
(Description) Logics

for Information Modelling and Access

Enrico Franconi

franconi@cs.man.ac.uk

http://www.cs.man.ac.uk/˜franconi

Department of Computer Science, University of Manchester

Univ. of Liverpool – 22 January 2002

(1/26)

Summary

• Description Logics

• The role of logics in Information Systems

• Conceptual Modelling and Query Management

(2/26)

Description Logics – the standard view

• Expressive decidable fragments of (first-order) classical logic

• Close correspondence with modal logics (e.g.,ALC vs. K)

• Sound and complete algorithms implemented in efficient reasoners

• Knowledge representation formalism derived by semantic networks and

frames in Artificial Intelligence

• Close correspondence with well known database conceptual data models

(3/26)

Knowledge representation is about objects

Description logics describe classes of objects (concepts) and their

inter-relationships (roles).

TheALC concept expression

Professor u ∃TEACHES. UG-Course u ∀TEACHES. CS-Course

corresponds to the K formula

Professor ∧3UG -Course ∧2CS -Course

where the accessibility relation is interpreted as the TEACHES relation

(4/26)

Description Logics are multi-modal

TheALC concept expression

Professor u ∃TEACHES. UG-Course u ∃DEGREE. Bs

corresponds to the Km formula (over the same object domain)

Professor ∧3TEACHESUG -Course ∧3DEGREEBs

(5/26)

Modalities (as roles) may have different properties

TheALC concept expression

Professor u ∃TEACHES. UG-Courseu

∃IS-PART. (Staff u ∃IS-LOCATED. Department)

corresponds to the Km ∪K4m formula (over the same object domain)

Professor ∧3TEACHESUG -Course∧

3IS-PART (Staff ∧3IS-LOCATEDDepartment)

where TEACHES is a Km modality and IS-PART, IS-LOCATED are K4m

modalities

(6/26)

Relational structures

• “Modal logics are not appropriate as a representational tool since they do not

always capture the details of the models”

• Do we care?

• No: this is not a bug, it is a feature!

Why?

• If a formula is satisfiable in a model, it is also satisfiable in a model with the

indistinguishable property. Hence, reasoning is not affected.

(7/26)

Relational structures

• “Modal logics are not appropriate as a representational tool since they do not

always capture the details of the models”

• Do we care?

• No: this is not a bug, it is a feature!

Why?

• If a formula is satisfiable in a model, it is also satisfiable in a model with the

indistinguishable property. Hence, reasoning is not affected.

(7/26)

Relational structures

• “Modal logics are not appropriate as a representational tool since they do not

always capture the details of the models”

• Do we care?

• No: this is not a bug, it is a feature!

Why?

• If a formula is satisfiable in a model, it is also satisfiable in a model with the

indistinguishable property. Hence, reasoning is not affected.

(7/26)

Additional genuine modalities

• Time, space, belief, etc: combination of modal logics over distinct domains

(i.e., the object and the modal domains)

• Example ofALC ∪ LTL concept expression:

Professor u3(∃TEACHES. UG-Course) u ∀2TEACHES. CS-Course

• Asymmetric extension

(8/26)

Global axioms

∃TEACHES. Course v (Student u ∃DEGREE. Bs) t Prof

Prof v ∃DEGREE. Ms

∃DEGREE. Ms v ∃DEGREE. Bs

Ms u Bs v ⊥

• Axioms should be satisfied by each object in the domain

• Satisfiability and logical implication inALC (Km) become

EXPTIME-complete

(9/26)

Global axioms, II

• K
H
m

extends Km with statements on inclusions between modalities

• Decision problems for KH
m

and K4m are in PSPACE

• The universal modality can be encoded in K
H
m
∪K4m, and axioms can be

internalised:

• Define new transitive modality U that includes all other modalities

• Satisfiability of φ w.r.t. ψ1 → ϕ1, . . . , ψn → ϕn

is equivalent to satisfiability of

φ ∧2U((ψ1 → ϕ1) ∧ . . . ∧ (ψn → ϕn))

• Satisfiability and logical implication in K
H
m
∪K4m are EXPTIME-complete

• FaCT implements K
H
m
∪K4m

(10/26)

n-ary Relations

• Relations between objects in the world may necessarily involve more than just

two objects

• Full fledged relational structures are needed, beyond Kripke structures

• We want to maintain the modal logic flavour

• DLR properly extendsALC with n-ary relations

(11/26)

DLR

R → >n | RN | ¬R | R1 uR2 | R1 tR2 | Ui/n : C

C → > | CN | ¬C | C1 u C2 | C1 t C2 | ∃[Ui]R | ∃
≶k[Ui]R

Works-for v subj/2 : Employee u obj/2 : Project

Manager v Employee u ¬∃[subj]Works-for

DLR includesALCQI : if R is a binary relation (i.e., a role) with named

attributes first and second then

∃R. C ≡ ∃[first](R u (second/2 : C))

Reasoning inDLR is EXPTIME-complete

(12/26)

DLR syntax DLR semantics RD encoding

>n >In ⊆ (∆I)n >n

RN RNI ⊆ >In CRN

¬R >In \RI ¬CR

R1 uR2 R1
I ∩R2

I CR1 u CR2

Ui/n : C {〈d1, . . . , dn〉 ∈ >
I
n | di ∈ CI} >n u ∀Ui. C

> >I = ∆I >

CN CNI ⊆ >I CN

¬C >I \ CI ¬C

C1 u C2 CI
1 ∩ CI

2 C1 u C2

∃[Ui]R {d ∈ >I | ∃〈d1, . . . , dn〉 ∈ R. di = d} ∃U−

i . CR

∃≶k[Ui]R {d ∈ >I |]{〈d1, . . . , dn〉 ∈ R | di = d} ≶ k} ≶ kU−

i . CR

(13/26)

Encoding conceptual data models inDLR

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., OIL)

• Theorems prove that a conceptual schema and its encoding asDLR

inclusion dependencies constrain every database state in the same way – i.e.,

the models of theDLR theory correspond to the legal database states of the

conceptual schema, and vice-versa.

(14/26)

Encoding conceptual data models inDLR

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., OIL)

• Theorems prove that a conceptual schema and its encoding asDLR

inclusion dependencies constrain every database state in the same way – i.e.,

the models of theDLR theory correspond to the legal database states of the

conceptual schema, and vice-versa.

(14/26)

Classical Integrity Constraints inDLR

• arbitrary boolean constructs

• unary inclusion dependencies (e.g., referential integrity)

• special forms of typed inclusion dependencies

• existence and exclusion dependencies

• unary functional dependencies

• view definitions

(15/26)

Extensions ofDLR

DLRreg : regular expressions and recursive views (beyond FOL)

DLRUS : combination with temporal constructs to model temporal databases

DLRkey : general key constraints

(16/26)

Queries underDLR constraints

• A query is an open FOL formula, whose predicates may be constrained by a

DLR theory

• We consider only the conjunctive existential fragment (the conjunctive

queries, or non-recursive datalog queries)

• Example:

Q1(x, y) :- (¬Professor)(x) ∧ TEACHES(x, y) ∧

(UG-Course t CS-Course)(x)

(17/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

Semantics of Evaluation and Containment

The evaluation of a queryQ of arity n given aDLR theory Σ

over a model I satisfying Σ

is the set ANS(Q, I) composed by n-tuples −→o such that

ANS(Q, I) = {−→o | I |=
∨

j ∃
−→yj .Qj(−→o ,−→yj ,−→cj)}

Q1 is contained inQ2 with respect to aDLR theory Σ

if and only if for every model I satisfying Σ

ANS(Q1, I) ⊆ ANS(Q2, I)

Containment of disjunctions of conjunctive queries underDLR (DLRUS)

constraints is decidable in 2EXPTIME

(18/26)

The i•com tool for Intelligent Conceptual Modelling

• i•com is an advanced CASE tool which allows the user to design multiple

extended Entity-Relationship schemas or UML class diagrams with inter- and

intra-schema constraints.

• Complete logical reasoning is employed by the tool to:

• verify the specification,

• infer implicit facts,

• devise stricter constraints,

• and manifest any local inconsistency.

http://www.cs.man.ac.uk/∼franconi/icom/

(19/26)

The role of logics in Information Systems

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Integrity Constraints

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Deduction

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Deduction

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

(20/26)

The role of logics in Information Systems

Mediator

Deduction

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

a Mediator

(20/26)

The role of logics in Information Systems

Mediator

Deduction

Query
Result

Deduction

Integrity Constraints

Query
Result

Database

Logical
Schema

Conceptual
Schema

←− Data Level

←− Information Level

←− Knowledge Level

a Mediator

(20/26)

A Relational Database

CompanyEmployee/2; CompanyProject/3

CompanyEmployee

name project

john esprit-dwq

· · · · · ·

CompanyProject

project manager department

esprit-dwq enrico cs-uman

· · · · · · · · ·

Query = “Tell me the projects in which John works, and their managers and departments.”

Query ≡

πproject,manager,dept.σname=john (CompanyEmployee ./project CompanyProject)

Query(x, y, z)⇔ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)

(21/26)

Constraints from the Conceptual Schema

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(22/26)

Constraints from the Conceptual Schema

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](Name u thename/2 : String)u∃=1[payee](Salary u amount/2 : Integer)

> v ∃≤1[thename](Name u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages
· · ·

(22/26)

Integrity Constraints and Logical Implication

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager

Manager v ¬(∃≥1[emp]Works-for)

(23/26)

Integrity Constraints and Logical Implication

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager

Manager v ¬(∃≥1[emp]Works-for)

; For every project, there is at least one employee who is not a manager:

Σ |= Project v ∃≥1[act](Works-for u emp : ¬Manager)

(23/26)

Querying the Virtual Database (local-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

CompanyEmployee(x, y) ⇐ Employee(x) ∧ Project(y) ∧ Works-for(x, y).

CompanyProject(x, y, z) ⇐ Project(x) ∧ Manager(y) ∧ Department(z) ∧

Manages(y, x) ∧ Resp-for(z, x).

(24/26)

Querying the Virtual Database (local-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

CompanyEmployee(x, y) ⇐ Employee(x) ∧ Project(y) ∧ Works-for(x, y).

CompanyProject(x, y, z) ⇐ Project(x) ∧ Manager(y) ∧ Department(z) ∧

Manages(y, x) ∧ Resp-for(z, x).

; Q(x, y, z)⇐ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)

(24/26)

Querying the Virtual Database (global-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Project(x) ⇐ CompanyEmployee(y,x) ∪ CompanyProject(x, y, z)

Works-for(x,y) ⇐ CompanyEmployee(x,y)

TopManager(x) ⇐ CompanyProject(y,x, z)

Manages(x,y) ⇐ CompanyProject(y,x, z)

· · ·

(25/26)

Querying the Virtual Database (global-as-view)
Q(x, y, z)⇐ Project(x) ∧ Works-for(john, x) ∧ TopManager(y) ∧ Manages(y, x) ∧

¬InterestGroup(z) ∧ Resp-for(z, x).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

Project(x) ⇐ CompanyEmployee(y,x) ∪ CompanyProject(x, y, z)

Works-for(x,y) ⇐ CompanyEmployee(x,y)

TopManager(x) ⇐ CompanyProject(y,x, z)

Manages(x,y) ⇐ CompanyProject(y,x, z)

· · ·

; Q(x, y, z)⇐ CompanyEmployee(john, x) ∧ CompanyProject(x, y, z)
(25/26)

Reasoning on Queries

Q(x, y)⇐ Employee(x) ∧ Works-for(x, y) ∧ Manages(x, y).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

(26/26)

Reasoning on Queries

Q(x, y)⇐ Employee(x) ∧ Works-for(x, y) ∧ Manages(x, y).

Employee

Name(String)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager
Department InterestGroup

OrganisationalUnit

X
X

Works-for

Manages

Resp-for

(1,n)

(1,1)

(1,1)

; INCONSISTENT QUERY!

(26/26)

	@semtitle
	Summary
	Description Logics -- the standard view
	Knowledge representation is about objects
	Description Logics are multi-modal
	Modalities (as roles)
may have different properties
	Relational structures
	Additional genuine modalities
	Global axioms
	Global axioms, II
	n-ary Relations
	DLR
	
	Encoding conceptual data models in DLR
	Classical Integrity Constraints in DLR
	Extensions of DLR
	Queries under DLR constraints
	Semantics of Evaluation and Containment
	The icom tool for Intelligent Conceptual Modelling
	The role of logics in Information Systems
	A Relational Database
	Constraints from the Conceptual Schema
	Integrity Constraints and Logical Implication
	Querying the Virtual Database (local-as-view)
	Querying the Virtual Database (global-as-view)
	Reasoning on Queries

