C2 are temporary classes; actually, they
hold at single time points.
Σst ∪ Σtr |= dexC1,C2 � ⊕¬dexC1,C2 � �¬dexC1,C2

Σst ∪ Σtr |= devC1,C2 � ⊕¬devC1,C2 � �¬devC1,C2

2. Objects in the classes dexC1,C2 and devC1,C2 cannot be disabled as C2.
Σst ∪ Σtr |= dexC1,C2 � ¬Disabled-C2
Σst ∪ Σtr |= devC1,C2 � ¬Disabled-C2

3. The target class C2 cannot be snapshot (it becomes temporary in case of both
(Ttt) and (Tte) constraints).
Σst ∪ Σtr |= dexC1,C2 � �∗[C2 � (�+¬C2 � �−¬C2)]

4. As a consequence of dynamic evolution, the source class, C1, cannot be snap-
shot (and it becomes temporary in case of (Ste) constraints).
Σst ∪ Σtr |= devC1,C2 � �∗[C1 � (�+¬C1 � �−¬C1)]

5. Dynamic evolution cannot be specified between a class and one of its sub-
classes.
Σst ∪ Σtr ∪ {C2 � C1} |= devC1,C2 � ⊥

6. Dynamic extension between disjoint classes logically implies Dynamic
evolution.
Σst ∪ Σtr ∪ {C1 � ¬C2} |= dexC1,C2 � devC1,C2

Encoding Generation Relationships

Generation relationships lead to the emergence of new objects starting from a
set of existing objects. Depending whether the source objects are preserved (as
member of the source class) or disabled, we distinguish between production and
transformation relationships, respectively. The DLRUS axioms capturing the
production and transformation semantics are:

(Prod) R � source : C1 target : (Scheduled-C2 ⊕C2)
(Trans) R � source : (C1 ⊕ Disabled-C1) target : (Scheduled-C2 ⊕ C2)

We can now rephrase the logical implications involving generation relation-
ships showed in Proposition 4 as DLRUS logical implications.

Foundations of Temporal Conceptual Data Models 31

Proposition 8 (Generation: Logical Implications [7]). The following log-
ical implications hold as a consequence of the DLRUS axioms capturing gener-
ation relationships:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
Σst ∪ {(Prod)} |= R � �+¬R � �−¬R

2. The target class, C2, cannot be snapshot (C2 must be temporary if it partic-
ipates at least once).
Σst ∪ {(Prod)} |= R � target:�∗[C2 � (�+¬C2 � �−¬C2)]

3. Objects participating as target cannot be disabled.
Σst ∪ {(Prod)} |= R � target:¬Disabled-C2

4. If R is a transformation relationship, then, C1 cannot be snapshot (C1 must
be temporary if it participates at least once).
Σst ∪ {(Trans)} |= R � source :�∗[C1 � (�+¬C1 � �−¬C1)]

8.1 Correctness of the Encoding

To prove that reasoning on temporal schemas can be done by reasoning on their
DLRUS translation, we need to prove the correctness of the encoding. That
temporal schemas with timestamping and transition constraints can be encoded
as description logic theories has been proven correct in [4, 5] by establishing a
precise correspondence between legal database states of temporal schemas and
models of the corresponding description logic theories. This result can be easily
extended to the full set of temporal constraints presented here.

Theorem 1 (Correctness of the encoding). Let Σ be a temporal schema.
Then, Σ admits a legal database state if and only if the corresponding DLRUS
knowledge base encoding the schema has a model.

This characterisation allows us to support the reasoning on temporal conceptual
models, as in Definition 2, by using the reasoning services of DLRUS . On the
other hand, since reasoning with DLRUS theories is undecidable, in the follow-
ing section we present interesting scenarios where reasoning become decidable
together with their respective complexity results.

9 Complexity of Reasoning on Temporal Models

As this chapter shows, the temporal description logic DLRUS is able to fully
capture temporal schemas with both timestamping and evolution constraints.
On the other hand, reasoning over DLRUS knowledge bases, i.e., checking satis-
fiability, subsumption and logical implications, turns out to be undecidable [5].
The main reason for this is the possibility to couple the evolution of concepts
with the possibility to postulate that a binary relation does not vary in time (i.e.,
global relations). Note that, showing that temporal schemas can be mapped into
DLRUS axioms does not necessarily imply that reasoning over temporal schemas
is an undecidable problem. Unfortunately, [1] shows that the undecidable Halting

32 A. Artale and E. Franconi

Problem can be encoded as the problem of class satisfiability w.r.t. a temporal
schema with, among the others, the following constructs: disjoint and covering
constraints, sub-relationships, timestamping on both classes and relationships,
and evolution constraints.

On the other hand, the fragment, DLR−
US , of DLRUS deprived of the ability to

talk about temporal persistence of n-ary relations, for n ≥ 2, is decidable. Indeed,
reasoning in DLR−

US is an EXPTIME-complete problem [5]. This result gives us
an useful scenario where reasoning over temporal schemas becomes decidable. In
particular, if we forbid timestamping for relationships (i.e., relationships are just
unmarked and interpreted as mixed constructors) reasoning on temporal models
with just class timestamping but full evolution constraints can be reduced to
reasoning over DLR−

US . The problem of reasoning in this setting is complete
for EXPTIME since the EXPTIME-complete problem of reasoning with ALC
knowledge bases can be captured by such schemas [14].

We maintain decidability also by allowing full timestamping (i.e., timestamp-
ing for relationships, attributes and classes) but dropping evolution constraints.
This is the basic temporal conceptual modelling scenario where temporal marks
allow to distinguish between temporary and global constructs (this scenario also
allows for both temporal keys and lifespan participation constraints). This sce-
nario is decidable since it is possible to encode temporal schemas without evo-
lution constraints by using a combination between the description logic DLR
and the epistemic modal logic S5 (see [12] for the exact mapping). Reasoning
over DLRS5 has been proved to be decidable and 2-EXPTIME-complete [11] by
extending a previous result on the logic ALCS5 [25].

Other interesting scenarios currently under investigation are the cases where
the temporal expressivity is maintained in its full capability (i.e., both full times-
tamping and evolution constraints) but some of the constructs used at the con-
ceptual level are dropped. In particular, by dropping isa between relationships
and/or partitioning constraints we could regain decidability in the full tempo-
ral scenario. In this case we can use description logics from the DL-Lite fam-
ily [2, 15, 16] to capture these weaker forms of conceptual schemas (see [8] for
an exhaustive description of the data models that can be captured inside DL-
Lite). A demoralisation of DL-Lite has been proposed in [10] where reasoning
is showed to be EXPSpace-complete. As a future work we plan to study the
mapping of the various temporal constructs presented here in the temporal ex-
tension of DL-Lite and to investigate a tight complexity bound for the resulting
temporal data modelling language.

10 Conclusions

This chapter summarises the various proposals appeared in the literature about
temporal conceptual data models within a formal framework. We presented a
model-theoretic semantics for different temporal constructs grouped along two
generic categories, i.e., timestamping and evolution constraints. The given for-
mal semantics clarifies the meaning of the modelling constructors and also gives

Foundations of Temporal Conceptual Data Models 33

a rigorous definition to relevant design support tasks such as satisfiability of
schemas, classes and relationships; subsumption for both classes and relation-
ships; general logical implication. Furthermore, for each constructor we have
shown how desirable properties can be derived as logical implications from the
proposed formalisation.

We have been able to show how temporal schemas can be equivalently ex-
pressed using a subset of first-order temporal logic, i.e., DLRUS , the description
logic DLR extended with the temporal operators Since and Until. While DLRUS
is an undecidable language, several decidable sub-languages can be used to rea-
son over temporal schemas. Since these sub-languages usually do not mix times-
tamping with evolution constraints, we are currently investigating new scenarios
where, by weakening the atemporal expressiveness of the conceptual model, we
regain decidability of the full temporal setting. We started to work on these en-
couraging scenarios by using DL-Lite as the atemporal DL and extending it to
capture time varying domains.

Acknowledgements

We would like to thank our colleagues Roman Kontchakov, Carsten Lutz, Fed-
erica Mandreoli, Christine Parent, Vladislav Ryzhikov, Stefano Spaccapietra,
David Toman, Frank Wolter, and Michael Zakharyaschev with whom we carried
out most of the work presented in this chapter.

References

[1] Artale, A.: Reasoning on temporal conceptual schemas with dynamic constraints.
In: 11th Int. Symposium on Temporal Representation and Reasoning (TIME
2004). IEEE Computer Society, Los Alamitos (2004); also in Proc. of the 2004
Int. Workshop on Description Logics (DL 2004)

[2] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the
light of first-order logic. In: Proc. of AAAI 2007, pp. 361–366 (2007)

[3] Artale, A., Franconi, E.: Temporal ER modeling with description logics. In:
Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 81–95. Springer, Heidelberg (1999)

[4] Artale, A., Franconi, E., Mandreoli, F.: Description logics for modelling dynamic
information. In: Chomicki, J., van der Meyden, R., Saake, G. (eds.) Logics for
Emerging Applications of Databases. LNCS, Springer, Heidelberg (2003)

[5] Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M.: A temporal description
logic for reasoning over conceptual schemas and queries. In: Flesca, S., Greco,
S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS(LNAI), vol. 2424, pp. 98–110.
Springer, Heidelberg (2002)

[6] Artale, A., Parent, C., Spaccapietra, S.: Modeling the evolution of objects in tem-
poral information systems. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 22–42. Springer, Heidelberg (2006)

[7] Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information
systems. Annals of Mathematics and Artificial Intelligence 50(1-2), 5–38 (2007)

34 A. Artale and E. Franconi

[8] Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

[9] Artale, A., Cesarini, F., Soda, G.: Describing database objects in a concept lan-
guage environment. IEEE Trans. on Knowledge and Data Engineering 8(2), 345–
351 (1996)

[10] Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal-
ising tractable description logics. In: 14th International Symposium on Temporal
Representation and Reasoning (TIME 2007). IEEE Computer Society Press, Los
Alamitos (2007)

[11] Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Int. Joint
Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (January
2007)

[12] Artale, A., Toman, D.: Decidable reasoning over timestamped conceptual models.
In: Proc. of the 21st Int. Workshop on Description Logics (DL 2008), Dresden,
Germany (May 2008)

[13] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2002)

[14] Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

[15] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)

[16] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pp.
260–270 (2006)

[17] Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query
containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS 1998), pp. 149–158
(1998)

[18] Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data
modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information
Systems. Kluwer, Dordrecht (1998)

[19] Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research 11, 199–240 (1999)

[20] Chomicki, J., Toman, D.: Temporal logic in information systems. In: Chomicki,
J., Saake, G. (eds.) Logics for Databases and Information Systems, ch. 1. Kluwer,
Dordrecht (1998)

[21] Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal
ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231. Springer, Heidelberg (2008)

[22] Etzion, O., Gal, A., Segev, A.: Extended update functionality in temporal
databases. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997.
LNCS, vol. 1399, pp. 56–95. Springer, Heidelberg (1998)

[23] Finger, M., McBrien, P.: Temporal conceptual-level databases. In: Gabbay, D.,
Reynolds, M., Finger, M. (eds.) Temporal Logics – Mathematical Foundations and
Computational Aspects, pp. 409–435. Oxford University Press, Oxford (2000)

Foundations of Temporal Conceptual Data Models 35

[24] Franconi, E., Sattler, U.: A data warehouse conceptual data model for multidi-
mensional aggregation. In: Proc. of the Workshop on Design and Management of
Data Warehouses (DMDW 1999) (1999)

[25] Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal
logics: theory and applications. Studies in Logic. Elsevier, Amsterdam (2003)

[26] Gregersen, H., Jensen, J.S.: Conceptual modeling of time-varying information.
Technical Report TimeCenter TR-35, Aalborg University, Denmark (1998)

[27] Gregersen, H., Jensen, J.S.: Temporal Entity-Relationship models – a survey. IEEE
Transactions on Knowledge and Data Engineering 11(3), 464–497 (1999)

[28] Gupta, R., Hall, G.: An abstraction mechanism for modeling generation. In: Proc.
of ICDE 1992, pp. 650–658 (1992)

[29] Hall, G., Gupta, R.: Modeling transition. In: Proc. of ICDE 1991, pp. 540–549
(1991)

[30] Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)

[31] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

[32] Jensen, C.S., Clifford, J., Gadia, S.K., Hayes, P., Jajodia, S., et al.: The Consensus
Glossary of Temporal Database Concepts. In: Etzion, O., Jajodia, S., Sripada,
S. (eds.) Temporal Databases - Research and Practice, pp. 367–405. Springer,
Heidelberg (1998)

[33] Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Transactions
on Knowledge and Data Engineering 111(1), 36–44 (1999)

[34] Jensen, C.S., Soo, M., Snodgrass, R.T.: Unifying temporal data models via a
conceptual model. Information Systems 9(7), 513–547 (1994)

[35] McBrien, P., Seltveit, A.H., Wangler, B.: An Entity-Relationship model extended
to describe historical information. In: Proc. of CISMOD 1992, Bangalore, India,
pp. 244–260 (1992)

[36] Parent, C., Spaccapietra, S., Zimanyi, E.: The MurMur project: Modeling
and querying multi-representation spatio-temporal databases. Information Sys-
tems 31(8), 733–769 (2006)

[37] Spaccapietra, S., Parent, C., Zimanyi, E.: Modeling time from a conceptual per-
spective. In: Int. Conf. on Information and Knowledge Management (CIKM 1998)
(1998)

[38] Spaccapietra, S., Parent, C., Zimanyi, E.: Conceptual Modeling for Traditional
and Spatio-Temporal Applications—The MADS Approach. Springer, Heidelberg
(2006)

[39] Tauzovich, B.: Towards temporal extensions to the entity-relationship model. In:
Proc. of the Int. Conf. on Conceptual Modeling (ER 1991). Springer, Heidelberg
(1991)

[40] Theodoulidis, C., Loucopoulos, P., Wangler, B.: A conceptual modelling formalism
for temporal database applications. Information Systems 16(3), 401–416 (1991)

	Foundations of Temporal Conceptual Data Models
	Introduction
	Temporal Modelling Constructors
	Modelling Requirements
	A Formalisation of Temporal Data Models
	Timestamping
	Evolution Constraints
	Status Classes
	Transition
	Generation Relationships

	The Temporal Description Logic
	Encoding Temporal Schemas in Description Logics
	Correctness of the Encoding

	Complexity of Reasoning on Temporal Models
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

