Description Logics and Logics

Enrico Franconi

franconi@cs.man.ac.uk

Summary

- Description Logics
- $\mathcal{K}_{(m)}$, multi-modal Normal Modal Logic \mathcal{K}
- Propositional Dynamic Modal Logics
- Propositional μ -calculus
- Propositional Temporal Modal Logics
- $\ddot{\mathcal{L}}^n$ FOL fragments
- Guarded Fragment of FOL

What is a Description Logic

A logical system, based on **objects** (individuals), **classes** (concepts), and **relationships** (roles), constituted by:

- a description language, which specifies how to construct concept and relationship expressions,
- a *knowledge base language*, which specifies properties of objects, concepts, and relationships,
- a set of (decidable) reasoning services over a knowledge base, with sound and complete procedures.

An example

```
\Sigma: TBox \\ \exists {\tt TEACHES.Course} \sqsubseteq \neg {\tt Undergrad} \sqcup {\tt Prof}  ABox \\ {\tt TEACHES(mary,cs415),Course(cs415),} \\ {\tt Undergrad(mary)}  \Sigma \models {\tt Prof(mary)}
```

Description Logics: syntax

C, D -	\rightarrow	$A \mid$	A	(primitive concept)
		$\neg C \mid$	$(\mathtt{not}\ C)$	(complement)
		$C\sqcap D\mid$	$(ext{and} \ C \ D \ \ldots)$	(conjunction)
		$C \sqcup D \mid$	$(\texttt{or}\ C\ D\ \ldots)$	(disjunction)
		$\forall R.C \mid$	$(\mathtt{all}\ R\ C)$	(universal quant.)
		$\exists R.C \mid$	$({\tt some}\ R\ C)$	(existential quant.)

TBox: $(C \stackrel{.}{\sqsubseteq} D)$, $(R \stackrel{.}{\sqsubseteq} S)$

ABox: C(a), R(a,b)

 $\overline{\mathcal{ALC}}$

reg

$$R^{-1} \mid \text{ (inverse } R) \text{ (inverse role)}$$

 \mathcal{I}

$$\geq n \ R. \ C \mid$$
 (atleast $n \ R \ C$) (minimum cardin.)
 $\leq n \ R. \ C \mid$ (atmost $n \ R \ C$) (maximum cardin.)

2

$$f:C\mid \qquad \text{(in }f\ C) \qquad \text{(selection)} \ f\uparrow\mid \qquad \text{(undefined }f) \qquad \text{(undefinedness)}$$

$$f$$
 f (feature) $f,g o p \mid p$ (primitive feature) $f \circ g$ (compose $f g$) (feature chain)

 \mathcal{F}

$$\{a,b\dots\}$$
 (oneof $a\ b$...) (enumeration)

Description Logics: semantics

$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	$A(\gamma)$
$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	$\neg F_C(\gamma)$
$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$	$F_C(\gamma) \wedge F_D(\gamma)$
$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$	$F_C(\gamma) \vee F_D(\gamma)$
$(\forall R. C)^{\mathcal{I}} = \{i \in \Delta^{\mathcal{I}} \mid$	$\forall x. F_R(\gamma, x) \Rightarrow F_C(x)$
$\forall j. R^{\mathcal{I}}(i,j) \Rightarrow C^{\mathcal{I}}(j)$	
$(\exists R. C)^{\mathcal{I}} = \{ i \in \Delta^{\mathcal{I}} \mid$	$\exists x. F_R(\gamma, x) \land F_C(x)$
$\exists j. R^{\mathcal{I}}(i,j) \wedge C^{\mathcal{I}}(j)$	

$$(\geq n \, R. \, C)^{\mathcal{I}} = \{i \in \Delta^{\mathcal{I}} \mid \\ \sharp \{j \mid R^{\mathcal{I}}(i,j) \wedge C^{\mathcal{I}}(j)\} \geq n \}$$

$$(\leq n \, R. \, C)^{\mathcal{I}} = \{i \in \Delta^{\mathcal{I}} \mid \\ \sharp \{j \mid R^{\mathcal{I}}(i,j) \wedge C^{\mathcal{I}}(j)\} \geq n \}$$

$$(f : C)^{\mathcal{I}} = \{i \in \Delta^{\mathcal{I}} \mid \\ \sharp \{j \mid R^{\mathcal{I}}(i,j) \wedge C^{\mathcal{I}}(j)\} \leq n \}$$

$$(f : C)^{\mathcal{I}} = \{i \in \text{dom } f^{\mathcal{I}} \mid C^{\mathcal{I}}(f^{\mathcal{I}}(i)) \}$$

$$(f : C)^{\mathcal{I}} = \{i \in \text{dom } f^{\mathcal{I}} \mid C^{\mathcal{I}}(f^{\mathcal{I}}(i)) \}$$

$$(f \uparrow)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus \text{dom } f^{\mathcal{I}}$$

$$(f \uparrow)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus \text{dom } f^{\mathcal{I}}$$

$$(f \land b)^{\mathcal{I}} = \{a^{\mathcal{I}}, b^{\mathcal{I}} \dots \}$$

$$(f \land b)^{\mathcal{I}} = \{a^{\mathcal{I}}, b^{\mathcal{I}} \dots \}$$

$$(f \land c)^{\mathcal{I}} = \{a^{\mathcal{I}}, b^{\mathcal{I}} \dots \}$$

$$(f \land c)^{\mathcal{I}} = R^{\mathcal{I}} \cup S^{\mathcal{I}}$$

$$(f \land c)^{\mathcal{I}} = R^{\mathcal{I}} \cup S^{\mathcal{I}}$$

$$(f \land c)^{\mathcal{I}} = R^{\mathcal{I}} \cup S^{\mathcal{I}}$$

$$(f \land c)^{\mathcal{I}} = \{(i, i) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid C^{\mathcal{I}}(i) \}$$

$$(f \land c)^{\mathcal{I}} = \{(i, i) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land c)^{\mathcal{I}} = \{(i, j) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid F_{\mathcal{I}}(\alpha, \beta)$$

$$(f \land$$

+

Another Example

```
TEACHES(paul,cs415), Course(cs415),  \Big( \exists \texttt{FRIEND.} \big( \{ \texttt{paul} \} \sqcap \ \leq \texttt{1DEGREE} \big) \Big) (\texttt{john})
```

 $\Sigma \models \mathtt{Student(paul)}$

\mathcal{ALC} and $\mathcal{K}_{(m)}$

\mathcal{ALC}	$\mathcal{K}_{(m)}$
$C^{\mathcal{I}}$ is a set of individuals	$lpha_C^{\mathcal{I}}$ is a set of worlds
$R^{\mathcal{I}}$ is a set of pairs of individuals	R is an accessibility relation
A	P_A
$C\sqcap D$	$\alpha_C \wedge \alpha_D$
$C\sqcup D$	$\alpha_C \vee \alpha_D$
$\neg C$	$\neg \alpha_C$
$\forall R.C$	$\square_R \alpha_C$
$\exists R. C$	$\Diamond_R \alpha_C$
$o \in C^{\mathcal{I}}$	$\mathcal{I}, o \models \alpha_C$
∃T.C ⊑ ¬U⊔P	$\diamondsuit_{\mathtt{T}}\mathtt{C} \to \neg \mathtt{U} \vee \mathtt{P}$
$\mathtt{U}(\mathtt{m}),\mathtt{T}(\mathtt{m},\mathtt{c}),\mathtt{C}(\mathtt{c})$	$\{\mathbf{U}\} \xrightarrow{T} \{\mathbf{C}\}$ $\stackrel{\circ}{\text{m}} \xrightarrow{C}$
$\Sigma \models \mathtt{P}(\mathtt{m})$	$\{\mathbf{U},\mathbf{P}\}_{T} \{\mathbf{C}\}_{C}$

Some Results on satisfiability

• \mathcal{ALC} : PSPACE-complete

• \mathcal{ALC}^+ : PSPACE-complete

• \mathcal{ALCO} : PSPACE-complete

 \bullet \mathcal{ALC} with axioms: EXPTIME-complete

\mathcal{ALC}_{reg} and \mathcal{PDL}

- The domain of the interpretation is to be read as a set of program states.
- Concepts are to be interpreted as the set of states in which they hold.
- Roles are to be interpreted as *nondeterministic programs*.

\mathcal{ALC}_{reg} and \mathcal{PDL}

- $\forall R.C$ as $[\mathbf{R}]\mathbf{C}$: "whenever program R terminates, proposition C holds on termination".
- $\mathbf{R_1} \circ \mathbf{R_2}$ as "run R_1 and R_2 consecutively".
- $\mathbf{R_1} \sqcup \mathbf{R_2}$ as "nondeterministically do R_1 or R_2 ".
- \mathbf{R}^* as "repeat program R a nondeterministically chosen number of times ≥ 0 ".
- id(C) as "proceed without changing the program state iff proposition C holds".

• \mathbf{R}^{-1} as "run R in reverse" (\mathcal{ALCI}_{reg} and \mathcal{CPDL}).

+

Internalization of axioms

$$\psi \models \varphi \quad \leadsto \quad \models [\nu] \, \psi \Rightarrow \varphi$$

$$C \stackrel{.}{\sqsubseteq} D \models \varphi \quad \leadsto \quad \models [\nu] (\alpha_C \Rightarrow \alpha_D) \Rightarrow \alpha_{\varphi}$$

$$\nu \doteq (R_1 \vee R_1^{-1} \vee \ldots \vee R_n \vee R_n^{-1})^*$$

- Reasoning with theories is reduced to satisfiability of single formulas
- The complexity does not change

Results: satisfiability

$$\mathcal{ALC}_{reg} \iff \mathcal{PDL}$$
 \uparrow
 $\mathcal{ALCI}_{reg} \iff \mathcal{CPDL}$
 \uparrow
 $\mathcal{ALCFI}_{reg}^- \iff \mathcal{DCPDL}$
 \uparrow
 \mathcal{ALCFI}_{reg}
 \uparrow
 $\mathcal{ALCQI}_{reg}^- \iff \mathcal{CPDL} + \text{graded modalities}$
 \uparrow
 \mathcal{ALCQI}_{reg}

- Satisfiability is EXPTIME-complete (subsumption and logical implication wrt a free TBox can be reduced to satisfiability).
- \mathcal{CPDL} has the finite model property, \mathcal{DCPDL} not.

Results: satisfiability with individuals

$$\mathcal{ALC}_{reg}$$
 \iff \mathcal{PDL}
 \uparrow
 \mathcal{ALCQO}_{reg} \iff \mathcal{PDL} + graded modalities and nominals

 \mathcal{ALCI}_{reg} \iff \mathcal{CPDL}
 \uparrow
 \mathcal{ALCIO}_{reg} \iff \mathcal{CPDL} + nominals

 \mathcal{ALCIO}_{reg} \iff \mathcal{CPDL} + \mathcal{CPDL}
 \uparrow
 \mathcal{ALCQI}_{reg} \iff \mathcal{CPDL}

Satisfiability is EXPTIME-complete.

So what?

- DL extend modal logic in interesting ways:
 - Reasoning in DL is always reasoning with theories.
 - Nominals.
 - Graded modalities.

• Results:

- \mathcal{ALC} theories are EXPTIME-complete.
- \mathcal{ALCQI}_{reg} theory reduces to \mathcal{ALC}_{reg} theory (\mathcal{DCPDL} to \mathcal{PDL}).
- \mathcal{ALCIO}_{reg} theory reduces to \mathcal{ALC}_{reg} theory $(\mathcal{CPDL} + \text{nominals to } \mathcal{PDL})$.
- \mathcal{ALCQI}_{reg} + Abox theory reduces to \mathcal{ALC}_{reg} theory.

Inductive Definitions

- An Empty-List is a List.
- A Node, that has exactly one SUCCESSOR that is a List, is a List.
- Nothing else is a LIST.

Node
$$\doteq \neg \texttt{Empty-List}$$

List $\doteq \texttt{Empty-List} \sqcup$
(Node $\sqcap \leq 1 \; \texttt{SUCCESSOR} \; \sqcap \; \exists \texttt{SUCCESSOR}. \; \texttt{List}$)

$$\Delta = \{\mathtt{a},\mathtt{b},\mathtt{nil}\}$$
 $\mathtt{a} \circ \longrightarrow \mathtt{nil}$ Node $\mathcal{I} = \{\mathtt{a},\mathtt{b}\}$ Empty-List $\mathcal{I} = \{\mathtt{nil}\}$ $\mathtt{b} \circ \mathtt{nil}$ SUCCESSOR $\mathcal{I} = \{\langle \mathtt{a},\mathtt{nil} \rangle, \langle \mathtt{b},\mathtt{b} \rangle\}$

With descriptive semantics:

$$\mathtt{List}^{\mathcal{I}} = \{\mathtt{a},\mathtt{nil}\};\,\mathtt{List}^{\mathcal{I}} = \{\mathtt{a},\mathtt{b},\mathtt{nil}\}$$

With least fixpoint semantics:

$$\mathtt{List}^{\mathcal{I}} = \{\mathtt{a}, \mathtt{nil}\}$$

Propositional μ -calculus

Node
$$\doteq \neg \texttt{Empty-List}$$
 List $\doteq \mu X$. (Empty-List \sqcup (Node $\sqcap \leq 1$ SUCCESSOR $\sqcap \exists \texttt{SUCCESSOR}$. X))

$$C \rightarrow \dots \mid \mu X \cdot C \mid \nu X \cdot C \mid X$$

$$\mu \mathcal{ALC} \iff \text{Propositional } \mu\text{-calculus}$$

$$\uparrow$$

$$\mu \mathcal{ALCQI}$$

- Satisfiability is EXPTIME-complete.
- Can express well-foundedness of relations, useful to describe finite structures.
- Open problems: individuals.

Tense Logic

(point ontology)

- Tense logic is a propositional modal logic, interpreted over temporal structure $\mathcal{T} = (\mathcal{P}, <)$, where \mathcal{P} is a set of time points and < is a strict partial order on \mathcal{P} .
- Mortal \sqsubseteq LivingBeing $\sqcap \forall$ LIVES-IN.Place \sqcap (LivingBeing \mathcal{U} ($\square^+ \neg$ LivingBeing))
- Satisfiability in \mathcal{ALCT} the combination of tense logic with $\mathcal{K}_{(m)}$ over a linear, unbounded, and discrete temporal structure has the same complexity as its base (PSPACE-complete).
- Satisfiability in \mathcal{ALCQIT}_{reg} with ABox the combination of tense logic with \mathcal{ALCQI}_{reg} with ABox over a linear, unbounded, and discrete temporal structure has the same complexity as its base (EXPTIME-complete).

\mathcal{HS} : Interval Temporal Propositional Modal Logic

- \mathcal{HS} is a propositional modal logic interpreted over an interval set $\mathcal{T}_{<}^*$, defined as the the set of all closed intervals $[u,v] \doteq \{x \in \mathcal{P} \mid u \leq x \leq v, u \neq v\}$ in some temporal structure \mathcal{T} .
- \mathcal{HS} extends propositional logic with modal formulæ $\langle R \rangle \phi$ and $[R]\phi$ where R is a basic Allen's algebra temporal relation:

before
$$(i, j)$$

meets (i, j)
overlaps (i, j)
starts (i, j)
during (i, j)
finishes (i, j)

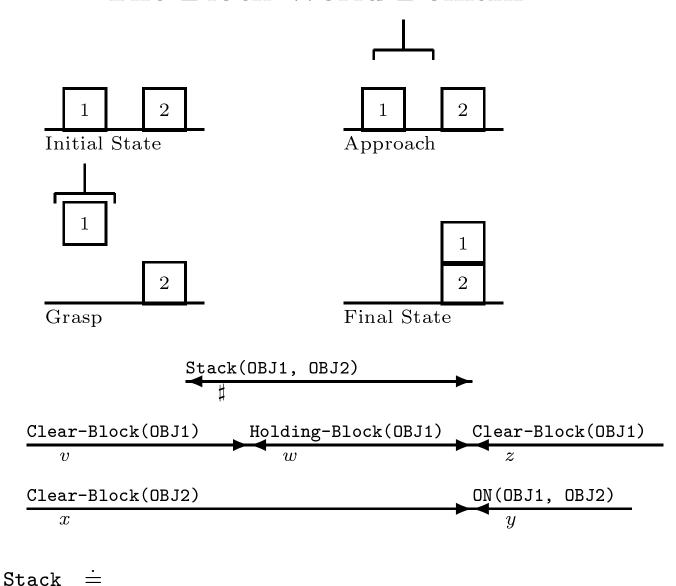
- Mortal \doteq LivingBeing $\land \langle after \rangle$. $\neg LivingBeing$
- Satisfiability \mathcal{HS} is undecidable for the most interesting classes of temporal structures.
- Therefore, $\mathcal{HS} \cup \mathcal{K}_{(m)}$ is undecidable.

Decidable Interval Temporal Description Logics

The combination of \mathcal{ALCF} and \mathcal{HS}^* :

- \mathcal{HS}^* :
 - No universal quantification, or restricted to homogeneous properties:
 - $\Box(=, {\sf starts}, {\sf during}, {\sf finishes})$. ψ
 - Allows for temporal variables: $\diamondsuit \overrightarrow{x} \mathsf{TN}(\overrightarrow{x}). \psi$ $\psi@x$
- Global roles denoting temporal *independent* properties.
- Logical implication in the combined language is decidable (PSPACE-hard); satisfiability is PSPACE-complete.
- Logical implication in \mathcal{TL} - \mathcal{F} is NP-complete.
- Useful for event representation and plan recognition.

The Block World Domain



```
 \diamondsuit(x\ y\ z\ v\ w) \ (\sharp \ \text{finishes}\ x)(\sharp \ \text{meets}\ y)(\sharp \ \text{meets}\ z)   (v\ \text{overlaps}\ \sharp)(w\ \text{finishes}\ \sharp)(v\ \text{meets}\ w).   ((\star 0\text{BJECT2}: \text{Clear-Block})@x\ \sqcap   (\star 0\text{BJECT1}\circ 0\text{N} \stackrel{\downarrow}{=} \star 0\text{BJECT2})@y\ \sqcap   (\star 0\text{BJECT1}: \text{Clear-Block})@v\ \sqcap   (\star 0\text{BJECT1}: \text{Holding-Block})@w\ \sqcap   (\star 0\text{BJECT1}: \text{Clear-Block})@z\ )
```

+

$\ddot{\mathcal{L}}^n$ FOL fragments

- $\ddot{\mathcal{L}}^n$ is the set of function-free FOL formulas with equality and constants, with only unary and binary predicates, and which can be expressed using at most n variable symbols.
- Satisfiability of $\ddot{\mathcal{L}}^3$ formulas is undecidable.
- Satisfiability of $\ddot{\mathcal{L}}^2$ formulas is NEXPTIME-complete.

The \mathcal{DL} description logic

- \mathcal{ALCQI}_{reg} the transitive closure operator,
 - number restriction operators,
 - + propositional calculus on roles,
 - + the concept $(R \subseteq S)$.
 - The \mathcal{DL} description logic and $\ddot{\mathcal{L}}^3$ are equally expressive.
 - The \mathcal{DL}^- description logic (i.e., \mathcal{DL} without the composition operator) and $\ddot{\mathcal{L}}^2$ are equally expressive.
 - Open problem: relation between \mathcal{DL} including cardinalities and $\ddot{\mathcal{C}}^n$ adding counting quantifiers to $\ddot{\mathcal{L}}^n$.

Guarded Fragments of FOL

The guarded fragment GF of FOL is defined as:

- 1. Every relational atomic formula is in GF
- 2. GF is propositionally closed
- 3. If \mathbf{x} , \mathbf{y} are tuples of variables, $\alpha(\mathbf{x}, \mathbf{y})$ is atomic, and $\psi(\mathbf{x}, \mathbf{y})$ is a formula in GF, such that $free(\psi) \subseteq free(\alpha) = \{\mathbf{x}, \mathbf{y}\}$, then the following formulae are in GF:

$$\exists \mathbf{y}. \ \alpha(\mathbf{x}, \mathbf{y}) \land \psi(\mathbf{x}, \mathbf{y})$$

 $\forall \mathbf{y}. \ \alpha(\mathbf{x}, \mathbf{y}) \rightarrow \psi(\mathbf{x}, \mathbf{y})$

The guarded fragment contains the modal fragment of FOL (and Description Logics); a weaker definition (LGF) is needed to include temporal logics.

Properties of GF

- GF has the finite model property
- GF and LGF have the tree model property
- Many important model theoretic properties which hold for FOL and the modal fragment, do hold also for GF and LGF
- Satisfiability is decidable for GF and LGF (deterministic double exponential time complete)
- Bounded-variable or bounded-arity fragments of GF and LGF (which include Description Logics) are in EXPTIME.
- GF with fix-points is decidable.

That's not all, folks...

- Defaults and non monotonic logic
- Other modal extensions
- Autoepistemic logic
- Formal ontology
- Decision procedures
- Database theory

• . . .

References

- Donini, F., Lenzerini, M., Nardi, D., Schaerf, A., 'Reasoning in Description Logics', Principles of Knowledge Representation and Reasoning, editor, G. Brewka, Studies in Logic, Language and Information, CLSI Publications, pp 193-238, 1996.
- Schild, K., 'A correspondence theory for terminological logics: preliminary report', IJCAI-91, pp 466-471, 1991.
- De Giacomo, G., Decidability of Class-Based Knowledge Representation Formalisms, Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Universita degli Studi di Roma "La Sapienza", 1995.
- De Giacomo, G., Lenzerini, M., 'TBox and ABox Reasoning in Expressive Description Logics', KR-96, pp 316-327, 1996.
- De Giacomo, G., Lenzerini, M., 'A Uniform

Framework for Concept Definitions in Description Logics', Journal of Artificial Intelligence Research, Vol 6, pp 87-110, 1997.

- Schild, K., 'Combining terminological logics with tense logic', Proc. of the 6th Portuguese Conference on Artificial Intelligence EPIA-93, pp 105-120, 1993.
- Artale, A., Franconi, E., 'A Computational Account for a Description Logic of Time and Action', KR-94, pp 3-14, 1994.
- Alex Borgida, 'On the relative expressive power of Description Logics and Predicate Calculus', Artificial Intelligence 82(1996) 353-367.
- Erich Grädel, 'Guarded Fragments of Fisrt-Order Logic: A Perspective for New Description Logics?', DL-98, pp 5-7, 1998.