

Ν

Combining Modal Logics: the Description Logics perspective

Combining Modal Logics in the Description Logics perspective

- DLs extend modal logic in interesting ways:
 - Reasoning in DLs is always reasoning with theories.
 - Nominals.
- Studying the effects of augmenting the expressivity is central:
 - adding operators cab be seen as $combining \mbox{ modal logics with the basic } K_{(m)};$
 - if the basic logic is expressive enough (e.g., \mathcal{PDL}), possible reductions are studied;
 - more *typical* combinations are also important, such as combinations with tense logic or modal logic with concrete domains.

Combining Modal Logics vs Reductions

- Combining the basic $\mathbf{K}_{(\mathbf{m})}$ with a modal logic having:
 - inverse, or graded, or deterministic modalities, ...
- Reducing a complex combination to the basic \mathcal{PDL} :
 - \mathcal{DCPDL} to \mathcal{PDL} , \mathcal{CPDL} + nominals to \mathcal{PDL} , ...
- The combination approach may be more interesting than the reduction approach; example:
 - \mathcal{PDL} versus $\mathbf{K}^{\mathcal{H}}_{(\mathbf{m})} \cup \mathbf{S4}$,
 - the combination can be seen as the FOL fragment of $\mathcal{PD\!L}\textsc{i}$,
 - same complexity class,
 - different algorithmic properties (*cut rule*).

Combining Modal Logics in the Description Logics perspective

- Decidability,
- complexity class,
- (how to extend) algorithms,
- (how to re-adapt) strategies and optimisations.

Some examples of how combining modalities with different properties can affect:

- Complexity class
- Algorithmic complexity
- Decidability

- Decision problems for $K^{\mathcal{H}}_{(\mathbf{m})}$ and $\mathbf{S4}_{(\mathbf{m})}$ known to be in PSPACE
- Combination allows use of *universal modality* to *internalise* arbitrary set of axioms:
 - Define new transitive modality \boldsymbol{u} that includes all other modalities
 - Satisfiability of ϕ w.r.t. $\psi_1 \to \varphi_1, \dots, \psi_n \to \varphi_n$ equivalent to satisfiability of $\phi \land \Box_u((\psi_1 \to \varphi_1) \land \dots \land (\psi_n \to \varphi_n))$
- Decision problem w.r.t. arbitrary set of axioms known to be in $\rm ExpTIME$ even for $K_{(m)}$

- Decision problem for $\mathbf{K}_{(\mathbf{m})}^{\mathcal{H}} \cup \mathbf{S4}_{(\mathbf{m})}$ in EXPTIME, but tableaux algorithm presents no special problems:
 - For transitive modalities, propogate $\Box_i \phi$ terms along *i* modalities
 - Use simple *blocking* technique to check for cycles caused by e.g. $\Box_i \Diamond_i \phi$
 - Cycle in algorithm \Rightarrow valid cyclical model

- Decision problem for $\mathbf{K}_{(\mathbf{m})}^{\mathcal{H}}$ combined with deterministic and converse modalities still in PSPACE and solvable with simple tableaux algorithm (no blocking)
- Combination no longer has finite model property requires new blocking technique to detect cycles implying valid but non-finite models, e.g. for:

 $\neg\phi\wedge[R^{\smile}]\langle S^{\smile}\rangle\phi$

where R is transitive, S is deterministic and R includes S

- Decision problem for $\mathbf{K}_{(\mathbf{m})}^{\mathcal{H}} \cup \mathbf{S4}_{(\mathbf{m})}$ in $\mathrm{ExpTIME}$
- Decision problem for $\mathbf{K}_{(\mathbf{m})}^{\mathcal{H}}$ combined with graded modalities in PSPACE
- Decision problem for $K^{\mathcal{H}}_{(\mathbf{m})} \cup S4_{(\mathbf{m})}$ combined with graded modalities is undecidable shown by reduction of domino problem
- Representing $\mathbb{N} \times \mathbb{N}$ grid (the tricky bit) uses combination of \mathcal{H} , transitive and non-transitive modalities and graded modalities
- Decidability restored by restricting the way transitive and graded modalities can be combined