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OVERLAP JOIN
Given two relations containing periods, find pairs of tuples satisfying an equality predicate and overlap on periods [1].
SELECT *
FROM emp e JOIN dept d ON e.DNo = d.DNo AND e.P OVERLAPS d.P;

emp

P
EName DNo [B E)
Sam 2 1 6
Ann 1 2 5
Joe 2 4 8
Sue 1 9 11

dept

P
DNo DName [B E)
1 HR 1 11
2 Test 1 6
2 QA 6 10

Overlap join for equality on DNo and overlap on P

P P
EName DNo [B E) DNo DName [B E)
Sam 2 1 6 2 Test 1 6
Ann 1 2 5 1 HR 1 11
Joe 2 4 8 2 Test 1 6
Joe 2 4 8 2 QA 6 10
Sue 1 9 11 1 HR 2 11

CHALLENGES
• Overlap predicate consist of inequalities on 4 attributes

⇒ Specialized algorithms/indices required

• Additional equality predicate needs to be supported

⇒ WHERE _ = _ AND _ overlaps _

• Different interval definitions should be supported

⇒ [B,E), [B,E], (B,E), (B,E]

EVALUATION USING RANGE JOINS
1. Transformation of the overlap predicate

Equivalence:

r.P overlaps s.P ≡ r.B < s.E ∧ s.B < r.E

≡ r.B ≤ s.B < r.E ∨ s.B < r.B < s.E

Properties:

• Two disjunctive range conditions (≈ BETWEEN AND)

• Two conditions are disjoint (can be evaluated independently)

Rewrite:
SELECT *
FROM emp e JOIN dept d

ON e.DNo = d.DNo AND e.B < d.E AND d.B < e.E;

As union (all) of two range joins:
SELECT *
FROM emp e JOIN dept d

ON e.DNo = d.DNo AND e.B <= d.B AND d.B < e.E
UNION ALL
SELECT *
FROM emp e JOIN dept d

ON d.DNo = e.DNo AND d.B <= e.B AND e.B < d.E

2a) Index-based evaluation

• Each range join can exploit and index

CREATE INDEX e_idx ON emp(dno, b);
CREATE INDEX d_idx ON dept(dno, b);

• Range join execution using an index-nested loop

• Append of the two range joins

QUERY PLAN
-------------------------------------------------------
Append

-> Nested Loop
-> Seq Scan on emp e
-> Index Scan using d_idx on dept d

Index Cond: ((dno = e.dno)
AND (e.b <= b) AND (b < e.e))

-> Nested Loop
-> Seq Scan on dept d_1
-> Index Scan using e_idx on emp e_1

Index Cond: ((dno = d_1.dno)
AND (d_1.b < b) AND (b < d_1.e))

• Works out of the box in DBMSs supporting B-trees

2b) Stand-alone range-join algorithm

• Sort-merge based algorithm for range joins

Algorithm 1: RMJ(r, s,C, B,≺S, X,≺E, E,O)

Input: Relation r sorted by (C, B), Relation s sorted by (C, X),
equality attributes C, start point B in r, comparison operator
≺S∈ {<,≤} for B and X , attribute X in s, comparison
operator≺E∈ {<,≤} for X and E, end point E in r, output
schema O

Output: Result of r 1r.C=s.C∧r.B≺Ss.X≺Er.E s.

r ← first(r);
s← first(s);
while r ̸= ω ∧ s ̸= ω do

if r.C < s.C then
r ← next(r); // skip outer

else if r.C = s.C ∧ r.B ≺S s.X then
marked← s; // mark

while s ̸= ω ∧ r.C = s.C ∧ s.X ≺E r.E do
output r and s according to schema O;
s← next(s);

r ← next(r); // end of matches for outer
s← marked; // backtrack inner

else
s← next(s); // skip inner

• PostgreSQL implementation available [2]

EXPERIMENTAL EVALUATION
Stand-alone (main memory) algorithm

• Without equality condition
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imental results for the workload on the real-world
datasets without equality constraints, i.e., we compute
a temporal Cartesian product.

We distinguish between stand-alone join algorithms
that run in main memory and standard DBMS solu-
tions that run inside a DBMS. The approaches that
are compared are described with the respective experi-
ments.

7.2 Stand-alone Join Algorithms

In the first set of experiments, we compare the proposed
overlap join using range joins to the state-of-the-art ap-
proach bgFS [6].

7.2.1 Compared Approaches

bgFS is the most recently proposed state-of-the-art
competitor [6], a forward scan-based plane sweep al-
gorithm with two optimizations, namely grouping and
bucket indexing. The algorithm is similar to our ap-
proach based on range merge joins, but needs only a
single pass over the data. To achieve a fair compar-
ison, we extend bgFS to support also equality predi-
cates by integrating the equality attribute into the sort
order (similar to our approach), which allows to skip
attributes with di�erent equality attributes in a sort-
merge fashion (cf. lines 4, 5, 8, and 9 in Algorithm 1).

OMJ is our overlap join, which computes the union
of two range merge joins (RMJ) as shown in Section 6.1.
To achieve a fair comparison, we include the same op-
timization techniques grouping and bucket indexing, as
used in bgFS, into our RMJ.

7.2.2 Runtime Evaluation

In this set of experiments, we are interested in examin-
ing how the overhead of our solution based on two more
general purpose range joins compares to bgFS, which
is specifically tailored for the overlap join, but requires
only one join over the input relations.

First, we use the synthetic dataset and vary various
parameters. The runtime results for the overlap join
without equality predicates are shown in Figure 8. For
each experiment, we also report the number of result
tuples. In Figure ??, we vary the number of tuples of the
inner relation s from 10M to 200M, while keeping the
size of the outer relation r at the default value of 10M
tuples. In Figure 8b, the sizes of both input relations
vary from 10M to 100M; and in Figure ??, the duration
of period timestamps varies, which is controlled by the
skew parameter ◊ of the ZIPF distribution. A low value
of ◊ yields longer period timestamps, and a high value

yields shorter period timestamps. The main observation
is that the algorithms have comparable runtimes in all
settings.

The main di�erence between the two approaches
is in the order they scan and process the data. The
bgFS approach scans both input relations in an inter-
leaved fashion, thereby performing join matches and
backtracking on the respective other relation. The RMJ
approach performs two joins. In each join, one relation
is scanned sequentially, and scanning and backtracking
is performed only on the other relation. This improves
data locality: the CPU cache can be utilized fully to
store tuples of the single backtracking relation. This
compensates for having to perform two joins. When-
ever bgFS alternates between input relations, due to
the start time point of the current tuple of one relation
becoming smaller than the start time point of the cur-
rent tuple in the other relation, it starts scanning for
join matches in the other relation. This alternation be-
tween scans of the two relations results in the scanned
tuples competing for CPU cache storage whenever a
switch between the relations occurs. Tuples from one
relation that were placed in the cache may be needed
later on when backtracking is performed, but they may
have been removed from the cache due to a scan of
the other relation. The RMJ approach only scans one
relation at a time, so the CPU cache can be devoted ex-
clusively to storing tuples from that relation. This can
be observed for data with longer time periods, where in
contrast to smaller time period durations, larger jumps
in the backtracking need to be performed. For instance,
in Figure ??, the di�erence between bgFS and OMJ be-
comes even smaller with longer time periods.
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For the real-world datasets in Figure 9, we ob-
tain a similar picture. Since the runtimes for the three
datasets are very di�erent, the bar chart shows percent-
ages instead of absolute values, where bgFS corresponds
to 100%; additionally, the absolute values are shown in
the plot. The large runtime of the overlap join on the
webkit dataset is due to its output of 556, 428 million
result tuples, i.e., approx. 23% of the Cartesian product.

• With equality condition
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Fig. 8: Overlap join without equality predicates on syn-
thetic datasets.

As a reference, a single CPU instruction per output tu-
ple on our 2.67GHz machine increases the runtime by
160 sec in total. We can observe that OMJ, which is
based on two general purpose range joins, is as e�cient
as the state-of-the-art algorithm. Also for the real-world
datasets, we observe the e�ect of data locality of RMJ
as compared to bgFS that performs backtracking on
both relations at the same time. For the datasets with
very small time period durations (cf. Figure 6), bgFS
is slightly more e�cient, while for the webkit dataset
that contains more tuples with longer durations, OMJ
is more e�cient.
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Fig. 9: Overlap join without equality predicates on real-
world datasets.

We repeated the experiments for the case when the
overlap join includes equality predicates. The results
for the synthetic datasets and using di�erent parame-
ter settings are shown in Figure 10, while the results
for the real-world datasets are shown in Figure 11. We
see that in the presence of equality attributes, our tech-
nique based on range merge joins is able to provide the
same performance as the state-of-the-art overlap join
algorithm.

The main conclusion from the above experiments
is that the proposed OMJ algorithm is as e�cient as
the state-of-the-art algorithm bgFS, although OMJ per-
forms two scans over the data, whereas bgFS scans the
input relations only once. From a database implemen-
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(b) Varying number of input tuples
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Fig. 10: Overlap join with equality predicates on syn-
thetic datasets.
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Fig. 11: Overlap join with equality predicates on real-
world datasets.

tation perspective, OMJ has the advantage that only a
range merge join (RMJ) needs to be implemented that
is more general purpose, while the OMJ can be im-
plemented as an execution strategy or equivalence rule
that uses range joins.

7.3 Approaches for Standard DBMSs

In this section, we analyze the evaluation of over-
lap joins in existing DBMSs using the SQL query in
Lemma 5 and indexing techniques that are available in
DBMSs. For all experiments, we use PostgreSQL.

• On par with the state-of-the art [3]

• More general algorithm

Index-based solution (in PostgreSQL)

• Without equality condition
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scan, i.e., the time needed to fetch the actual data is
not reported. We also investigated the space consump-
tion and creation time for the indices of the di�erent
approaches and provide the numbers for the default
parameters (cf. Table 3). OMJi requires two indices of
size 214MB each, for a total of 428MB. GiST requires
one index of size 458MB, SPGiST requires 609MB, and
PGIS requires 589MB. The total index creation time is
35 seconds for OMJi, 6 minutes for GiST, 2 minutes for
SPGiST, and 4 minutes for PGIS. RIT, needing more
than an hour for index creation and requiring an index
space of 850MB, is by far the slowest and most space
consuming approach. This is due to the iterative cal-
culations (for which we use PostgreSQL’s procedural
language PL/pgSQL) and additional tables (for which
we use SQL) that need to be created. We also experi-
mented with non-integer datatypes. We use the datasets
with default parameters and divide the start and end
time by 1000 to measure the overhead of continuous do-
mains for the same result size. For GiST and SPGiST,
we use ranges of numerics, i.e., PostgreSQL’s arbitrary
precision numbers, and obtain runtimes that increase
by 94% and 100%, respectively, due to the more expen-
sive comparison operations and larger (variable) size
data type as compared to integers. For our approach,
we use scalars instead of range types for this experi-
ment to also be able to include the overhead caused by
the float (double precision, but constant 8 byte size)
data type that is not supported by range types. The
runtime increases by 25% as compared to using inte-
gers when using arbitrary precision numerics; and for
the float data type, the overhead is 4%. The overhead
of range types, that also need to consider the bound-
aries, as compared to scalars for the same data type is
around 20%.

OMJi RIT GiST SPGiST PGIS
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Fig. 12: Overlap join without equality predicates for the
synthetic dataset.

In Figure 13, we vary the sizes of both relations
from 1M to 50M. The performances of RIT and GiST
degenerate very quickly, SPGiST is more e�cient, but

OMJi is by far the best approach. In particular for the
clustered case, OMJi beats SPGiST by almost an order
of magnitude.
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Fig. 13: Overlap join without equality predicates on
synthetic dataset, varying number of tuples of both re-
lations.

The next experiment, with results shown in Fig-
ure 14, analyzes the impact of the durations of the
tuples’ timestamps. For this, we vary the parameter
◊ of the Zipf distribution for the timestamp duration:
smaller values of ◊ produce many long tuples, and larger
values of ◊ produce shorter tuples. We can observe that
for smaller values of ◊ (i.e., longer timestamps), the re-
sult size is much larger since many more tuples overlap.
Again, OMJi is the fastest approach. GiST is the slow-
est for small values of ◊, but it outperforms RIT for
larger values.
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Fig. 14: Overlap join for synthetic data, varying ◊ of
the Zipf distribution for the period duration.

Overlap Join With Equality Predicates. We proceed to
analyze the overlap join with additional equality pred-
icates. Our approach and the relational interval tree
do not have any restriction on the type of equality at-
tribute. GiST and SPGiST, on the other hand, only
support numerical values. For GiST, we use a multi-
key attribute composed of two range types, one for the

• With equality condition
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period timestamp and one of duration 1 for the equality
attribute. For SPGiST, we use a type box (rectangles)
in a similar way.

In the first experiment, we vary the number of tu-
ples of the inner relation s. The number of distinct
values for the equality attributes is set to the de-
fault 10. The results are shown in Figure 15. All ap-
proaches turn out to be faster when additional equal-
ity attributes are used. The gap between OMJi and
SPGiST is larger than in the case without equality at-
tributes (cf. Figure 12). Also for the case of equality
predicates, we investigated the space consumption and
index construction time for the di�erent approaches and
provide the numbers for the default parameters (cf. Ta-
ble 3). OMJi requires two indices of size 301MB each,
for a total of 602MB. GiST requires one index of size
680MB, SPGiST needs 733MB, PGIS needs 518MB,
and BtGiST needs 560MB. In terms of index creation
time, OMJi takes 37 seconds for both indices and is by
far the fastest approach. The other approaches require
several minutes. More specifically, GiST takes 7 min-
utes, SPGiST takes 2 minutes, PGIS takes 4 minutes,
and BtGiST takes 10 minutes. Also in this case, RIT
takes more than an hour and needs 1.2GB of disk space.
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Fig. 15: Overlap join for synthetic data by varying the
cardinality of the inner relation.

In Figure 16, we show the results when varying the
cardinality of both relations from 1 to 100M tuples.
OMJi is by far the fastest. In particular, for the clus-
tered case, it outperforms the other approaches by more
than an order of magnitude. All other approaches de-
generate quickly.

Impact of Equality Predicates. To analyze the impact
of the selectivity of the equality predicate, we vary the
number of distinct values for the equality attributes
from 5 to 100 — Figure 17 reports the findings. All
approaches benefit from a more selective equality pred-
icate, which is mainly due to the smaller output. None
of the competitors has an increased gain that is suf-
ficient to outperform OMJi. As a comparison, a hash
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Fig. 16: Overlap join with equality predicates for syn-
thetic data by varying the cardinality of both relations.

join (faster than a merge join for this case) requires al-
most 6 hours for 1, 000 distinct values in the equality
attributes, which is much more selective than the up to
100 we report here.
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Fig. 17: Overlap join with equality predicate for syn-
thetic data by varying the number of distinct equality
attributes.

The experiment in Figure 18 shows the e�ect of the
number of equality predicates on the performance. To
ensure that the runtime is una�ected by the size of the
output, we ensure that all joins have the same result
size. This is done by using the same values for all at-
tributes that are involved in the equality predicates. For
OMJi and RIT, adding an additional equality predicate
to the join simply implies adding the attribute in the
equality predicate to the index. For the GiST approach,
a new range type attribute is added to the index since
the index supports multi-key attributes. For PGIS, the
dimensionality of the index is increased by one, e.g.,

• Much faster compared to the state-of-the art (e.g., [4])

• Clustering is very effective

SUMMARY OF CONTRIBUTIONS
• We provide a new and simple rewriting of the overlaps

predicate that transforms an overlap join into the union of
two independent range joins.

• Our solution supports the combination of the overlaps
predicate with non-temporal equality constraints.

• We provide a strict total order for period boundaries over
discrete and continuous domains and prove its correct-
ness. This enables support for all common interval def-
initions for period timestamps as well as relations where
tuples might have period timestamps with different inter-
val definitions.

• We show how to evaluate overlap joins in DBMSs by tak-
ing advantage of B+-trees.

• We show how the rewriting can be used to devise an effi-
cient yet simple main memory algorithm for overlap joins
based on the sort-merge join paradigm.

• An extensive empirical evaluation shows that (a) our main
memory algorithm performs on par with the state-of-the-
art stand-alone competitors and that (b) the evaluation of
the overlap join using B+-trees in an existing DBMS out-
performs the state-of-the-art systems competitors.
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