(Description) Logics

for Information Modelling and Access

Enrico Franconi

franconi@cs.man.ac.uk
http://www.cs.man.ac.uk/~franconi

Department of Computer Science, University of Manchester

Univ. of Liverpool – 22 January 2002

Summary

- Description Logics
- The role of logics in Information Systems
- Conceptual Modelling and Query Management

Description Logics – the standard view

- Expressive decidable fragments of (first-order) classical logic
- Close correspondence with modal logics (e.g., \mathcal{ALC} vs. \mathbf{K})
- Sound and complete algorithms implemented in efficient reasoners
- Knowledge representation formalism derived by semantic networks and frames in Artificial Intelligence
- Close correspondence with well known database conceptual data models

Knowledge representation is about objects

Description logics describe classes of objects (concepts) and their inter-relationships (roles).

The \mathcal{ALC} concept expression

Professor $\sqcap \exists$ TEACHES. UG-Course $\sqcap \forall$ TEACHES. CS-Course

corresponds to the ${\bf K}$ formula

 $Professor \land \diamond UG\text{-}Course \land \Box CS\text{-}Course$

where the accessibility relation is interpreted as the TEACHES relation

Description Logics are multi-modal

The \mathcal{ALC} concept expression

Professor $\sqcap \exists TEACHES. UG-Course \sqcap \exists DEGREE. Bs$

corresponds to the $\mathbf{K_m}$ formula (over the same object domain)

 $Professor \land \diamondsuit_{TEACHES} UG\text{-}Course \land \diamondsuit_{DEGREE} Bs$

Modalities (as roles) may have different properties

The \mathcal{ALC} concept expression

Professor $\square \exists \text{TEACHES}. \text{UG-Course} \square$

 $\exists IS-PART. (Staff \sqcap \exists IS-LOCATED. Department)$

corresponds to the $K_m \cup K4_m$ formula (over the same object domain)

 $\begin{aligned} Professor \land \diamond_{TEACHES} UG\text{-}Course \land \\ \diamond_{IS\text{-}PART}(Staff \land \diamond_{IS\text{-}LOCATED} Department) \end{aligned}$

where <code>TEACHES</code> is a K_{m} modality and <code>IS-PART</code>, <code>IS-LOCATED</code> are $K4_{m}$ modalities

Relational structures

- "Modal logics are not appropriate as a representational tool since they do not always capture the details of the models"
- Do we care?

Relational structures

- "Modal logics are not appropriate as a representational tool since they do not always capture the details of the models"
- Do we care?
- No: this is not a bug, it is a feature!
 Why?

Relational structures

- "Modal logics are not appropriate as a representational tool since they do not always capture the details of the models"
- Do we care?
- No: this is not a bug, it is a feature!
 Why?
- If a formula is satisfiable in a model, it is also satisfiable in a model with the indistinguishable property. Hence, reasoning is not affected.

Additional genuine modalities

- Time, space, belief, etc: combination of modal logics over *distinct* domains (i.e., the object and the modal domains)
- Example of $\mathcal{ALC} \cup \mathsf{LTL}$ concept expression:

Professor $\sqcap \diamondsuit(\exists TEACHES. UG-Course) \sqcap \forall \Box TEACHES. CS-Course$

Asymmetric extension

Global axioms

∃TEACHES. Course	$(\texttt{Student} \sqcap \exists \texttt{DEGREE.} \texttt{Bs}) \sqcup \texttt{Prof}$
Prof	∃DEGREE. Ms
∃DEGREE. Ms	∃DEGREE. Bs
$Ms \sqcap Bs$	\perp

- Axioms should be satisfied by each object in the domain
- Satisfiability and logical implication in \mathcal{ALC} ($\mathbf{K_m}$) become EXPTIME-complete

Global axioms, II

- $\mathbf{K}_{\mathbf{m}}^{\mathcal{H}}$ extends $\mathbf{K}_{\mathbf{m}}$ with statements on inclusions between modalities
- Decision problems for $K^{\mathcal{H}}_m$ and $K4_m$ are in PSPACE
- The *universal modality* can be encoded in $K^{\mathcal{H}}_{\mathbf{m}} \cup K4_{\mathbf{m}}$, and axioms can be internalised:
 - Define new *transitive* modality U that *includes* all other modalities
 - Satisfiability of ϕ w.r.t. $\psi_1 \to \varphi_1, \dots, \psi_n \to \varphi_n$ is equivalent to satisfiability of $\phi \land \Box_U((\psi_1 \to \varphi_1) \land \dots \land (\psi_n \to \varphi_n))$
- Satisfiability and logical implication in $K^{\mathcal{H}}_{\mathbf{m}} \cup K4_{\mathbf{m}}$ are EXPTIME-complete
- FaCT implements $\mathbf{K}^{\mathcal{H}}_{\mathbf{m}} \cup \mathbf{K}\mathbf{4}_{\mathbf{m}}$

n-ary Relations

- Relations between objects in the world may necessarily involve more than just two objects
- Full fledged relational structures are needed, beyond Kripke structures
- We want to maintain the modal logic flavour
- \mathcal{DLR} properly extends \mathcal{ALC} with *n*-ary relations

\mathcal{DLR}

 $R \rightarrow \top_{n} \mid RN \mid \neg R \mid R_{1} \sqcap R_{2} \mid R_{1} \sqcup R_{2} \mid U_{i}/n : C$ $C \rightarrow \top \mid CN \mid \neg C \mid C_{1} \sqcap C_{2} \mid C_{1} \sqcup C_{2} \mid \exists [U_{i}]R \mid \exists \leq k [U_{i}]R$

Works-for \sqsubseteq subj/2 : Employee \sqcap obj/2 : Project Manager \sqsubseteq Employee $\sqcap \neg \exists [subj]$ Works-for

 \mathcal{DLR} includes \mathcal{ALCQI} : if R is a binary relation (i.e., a *role*) with named attributes *first* and *second* then

 $\exists R. \ C \equiv \exists [\textit{first}] (R \sqcap (\textit{second}/2 : C))$

Reasoning in \mathcal{DLR} is EXPTIME-complete

\mathcal{DLR} syntax	\mathcal{DLR} semantics	RD encoding
\top_n	$\top_n^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}})^n$	\top_n
RN	$RN^{\mathcal{I}} \subseteq \top_n^{\mathcal{I}}$	C_{RN}
$\neg R$	$ op _n^\mathcal{I} \setminus R^\mathcal{I}$	$\neg C_R$
$R_1 \sqcap R_2$	$R_1^{\mathcal{I}} \cap R_2^{\mathcal{I}}$	$C_{R_1} \sqcap C_{R_2}$
$U_i/n: C$	$\{\langle d_1, \dots, d_n \rangle \in \top_n^{\mathcal{I}} \mid d_i \in C^{\mathcal{I}}\}$	$\top_n \sqcap \forall U_i. C$
	$\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$	Т
CN	$CN^{\mathcal{I}} \subseteq \top^{\mathcal{I}}$	CN
$\neg C$	$ op ^{\mathcal{I}} \setminus C^{\mathcal{I}}$	$\neg C$
$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$	$C_1 \sqcap C_2$
$\exists [U_i]R$	$\{d \in \top^{\mathcal{I}} \mid \exists \langle d_1, \dots, d_n \rangle \in R. \ d_i = d\}$	$\exists U_i^ C_R$
$\exists^{\leqslant k}[U_i]R$	$\{d \in \top^{\mathcal{I}} \mid \sharp\{\langle d_1, \dots, d_n \rangle \in R \mid d_i = d\} \leq k\}$	$\leq k U_i^- \cdot C_R$

Encoding conceptual data models in \mathcal{DLR}

- Object-oriented data models (e.g., UML and ODMG)
- Semantic data models (e.g., EER and ORM)
- Frame-based ontology languages (e.g., OIL)

Encoding conceptual data models in \mathcal{DLR}

- Object-oriented data models (e.g., UML and ODMG)
- Semantic data models (e.g., EER and ORM)
- Frame-based ontology languages (e.g., OIL)

 Theorems prove that a conceptual schema and its encoding as DLR inclusion dependencies constrain every database state in the same way – i.e., the models of the DLR theory correspond to the legal database states of the conceptual schema, and vice-versa.

Classical Integrity Constraints in \mathcal{DLR}

- arbitrary boolean constructs
- *unary inclusion* dependencies (e.g., referential integrity)
- special forms of *typed inclusion* dependencies
- *existence* and *exclusion* dependencies
- *unary functional* dependencies
- view definitions

Extensions of \mathcal{DLR}

 \mathcal{DLR}_{reg} : regular expressions and recursive views (beyond FOL)

 $\mathcal{DLR}_{\mathcal{US}}$: combination with temporal constructs to model temporal databases

 \mathcal{DLR}_{key} : general key constraints

Queries under \mathcal{DLR} constraints

- A query is an open FOL formula, whose predicates may be constrained by a \mathcal{DLR} theory
- We consider only the conjunctive existential fragment (the conjunctive queries, or non-recursive datalog queries)

• Example:

$$\begin{array}{l} \mathtt{Q_1}(\mathtt{x}, \mathtt{y}) \coloneqq (\neg \mathtt{Professor})(\mathtt{x}) \land \mathtt{TEACHES}(\mathtt{x}, \mathtt{y}) \land \\ (\mathtt{UG-Course} \sqcup \mathtt{CS-Course})(\mathtt{x}) \end{array}$$

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

is the set $\mathtt{ANS}(\mathcal{Q},\mathcal{I})$ composed by $n\text{-tuples }\overrightarrow{o}$ such that

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

is the set $\mathtt{ANS}(\mathcal{Q},\mathcal{I})$ composed by $n\text{-tuples }\overrightarrow{o}$ such that

 $\operatorname{ans}(\mathcal{Q},\mathcal{I}) = \{ \overrightarrow{o} \mid \mathcal{I} \models \bigvee_{j} \exists \overrightarrow{y_{j}}. \mathcal{Q}_{j}(\overrightarrow{o}, \overrightarrow{y_{j}}, \overrightarrow{c_{j}}) \}$

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

is the set $\operatorname{ANS}(\mathcal{Q}, \mathcal{I})$ composed by n-tuples \overrightarrow{o} such that $\operatorname{ANS}(\mathcal{Q}, \mathcal{I}) = \{ \overrightarrow{o} \mid \mathcal{I} \models \bigvee_j \exists \overrightarrow{y_j} . \mathcal{Q}_j(\overrightarrow{o}, \overrightarrow{y_j}, \overrightarrow{c_j}) \}$

 \mathcal{Q}_1 is contained in \mathcal{Q}_2 with respect to a \mathcal{DLR} theory Σ

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

is the set $\operatorname{ANS}(\mathcal{Q}, \mathcal{I})$ composed by n-tuples \overrightarrow{o} such that $\operatorname{ANS}(\mathcal{Q}, \mathcal{I}) = \{ \overrightarrow{o} \mid \mathcal{I} \models \bigvee_j \exists \overrightarrow{y_j} . \mathcal{Q}_j(\overrightarrow{o}, \overrightarrow{y_j}, \overrightarrow{c_j}) \}$

 \mathcal{Q}_1 is contained in \mathcal{Q}_2 with respect to a \mathcal{DLR} theory Σ

if and only if for every model ${\mathcal I}$ satisfying Σ

 $\mathsf{ANS}(\mathcal{Q}_1,\mathcal{I})\subseteq\mathsf{ANS}(\mathcal{Q}_2,\mathcal{I})$

The *evaluation* of a query Q of arity n given a \mathcal{DLR} theory Σ over a model \mathcal{I} satisfying Σ

is the set $\operatorname{ANS}(\mathcal{Q}, \mathcal{I})$ composed by n-tuples \overrightarrow{o} such that $\operatorname{ANS}(\mathcal{Q}, \mathcal{I}) = \{ \overrightarrow{o} \mid \mathcal{I} \models \bigvee_j \exists \overrightarrow{y_j} . \mathcal{Q}_j(\overrightarrow{o}, \overrightarrow{y_j}, \overrightarrow{c_j}) \}$

 \mathcal{Q}_1 is contained in \mathcal{Q}_2 with respect to a \mathcal{DLR} theory Σ

if and only if for every model ${\mathcal I}$ satisfying Σ

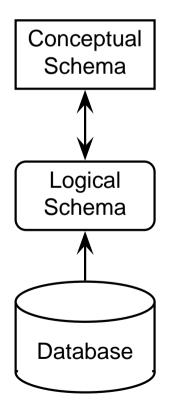
 $\mathsf{ANS}(\mathcal{Q}_1,\mathcal{I})\subseteq\mathsf{ANS}(\mathcal{Q}_2,\mathcal{I})$

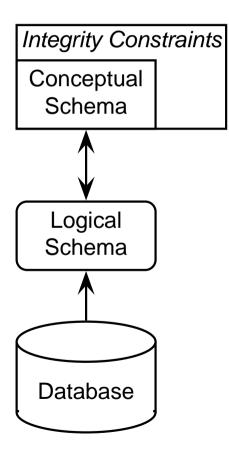
Containment of disjunctions of conjunctive queries under DLR (DLR_{US}) constraints is decidable in 2EXPTIME

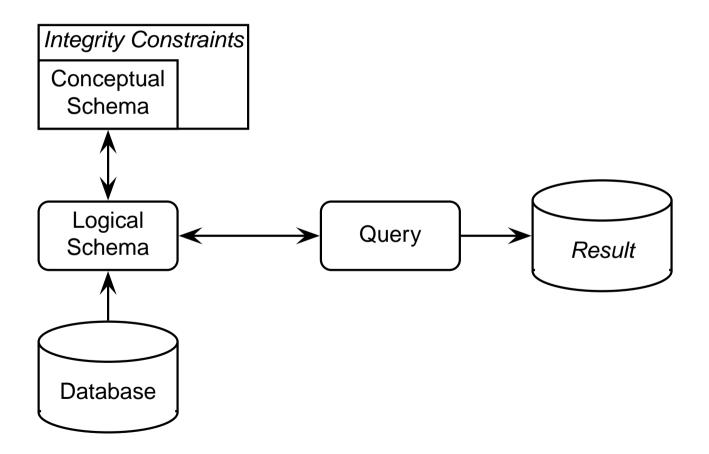
The iecom tool for Intelligent Conceptual Modelling

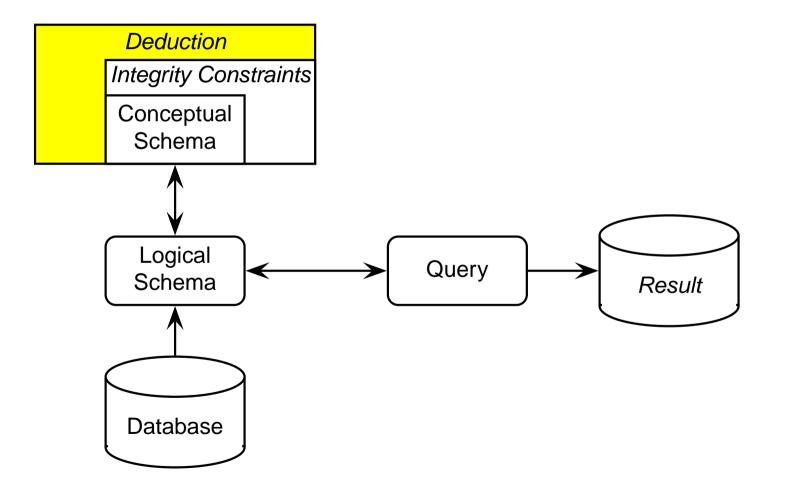
- iecom is an advanced CASE tool which allows the user to design *multiple* extended Entity-Relationship schemas or UML class diagrams with inter- and intra-schema *constraints*.
- Complete logical reasoning is employed by the tool to:
 - verify the specification,
 - infer implicit facts,
 - devise stricter constraints,
 - and manifest any local inconsistency.

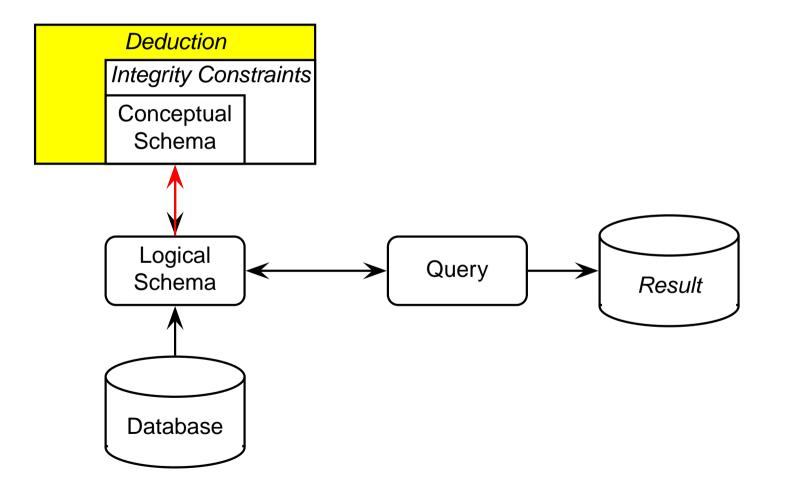
http://www.cs.man.ac.uk/~franconi/icom/

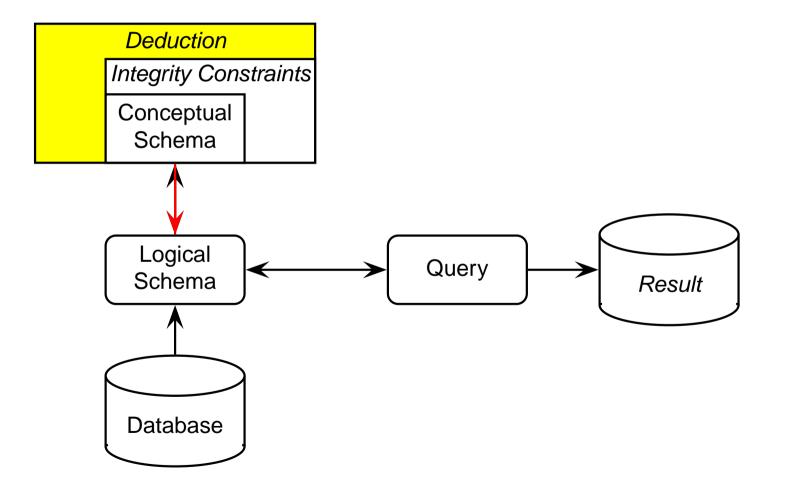


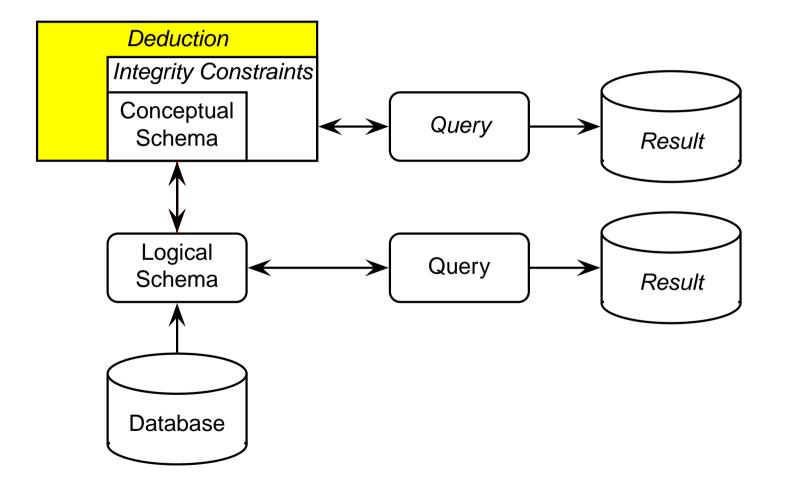


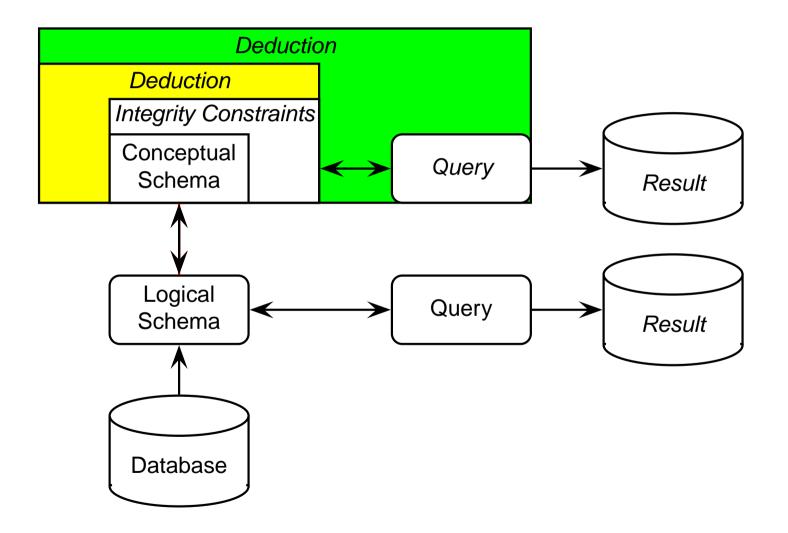


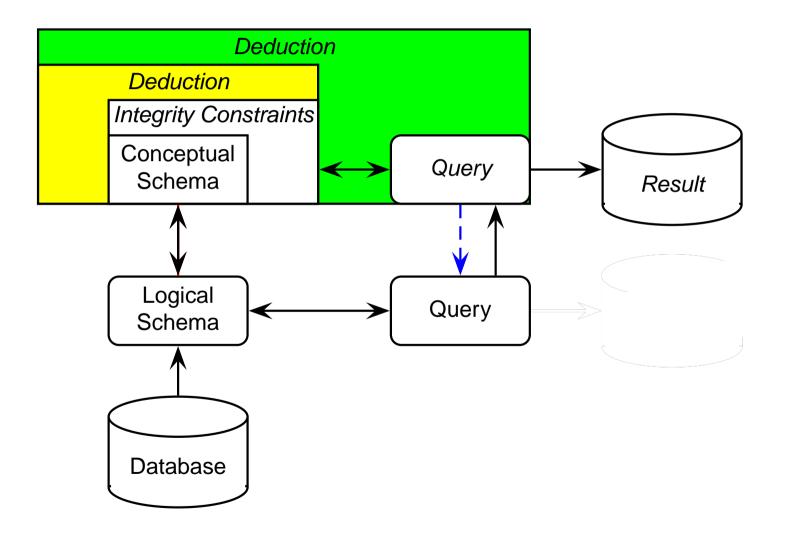




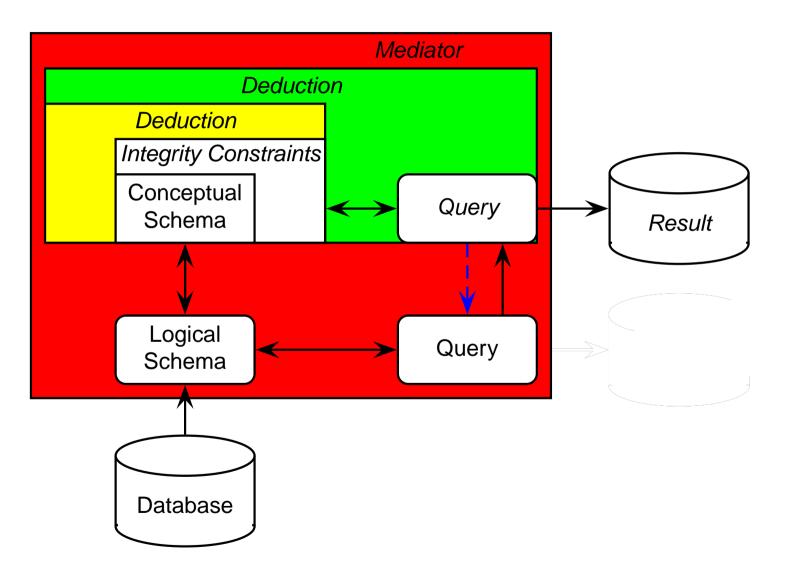




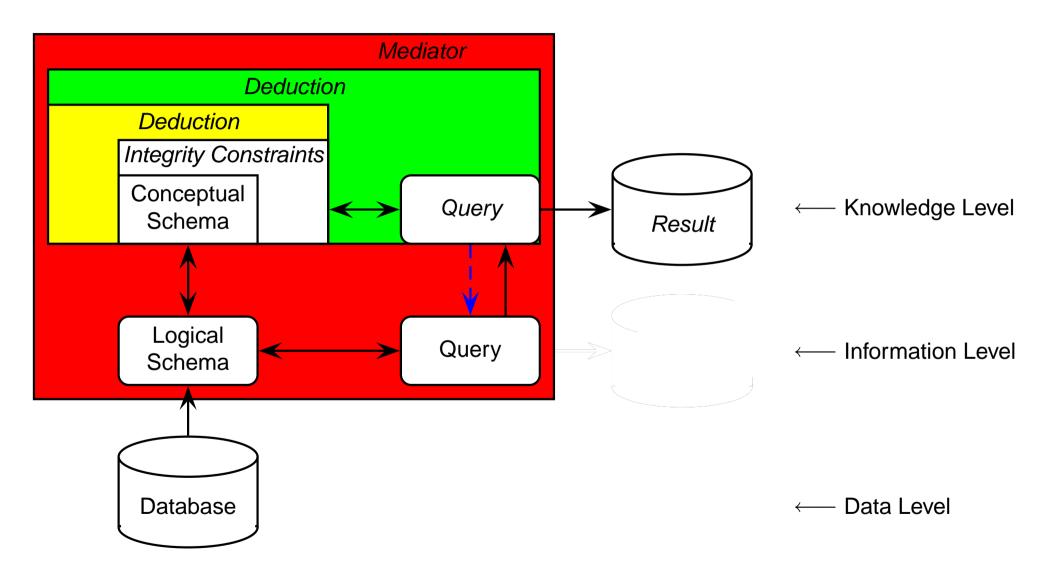




The role of logics in Information Systems a Mediator



The role of logics in Information Systems a Mediator



A Relational Database

CompanyEmployee/2;	CompanyProject/3
--------------------	------------------

CompanyEmployee		
name	project	
john	esprit-dwq	

CompanyProject			
project	manager	department	
esprit-dwq	enrico	cs-uman	
	•••	•••	

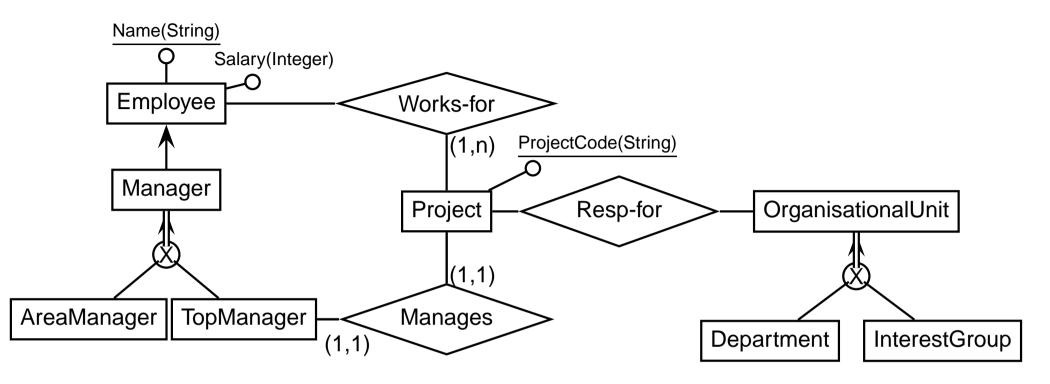
Query = "Tell me the projects in which John works, and their managers and departments."

 $\texttt{Query} \equiv$

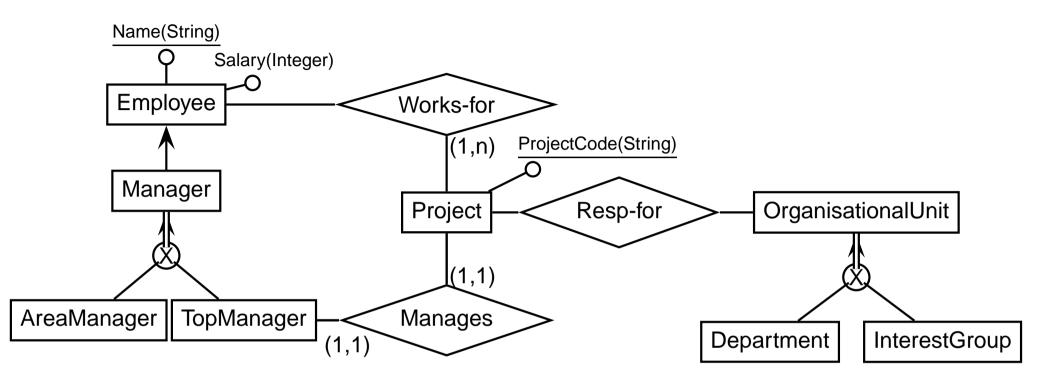
 $\pi_{\texttt{project},\texttt{manager},\texttt{dept}}\sigma_{\texttt{name=john}} (\texttt{CompanyEmployee} ~\bowtie_{\texttt{project}} \texttt{CompanyProject})$

 $\texttt{Query}(\texttt{x},\texttt{y},\texttt{z}) \Leftrightarrow \texttt{CompanyEmployee}(\texttt{john},\texttt{x}) \land \texttt{CompanyProject}(\texttt{x},\texttt{y},\texttt{z})$

Constraints from the Conceptual Schema



Constraints from the Conceptual Schema



Works-for $\sqsubseteq \text{emp}/2$: Employee $\sqcap \texttt{act}/2$: Project

Manages \sqsubseteq man/2 : TopManager \sqcap prj/2 : Project

 $\texttt{Employee} \sqsubseteq \exists^{=1}[\texttt{worker}](\texttt{Name} \sqcap \texttt{thename}/2:\texttt{String}) \sqcap \exists^{=1}[\texttt{payee}](\texttt{Salary} \sqcap \texttt{amount}/2:\texttt{Integer})$

$$\top \sqsubseteq \exists \leq 1 [\texttt{thename}](\texttt{Name} \sqcap \texttt{worker}/2 : \texttt{Employee})$$

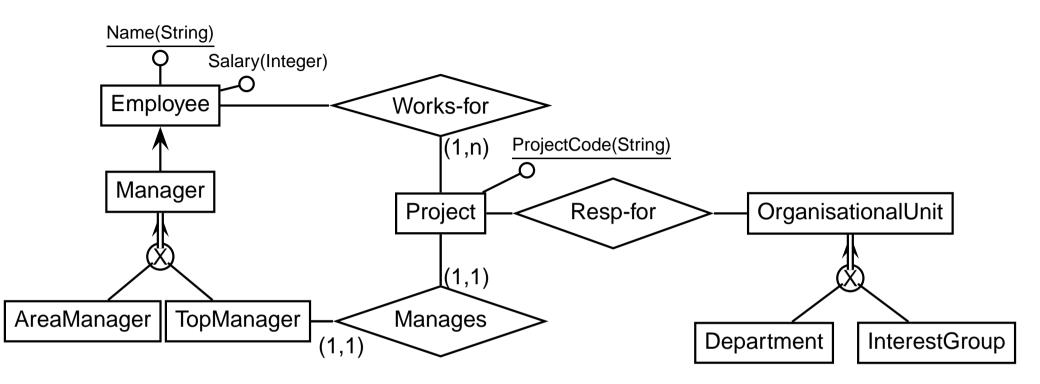
Manager \sqsubseteq Employee \sqcap (AreaManager \sqcup TopManager)

AreaManager \sqsubseteq Manager $\sqcap \neg \texttt{TopManager}$

TopManager \sqsubseteq Manager $\sqcap \exists^{=1}[man]$ Manages

Project $\sqsubseteq \exists^{\geq 1} [act] Works for \sqcap \exists^{=1} [prj] Manages$

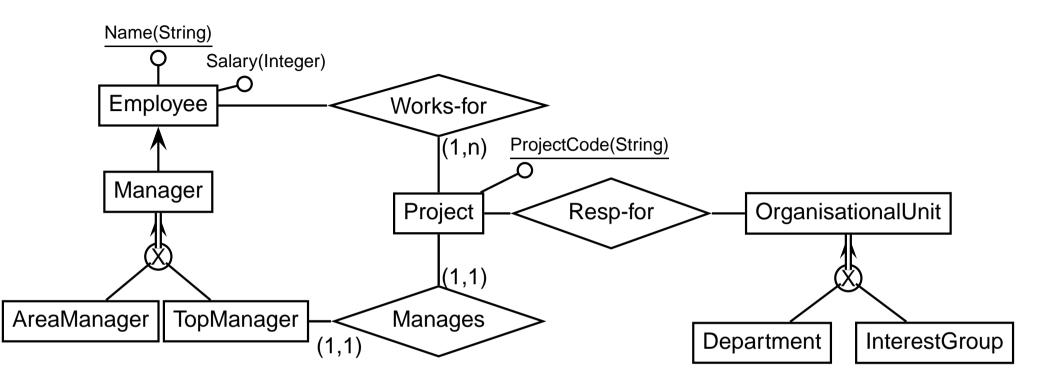
Integrity Constraints and Logical Implication



Managers are employees who do not work for a project (she/he just manages it):

Employee $\sqcap \neg (\exists^{\geq 1} [emp] Works for) \sqsubseteq Manager$ Manager $\sqsubseteq \neg (\exists^{\geq 1} [emp] Works for)$

Integrity Constraints and Logical Implication



Managers are employees who do not work for a project (she/he just manages it):

 $\texttt{Employee} \sqcap \neg (\exists^{\geq 1} [\texttt{emp}] \texttt{Works-for}) \sqsubseteq \texttt{Manager}$

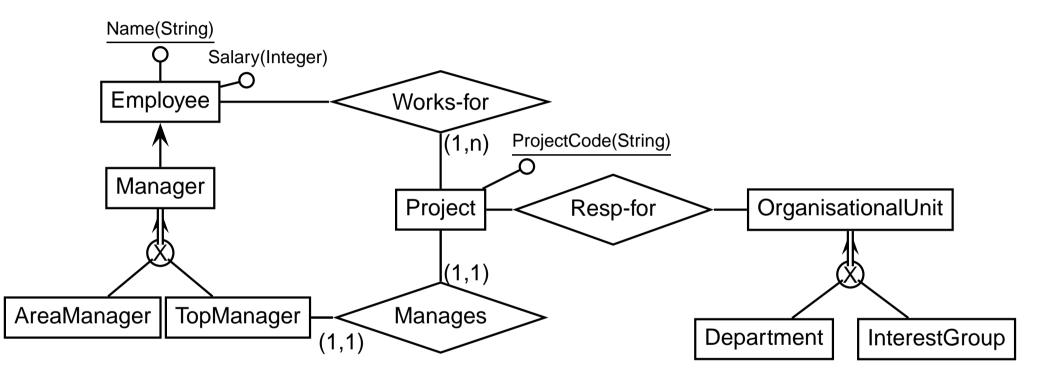
Manager $\sqsubseteq \neg (\exists^{\geq 1} [emp] Works for)$

 \rightarrow For every project, there is at least one employee who is not a manager:

 $\Sigma \models \texttt{Project} \sqsubseteq \exists^{\geq 1}[\texttt{act}](\texttt{Works-for} \sqcap \texttt{emp}: \neg\texttt{Manager})$

Querying the Virtual Database (local-as-view)

$$\begin{split} \mathtt{Q}(\mathtt{x}, \mathtt{y}, \mathtt{z}) &\Leftarrow \mathtt{Project}(\mathtt{x}) \land \mathtt{Works}\texttt{-for}(\texttt{john}, \mathtt{x}) \land \mathtt{TopManager}(\mathtt{y}) \land \mathtt{Manages}(\mathtt{y}, \mathtt{x}) \land \\ \neg \mathtt{InterestGroup}(\mathtt{z}) \land \mathtt{Resp}\texttt{-for}(\mathtt{z}, \mathtt{x}). \end{split}$$

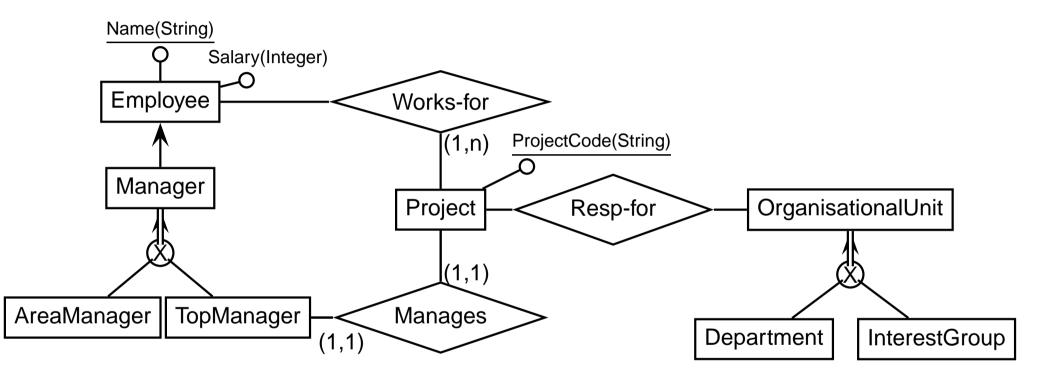


 $\texttt{CompanyEmployee}(\mathtt{x}, \mathtt{y}) \Leftarrow \texttt{Employee}(\mathtt{x}) \land \texttt{Project}(\mathtt{y}) \land \texttt{Works-for}(\mathtt{x}, \mathtt{y}).$

```
\begin{split} \texttt{CompanyProject}(x,y,z) &\Leftarrow \texttt{Project}(x) \land \texttt{Manager}(y) \land \texttt{Department}(z) \land \\ \texttt{Manages}(y,x) \land \texttt{Resp-for}(z,x). \end{split}
```

Querying the Virtual Database (local-as-view)

$$\begin{split} \mathtt{Q}(\mathtt{x}, \mathtt{y}, \mathtt{z}) &\Leftarrow \mathtt{Project}(\mathtt{x}) \land \mathtt{Works}\texttt{-for}(\texttt{john}, \mathtt{x}) \land \mathtt{TopManager}(\mathtt{y}) \land \mathtt{Manages}(\mathtt{y}, \mathtt{x}) \land \\ \neg \mathtt{InterestGroup}(\mathtt{z}) \land \mathtt{Resp}\texttt{-for}(\mathtt{z}, \mathtt{x}). \end{split}$$



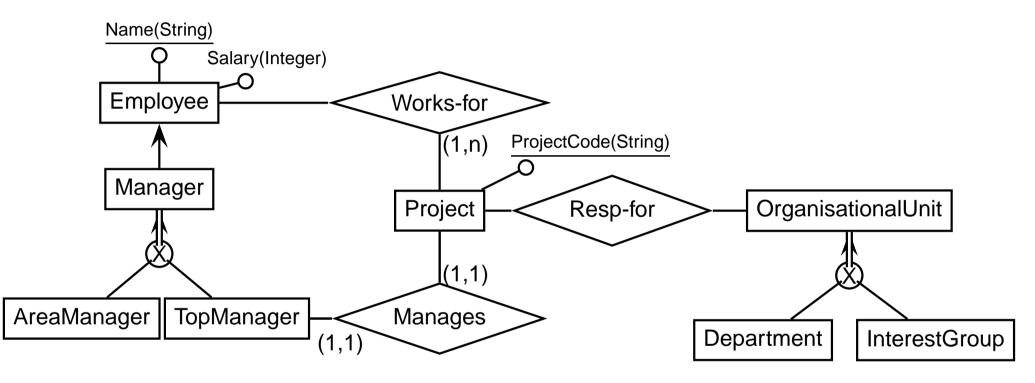
 $\texttt{CompanyEmployee}(\mathtt{x}, \mathtt{y}) \Leftarrow \texttt{Employee}(\mathtt{x}) \land \texttt{Project}(\mathtt{y}) \land \texttt{Works-for}(\mathtt{x}, \mathtt{y}).$

 $\begin{array}{l} \texttt{CompanyProject}(\mathtt{x}, \mathtt{y}, \mathtt{z}) \Leftarrow \texttt{Project}(\mathtt{x}) \land \texttt{Manager}(\mathtt{y}) \land \texttt{Department}(\mathtt{z}) \land \\ \texttt{Manages}(\mathtt{y}, \mathtt{x}) \land \texttt{Resp-for}(\mathtt{z}, \mathtt{x}). \end{array}$

 $\rightsquigarrow \texttt{Q}(\texttt{x},\texttt{y},\texttt{z}) \Leftarrow \texttt{CompanyEmployee}(\texttt{john},\texttt{x}) \land \texttt{CompanyProject}(\texttt{x},\texttt{y},\texttt{z})$

Querying the Virtual Database (global-as-view)

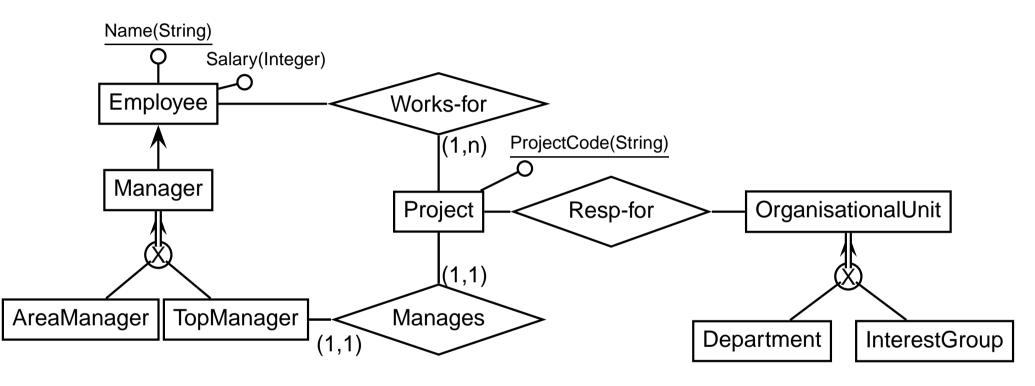
$$\begin{split} \mathtt{Q}(\mathtt{x}, \mathtt{y}, \mathtt{z}) &\Leftarrow \mathtt{Project}(\mathtt{x}) \land \mathtt{Works}\texttt{-for}(\texttt{john}, \mathtt{x}) \land \mathtt{TopManager}(\mathtt{y}) \land \mathtt{Manages}(\mathtt{y}, \mathtt{x}) \land \\ \neg \mathtt{InterestGroup}(\mathtt{z}) \land \mathtt{Resp}\texttt{-for}(\mathtt{z}, \mathtt{x}). \end{split}$$



```
\begin{array}{l} \texttt{Project}(\mathbf{x}) \Leftarrow \texttt{CompanyEmployee}(\mathbf{y},\mathbf{x}) \cup \texttt{CompanyProject}(\mathbf{x},\mathbf{y},\mathbf{z}) \\ \texttt{Works-for}(\mathbf{x},\mathbf{y}) \Leftarrow \texttt{CompanyEmployee}(\mathbf{x},\mathbf{y}) \\ \texttt{TopManager}(\mathbf{x}) \Leftarrow \texttt{CompanyProject}(\mathbf{y},\mathbf{x},\mathbf{z}) \\ \texttt{Manages}(\mathbf{x},\mathbf{y}) \Leftarrow \texttt{CompanyProject}(\mathbf{y},\mathbf{x},\mathbf{z}) \\ & \dots \end{array}
```

Querying the Virtual Database (global-as-view)

$$\begin{split} \mathtt{Q}(\mathtt{x}, \mathtt{y}, \mathtt{z}) &\Leftarrow \mathtt{Project}(\mathtt{x}) \land \mathtt{Works}\texttt{-for}(\texttt{john}, \mathtt{x}) \land \mathtt{TopManager}(\mathtt{y}) \land \mathtt{Manages}(\mathtt{y}, \mathtt{x}) \land \\ \neg \mathtt{InterestGroup}(\mathtt{z}) \land \mathtt{Resp}\texttt{-for}(\mathtt{z}, \mathtt{x}). \end{split}$$

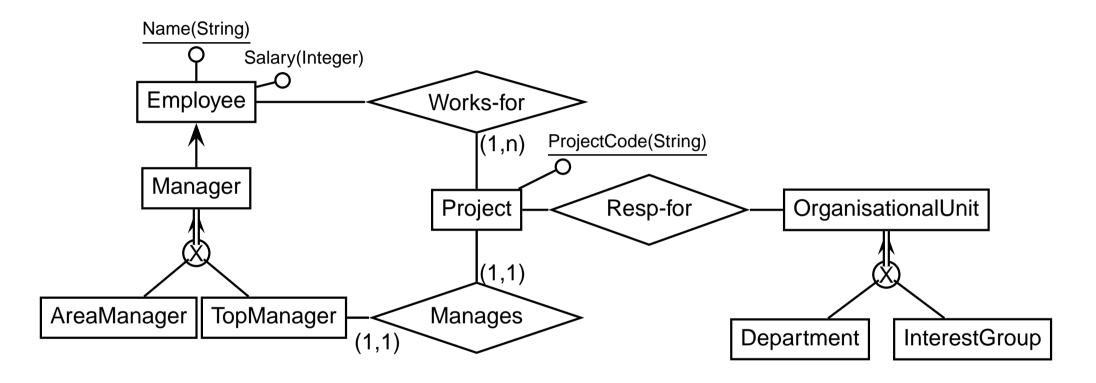


$$\begin{array}{l} \texttt{Project}(\mathbf{x}) \Leftarrow \texttt{CompanyEmployee}(\mathbf{y},\mathbf{x}) \cup \texttt{CompanyProject}(\mathbf{x},\mathbf{y},\mathbf{z}) \\ \texttt{Works-for}(\mathbf{x},\mathbf{y}) \Leftarrow \texttt{CompanyEmployee}(\mathbf{x},\mathbf{y}) \\ \texttt{TopManager}(\mathbf{x}) \Leftarrow \texttt{CompanyProject}(\mathbf{y},\mathbf{x},\mathbf{z}) \\ \texttt{Manages}(\mathbf{x},\mathbf{y}) \Leftarrow \texttt{CompanyProject}(\mathbf{y},\mathbf{x},\mathbf{z}) \\ & \dots \end{array}$$

 $\rightsquigarrow \texttt{Q}(\texttt{x},\texttt{y},\texttt{z}) \Leftarrow \texttt{CompanyEmployee}(\texttt{john},\texttt{x}) \land \texttt{CompanyProject}(\texttt{x},\texttt{y},\texttt{z})$

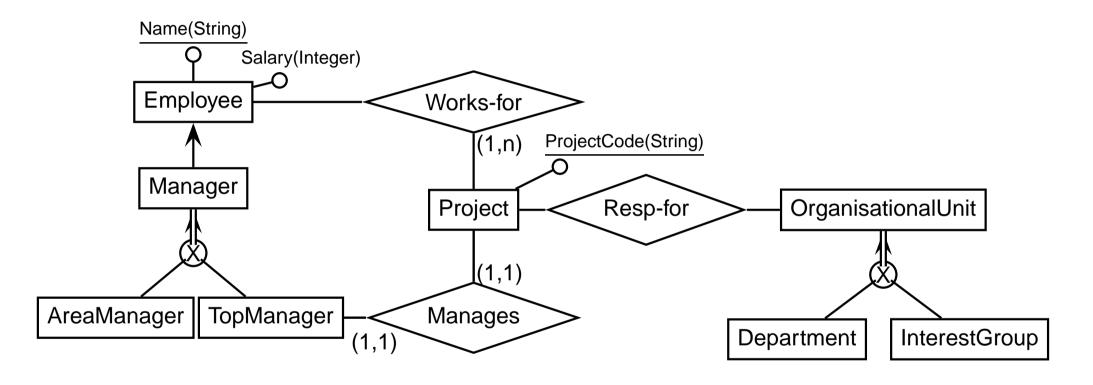
Reasoning on Queries

 $\mathtt{Q}(\mathtt{x}, \mathtt{y}) \Leftarrow \mathtt{Employee}(\mathtt{x}) \land \mathtt{Works}\texttt{-}\mathtt{for}(\mathtt{x}, \mathtt{y}) \land \mathtt{Manages}(\mathtt{x}, \mathtt{y}).$



Reasoning on Queries

 $\mathtt{Q}(\mathtt{x}, \mathtt{y}) \Leftarrow \mathtt{Employee}(\mathtt{x}) \land \mathtt{Works}\texttt{-}\mathtt{for}(\mathtt{x}, \mathtt{y}) \land \mathtt{Manages}(\mathtt{x}, \mathtt{y}).$



 \rightsquigarrow INCONSISTENT QUERY!