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Summary

Description Logics

K (m), multi-modal Normal Modal Logic K
Propositional Dynamic Modal Logics
Propositional p-calculus

Propositional Temporal Modal Logics

L™ FOL fragments

Guarded Fragment of FOL



What is a Description Logic

A logical system, based on objects (individ-
uals), classes (concepts), and relationships

(roles), constituted by:

e a description language, which specifies
how to construct concept and relationship

expressions,

e a knowledge base language, which speci-
fies properties of objects, concepts, and

relationships,

e a set of (decidable) reasoning services over
a knowledge base, with sound and complete

procedures.



An example

TBox
JTEACHES. Course L —Undergrad LI Prof

ABozx
TEACHES (mary, cs415), Course(cs415),
Undergrad(mary)

Y. = Prof (mary)



Description Logics: syntax

A |
~C |
CnD |
CuD |
VR.C |
3R.C |

A

(not O)

(and C' D ...)
(or C' D ...)
(all R C)
(some R C)

(primitive concept)
(complement)
(conjunction)
(disjunction)
(universal quant.)

(existential quant.)

TBox: (C L D), (RC S)

ABox: C(a),

R(a,b)

ALC




P |
RUS |
Ro S |
R™ |
id(C) |

P

(or R S)
(compose R S)
(trans R)
(self C)

(primitive role)
(disjunction)

(role chain)
(transitive closure)

(role identity)

req



R (inverse R) (inverse role)



>nR.C| (atleast n R C) (minimum cardin.)
<nR.C | (atmost n R C) (maximum cardin.)



fr9

f:C
1l

p |
fog

(in f C)
(undefined f)

f

p
(compose f g)

(selection)

(undefinedness)

(feature)
(primitive feature)

(feature chain)

F



{a,b...} (oneof ab ...) (enumeration)



Description Logics: semantics

AT c AT A7)
(-C)F = AT\ C* —Fo(v)
(¢nD)* =c*nD?* Fo(v) A Fp(v)
(CuD)* =c*ubp? Fe(v) VvV Fp(v)
(VR.C)t = {i e AT | V. Fr(v,z) = Fo(x)
vj. R” (i, 5) = C*(j)}
(3R.O)E = {i € AT | Jx. Fr(v,z) N Fo (o)

3j. R*(i,5) A CT(4)}




(>nR.C)T = {ie AT |
#{j | R*(i,5) ACT(j)} > n}
(<nR.C)T = {i e AT |
t{j | R*(4,5) A CT(5)} < n}
(f : C)F = {i € dom 7 | CT(f(i))}
(fT)I = AI\domfI
{a,b...}r = {a®,b" ..}
PT C AT x AT
(RusS)r = RTusS?
(RoS)T = R*o S*
(R*)* = (R")"
(d(C)T = {(i,i) € AT x AT | CT (i)}
(R™HT = {(i,4) € AT x AT |
R*(j,4)}
5= {6,4) € AT x AT |
f* (@) = 5}
pT = AZ partial \ T

(fog)r = ffo g*

3™ x. FR(’Y,x) A Fc(x)

-3" a2, Fr(vy,2) A Fo ()

dx. F¢(v,x) A Fo(x)

—EICU.Ff(’)/,ZB)
P(a, B)

FR(O{,,B) \Y FS(Oéaﬁ)
Jz. Fr(a,x) A Fs(x, 3)

Fo(a) Nha=p
FR(/Baa)

Ff(O‘)/B)

p(a) =B

dx. Fy(a) =z A Fg(x) =0



Another Example

JTEACHES. Course L (Student 1 3DEGREE. Bs) LI Prof
Prof [  JDEGREE.Ms
IDEGREE.Ms [ JIDEGREE. Bs
MsMBs L[ L

TEACHES (paul,cs415), Course(cs415),
(3FRIEND. ({ paul } M <1 DEGREE))(john)

Y} = Student (paul)



A,CC and /C(m)

ALC

K (m)

CI . o
is a set of individuals

A
OZC is a set of worlds

i
R is a set of pairs of individuals

R is an accessibility relation

A | Py
CnD | ac Nap
CUD | acV ap
-C' || ~ac
VR.C || O, ac
dR.C || O, ac
ocC? | Z,0kEac
IT.C E =ULIP || O¢C — =UVP
U(m), T(m, c), C(c) {Ur}n4-|;>{cc}:
Y, = P(m) { UFr)nLT_>{C(}:




Some Results on satisfiability

ALC — Kwm)
M
ALCT = Ky US4
M
ALC = Kim)
M
ALCO <= K(m) with nominals
ALC = Kwm)
M

ALC with axioms <= K, theories

o ALC: PSPACE-complete

o ALCT: PSPACE-complete

o ALCO: PSPACE-complete

o ALC with axioms: EXPTIME-complete




A,CCfreg and PDL

e The domain of the interpretation is to be

read as a set of program states.

e Concepts are to be interpreted as the set of
states in which they hold.

e Roles are to be interpreted as nondeterman-

1stic programs.



A,CCfreg and PDL

VR.C as [R]C: “whenever program R
terminates, proposition C' holds on termi-

nation”.
R:1 0o R2 as “run R; and R, consecutively”.

R U R2 as “nondeterministically do R; or
R>”.

R* as “repeat program R a nondeterminis-

tically chosen number of times > 0”.

id(C) as “proceed without changing the
program state iff proposition C' holds”.



e R™1 as “run R in reverse” (ALCZ reg and
CPDL).



Internalization of axioms

vViEe ~ EY=g

CCDEp ~ [E[V](ac=ap)=a,

yﬁ(Rl\/Rl_lv...VRH\/Rn_l)*

e Reasoning with theories is reduced to

satisfiability of single formulas

e The complexity does not change



Results: satisfiability

ALC reqg <~— PDLC

)

f
ALCFLyreg~ <= DCPDL

i
AECF.’Z,"/’@Q

)
ALCQLreq <= CPDL + graded modalities

f
ALCOT reg

e Satisfiability is EXPTIME-complete

(subsumption and logical implication wrt a free

TBox can be reduced to satisfiability).

e CPDL has the finite model property,
DCPDL not.



Results: satisfiability
with individuals

ALC reg — PDL
i
ALCQOreg < PDL + graded modalities and
nominals
ALCL req <— CPDC
T
ALCIOreq <= CPDL + nominals
ALCL req <— CPDC
T
ALC L reg + ABox

Satisfiability is EXPTIME-complete.



So what?

e DL extend modal logic in interesting ways:

— Reasoning in DL is always reasoning

with theories.

— Nominals.

— Graded modalities.

e Results:
— ALC theories are EXPTIME-complete.

— ALCQTreg theory reduces to ALCreqg
theory (DCPDL to PDL).

- AﬁCIOr@g theory reduces to AﬁCr@g
theory (CPDL + nominals to PDL).

— ALCQTreg + Abox theory reduces to
ALC reg theory.



Inductive Definitions

e An Empty-List is a List.

e A Node, that has exactly one SUCCESSOR
that is a List, is a List.

e Nothing else is a LIST.
Node = —Empty-List

List = Empty-List U
(Node M <1 SUCCESSOR " 3SUCCESSOR. List)

A ={a,b,nil}
Node? = {a, b}

Empty-List? = {nil} b@
SUCCESSOR? = {(a,nil), (b,b)}

With descriptive semantics:
List? = {a,nil}; List? = {a,b,nil}

ao——>Onil

With least fixpoint semantics:
List? = {a,nil}



Propositional p-calculus

Node = —Empty—List

List = uX. (Empty—List L
(Node M <1 SUCCESSOR M JSUCCESSOR. X))

C — ... |puX.C|vX.C|X

uwALC <= Propositional p-calculus

T
uwALCOT

e Satisfiability is EXPTIME-complete.

e Can express well-foundedness of relations,

useful to describe finite structures.

e Open problems: individuals.



Tense Logic
(point ontology)

Tense logic is a propositional modal
logic, interpreted over temporal struc-
ture 7 = (P,<), where P is a set of time
points and < is a strict partial order on P.

Mortal C LivingBeing 1 VLIVES-IN. Place [
(LivingBeing U (OT—LivingBeing))

Satisfiability in ALC7T — the combination
of tense logic with KC(,,) — over a linear,
unbounded, and discrete temporal struc-

ture has the same complexity as its base
(PSPACE-complete).

Satisfiability in ALCQZT reg with ABox
— the combination of tense logic with
ALC QT reg with ABox — over a linear,
unbounded, and discrete temporal struc-

ture has the same complexity as its base
(EXPTIME-complete).



‘HS: Interval Temporal
Propositional Modal Logic

e HS is a propositional modal logic in-
terpreted over an interval set 72, de-
fined as the the set of all closed intervals
u,v] ={r € P|u<z<v,us#wv}in some
temporal structure 7.

e HS extends propositional logic with modal
formulee (R)¢ and [R|¢ — where R is a basic

Allen’s algebra temporal relation:
i
before (1, 7)

meets (i, j)
overlaps (4, j)
starts (4, 7)
during (4, j)
finishes (¢, j)

e Mortal = LivingBeing A (after). -LivingBeing

e Satisfiability ‘HS is undecidable for the most

interesting classes of temporal structures.

e Therefore, HS U K(,,,) is undecidable.



Decidable Interval
Temporal Description Logics

The combination of ALCF and HS™ :
o HS™:

— No universal quantification, or restricted
to homogeneous properties:
O(=, starts, during, finishes). 1

— Allows for temporal variables:
O x TN(z). e
YQx

e (Global roles — denoting temporal indepen-
dent properties.

e Logical implication in the combined lan-
guage is decidable (PSPACE-hard); satisfi-
ability is PSPACE-complete.

e Logical implication in 7£-F is NP-complete.

e Useful for event representation and plan

recognition.



The Block World Domain

1
1 2 1 2
Initial State Approach
1
1
2 2
Grasp Final State
Stack(0BJ1, 0BJ2)

Clear-Block(0BJ1) Holding-Block(0BJ1) = Clear-Block(0BJ1)
>—< >—<

v w z
Clear-Block(0BJ2) ON(OBJ1, 0BJ2)
>—<¢
x Yy
Stack =

O(xy zvw) (f finishes x)(f meets y)(#f meets z)
(v overlaps ) (w finishes f)(v meets w).
((*DBJECTQ :Clear—BlOCky@atﬂ
(xOBJECT100N X x0BJECT2)@y I
(*UBJECTl :Clear—BlOCky@ij
(xOBJECT1 : Holding-Block)@Qw I

(xOBJECT1 : Clear—Block)@z)



L™ FOL fragments

e L is the set of function-free FOL formulas
with equality and constants, with only
unary and binary predicates, and which
can be expressed using at most n variable

symbols.

e Satisfiability of £3 formulas is undecidable.

e Satisfiability of £2 formulas is NEXPTIME-

complete.



The DL description logic

ALCOQTLreg - the transitive closure operator,
- number restriction operators,

+ propositional calculus on roles,
+ the concept (R C S).

e The DL description logic and £3 are equally

expressive.

e The DL~ description logic (i.e., DL without
the composition operator) and L2 are

equally expressive.

e Open problem: relation between DL includ-
ing cardinalities and C"— adding counting
quantifiers to £™.



Guarded Fragments of FOL

The guarded fragment GF of FOL is defined as:
1. Every relational atomic formula is in GF
2. GF' is propositionally closed

3. If x, y are tuples of variables, a(x,y) is
atomic, and ¥(x,y) is a formula in GF,
such that free(y) C free(a) = {x,y}, then

the following formulae are in GF"
Jy. a(x,y) A(x,y)
Vy. a(x,y) = ¥(x,y)

The guarded fragment contains the modal
fragment of FOL (and Description Logics); a
weaker definition (LGF) is needed to include

temporal logics.



Properties of GF

GF has the finite model property
GF and LGF have the tree model property

Many important model theoretic proper-
ties which hold for FOL and the modal
fragment, do hold also for GF and LGF

Satisfiability is decidable for GF and LGF
(deterministic double exponential time

complete)

Bounded-variable or bounded-arity frag-
ments of GF and LGF (which include
Description Logics) are in EXPTIME.

GF with fix-points is decidable.



That’s not all, folks. ..

Defaults and non monotonic logic
Other modal extensions
Autoepistemic logic

Formal ontology

Decision procedures

Database theory
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