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Summary

• Description Logics

• The role of logics in Information Systems

• Conceptual Modelling and Query Management
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Description Logics – the standard view

• Expressive decidable fragments of (first-order) classical logic

• Close correspondence with modal logics (e.g.,ALC vs. K)

• Sound and complete algorithms implemented in efficient reasoners

• Knowledge representation formalism derived by semantic networks and

frames in Artificial Intelligence

• Close correspondence with well known database conceptual data models
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Knowledge representation is about objects

Description logics describe classes of objects (concepts) and their

inter-relationships (roles).

TheALC concept expression

Professor u ∃TEACHES. UG-Course u ∀TEACHES. CS-Course

corresponds to the K formula

Professor ∧3UG -Course ∧2CS -Course

where the accessibility relation is interpreted as the TEACHES relation
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Description Logics are multi-modal

TheALC concept expression

Professor u ∃TEACHES. UG-Course u ∃DEGREE. Bs

corresponds to the Km formula (over the same object domain)

Professor ∧3TEACHESUG -Course ∧3DEGREEBs
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Modalities (as roles) may have different properties

TheALC concept expression

Professor u ∃TEACHES. UG-Courseu

∃IS-PART. (Staff u ∃IS-LOCATED. Department)

corresponds to the Km ∪K4m formula (over the same object domain)

Professor ∧3TEACHESUG -Course∧

3IS-PART (Staff ∧3IS-LOCATEDDepartment)

where TEACHES is a Km modality and IS-PART, IS-LOCATED are K4m

modalities
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Relational structures

• “Modal logics are not appropriate as a representational tool since they do not

always capture the details of the models”

• Do we care?

• No: this is not a bug, it is a feature!

Why?

• If a formula is satisfiable in a model, it is also satisfiable in a model with the

indistinguishable property. Hence, reasoning is not affected.
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Additional genuine modalities

• Time, space, belief, etc: combination of modal logics over distinct domains

(i.e., the object and the modal domains)

• Example ofALC ∪ LTL concept expression:

Professor u3(∃TEACHES. UG-Course) u ∀2TEACHES. CS-Course

• Asymmetric extension
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Global axioms

∃TEACHES. Course v (Student u ∃DEGREE. Bs) t Prof

Prof v ∃DEGREE. Ms

∃DEGREE. Ms v ∃DEGREE. Bs

Ms u Bs v ⊥

• Axioms should be satisfied by each object in the domain

• Satisfiability and logical implication inALC (Km) become

EXPTIME-complete
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Global axioms, II

• K
H
m

extends Km with statements on inclusions between modalities

• Decision problems for KH
m

and K4m are in PSPACE

• The universal modality can be encoded in K
H
m
∪K4m, and axioms can be

internalised:

• Define new transitive modality U that includes all other modalities

• Satisfiability of φ w.r.t. ψ1 → ϕ1, . . . , ψn → ϕn

is equivalent to satisfiability of

φ ∧2U((ψ1 → ϕ1) ∧ . . . ∧ (ψn → ϕn))

• Satisfiability and logical implication in K
H
m
∪K4m are EXPTIME-complete

• FaCT implements K
H
m
∪K4m
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n-ary Relations

• Relations between objects in the world may necessarily involve more than just

two objects

• Full fledged relational structures are needed, beyond Kripke structures

• We want to maintain the modal logic flavour

• DLR properly extendsALC with n-ary relations
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DLR

R → >n | RN | ¬R | R1 uR2 | R1 tR2 | Ui/n : C

C → > | CN | ¬C | C1 u C2 | C1 t C2 | ∃[Ui]R | ∃
≶k[Ui]R

Works-for v subj/2 : Employee u obj/2 : Project

Manager v Employee u ¬∃[subj]Works-for

DLR includesALCQI : if R is a binary relation (i.e., a role) with named

attributes first and second then

∃R. C ≡ ∃[first](R u (second/2 : C))

Reasoning inDLR is EXPTIME-complete
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DLR syntax DLR semantics RD encoding

>n >In ⊆ (∆I)n >n

RN RNI ⊆ >In CRN

¬R >In \RI ¬CR

R1 uR2 R1
I ∩R2

I CR1 u CR2

Ui/n : C {〈d1, . . . , dn〉 ∈ >
I
n | di ∈ CI} >n u ∀Ui. C

> >I = ∆I >

CN CNI ⊆ >I CN

¬C >I \ CI ¬C

C1 u C2 CI
1 ∩ CI

2 C1 u C2

∃[Ui]R {d ∈ >I | ∃〈d1, . . . , dn〉 ∈ R. di = d} ∃U−

i . CR

∃≶k[Ui]R {d ∈ >I | ]{〈d1, . . . , dn〉 ∈ R | di = d} ≶ k} ≶ kU−

i . CR
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Encoding conceptual data models inDLR

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., OIL)

• Theorems prove that a conceptual schema and its encoding asDLR

inclusion dependencies constrain every database state in the same way – i.e.,

the models of theDLR theory correspond to the legal database states of the

conceptual schema, and vice-versa.
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Classical Integrity Constraints inDLR

• arbitrary boolean constructs

• unary inclusion dependencies (e.g., referential integrity)

• special forms of typed inclusion dependencies

• existence and exclusion dependencies

• unary functional dependencies

• view definitions
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Extensions ofDLR

DLRreg : regular expressions and recursive views (beyond FOL)

DLRUS : combination with temporal constructs to model temporal databases

DLRkey : general key constraints
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Queries underDLR constraints

• A query is an open FOL formula, whose predicates may be constrained by a

DLR theory

• We consider only the conjunctive existential fragment (the conjunctive

queries, or non-recursive datalog queries)

• Example:

Q1(x, y) :- (¬Professor)(x) ∧ TEACHES(x, y) ∧

(UG-Course t CS-Course)(x)
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Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj )}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS )

constraints is decidable in 2EXPTIME
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The i•com tool for Intelligent Conceptual Modelling

• i•com is an advanced CASE tool which allows the user to design multiple

extended Entity-Relationship schemas or UML class diagrams with inter- and

intra-schema constraints.

• Complete logical reasoning is employed by the tool to:

• verify the specification,

• infer implicit facts,

• devise stricter constraints,

• and manifest any local inconsistency.

http://www.cs.man.ac.uk/∼franconi/icom/
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The role of logics in Information Systems

Database

Logical
Schema

Conceptual
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The role of logics in Information Systems
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The role of logics in Information Systems

Mediator

Deduction

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

←− Data Level

←− Information Level

←− Knowledge Level

a Mediator

(20/26)



A Relational Database

CompanyEmployee/2; CompanyProject/3

CompanyEmployee

name project

john esprit-dwq

· · · · · ·

CompanyProject

project manager department

esprit-dwq enrico cs-uman

· · · · · · · · ·

Query = “Tell me the projects in which John works, and their managers and departments.”

Query ≡

πproject,manager,dept.σname=john (CompanyEmployee ./project CompanyProject)

Query(x, y, z)⇔ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)
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Constraints from the Conceptual Schema

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)
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Department InterestGroup
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X
X
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(1,1)

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](Name u thename/2 : String)u∃=1[payee](Salary u amount/2 : Integer)

> v ∃≤1[thename](Name u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages
· · ·
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Integrity Constraints and Logical Implication

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager

Manager v ¬(∃≥1[emp]Works-for)
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Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager

Manager v ¬(∃≥1[emp]Works-for)

; For every project, there is at least one employee who is not a manager:

Σ |= Project v ∃≥1[act](Works-for u emp : ¬Manager)
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Querying the Virtual Database (local-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

CompanyEmployee(x, y) ⇐ Employee(x) ∧ Project(y) ∧ Works-for(x, y).

CompanyProject(x, y, z) ⇐ Project(x) ∧ Manager(y) ∧ Department(z) ∧

Manages(y, x) ∧ Resp-for(z, x).
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CompanyEmployee(x, y) ⇐ Employee(x) ∧ Project(y) ∧ Works-for(x, y).

CompanyProject(x, y, z) ⇐ Project(x) ∧ Manager(y) ∧ Department(z) ∧

Manages(y, x) ∧ Resp-for(z, x).

; Q(x, y, z)⇐ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)
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Querying the Virtual Database (global-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Project(x) ⇐ CompanyEmployee(y,x) ∪ CompanyProject(x, y, z)

Works-for(x,y) ⇐ CompanyEmployee(x,y)

TopManager(x) ⇐ CompanyProject(y,x, z)

Manages(x,y) ⇐ CompanyProject(y,x, z)

· · ·
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Works-for(x,y) ⇐ CompanyEmployee(x,y)

TopManager(x) ⇐ CompanyProject(y,x, z)

Manages(x,y) ⇐ CompanyProject(y,x, z)

· · ·

; Q(x, y, z)⇐ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)
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Reasoning on Queries

Q(x, y)⇐ Employee(x) ∧ Works-for(x, y) ∧ Manages(x, y).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)
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Reasoning on Queries

Q(x, y)⇐ Employee(x) ∧ Works-for(x, y) ∧ Manages(x, y).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

; INCONSISTENT QUERY!
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