Leveraging Range Joins for
the Computation of Overlap Joins

o

TECHPARK SUDTIROL /ALTO ADIGE

University of ‘

ZUI‘iChUZH AALBORG

UNIVERSITY

Anton Dignéds!, Michael H. Bohlen?, Johann Gamper!, Christian S. Jensen®, and Peter Moser*

'Free University of Bozen-Bolzano, “University of Zurich, ® Aalborg University, “NOI Techpark Siidtirol/Alto Adige

CHALLENGES

OVERLAP JOIN

Given two relations containing periods, find pairs of tuples satisfying an equality predicate and overlap on periods [1]. e Overlap predicate consist of inequalities on 4 attributes

SELECT . g
FROM emp e JOIN dept d ON e.DNo = d.DNo AND e.P OVERLAPS d.P; = Specialized algorithms/indices required
e dept Overlap join for equality on DNo and overlap on P e Additional equality predicate needs to be supported
P P P P
EName DNo | [B E) DNo DName | [B E) EName DNo | [B E) | DNo DName | [B E) — WHERE _ AND overlaps
Sam 2 1 6 || 1 HR 1 11 Sam 2 1 6 | 2 Test 1 6 - - - -
Ann 1 2 5 2 Test 1 6 Ann 1 2 5|1 HR I 11 : : .
o Diff 1 defi houl
Toe , s sl OA 6 10 Joe , 4 g0 Test | 6 ifferent interval definitions should be supported
Sue 1 9 11 Joe 2 4 8 | 2 QA 6 10 — [B,E). [B,E]. (B,E). (B, E]
Sue 1 o 11 |1 HR 2 11 T e

EVALUATION USING RANGE JOINS

1. Transformation of the overlap predicate 2a) Index-based evaluation 2b) Stand-alone range-join algorithm
Equivalence: e Each range join can exploit and index e Sort-merge based algorithm for range joins

r.Poverlaps s.P =r.B<s.ENs.B<r.FE . , 5

p CREATE INDEX e_}dx ON emp (dno, Db); Algorlthm 1: RMJ(I’,S, C,B,{S, X,{E, E, O)
CREATE INDEX d_i1idx ON dept (dno, b);
=r.B<sB<r.EVsB<rB<sFE Input: Relation r sorted by (C, B), Relation s sorted by (C, X)),
quality attributes C, start point B in r, comparison operator
Properties: e Range join execution using an index-nested loop <7€{<, <}for Band X, attribute X in s, comparison
p . operator < € {<, <} for X and F, end point E in r, output
o _ o e Append of the two range joins schema O
* Two disjunctive range conditions (= BETWEEN AND) Output: Resultof r M, o_; car.B<Ss. x<Fr.E S
<, s o . . QUERY PLAN " <_ﬁ708t(r);
 Two conditions are disjoint (can be evaluated independentlty) ="/ s < first(s);
N 4 while 7 = w A s # w do

Rewrite: ppet! if .C < s.C then

CWIILC. | r < next(r); // skip outer

—> Nested Loop . B g
SELECT =« > Seq Scan on emp e elseif .C = s.C A r.B <~ s.X then
FROM emp e JOIN dept d -> Index Scan using d_idx on dept d marked < s; // mark
ON e¢.DNo = d.DNo AND e.B < d.E AND d.B < e.E; Index Cond: ((dno = e.dno) while s # w Ar.C = s.C A s.X <¥ r.E do
AND (e.b <= b) AND (b < e.e)) L output r and s according to schema O;

As union (all) of two range joins: s <= newt(s);

SELECT « _>—Sezzzd8222pon dept d_1 r < next(r); // end of matches for outer
FROM emp e JOIN dept d —> Index Scan using e:idx on emp e_1 I s < marked; // backtrack inner
ON e.DNo = d.DNo AND e.B <= d.B AND d.B < e.E Index Cond: ((dno = d_1.dno) cise . . .
UNION ALL AND (d_1.b < b) AND (b < d_1l.e)) |_ s < newxt(s); // skip inner

SELECT =« -
FROM emp e JOIN dept d
ON d.DNo = e.DNo AND d.B <= e.B AND e.B < d.E
e Works out of the box in DBMSs supporting B-trees e PostgreSQL 1mplementation available [2]

EXPERIMENTAL EVALUATION SUMMARY OF CONTRIBUTIONS

Stand-alone (main memory) algorithm Index-based solution (in PostgreSQL) We provide a new and simple rewriting of the overlaps
predicate that transforms an overlap join into the union of

e Without equality condition e Without equality condition two independent range joins
—O— bgFS —ji— OMJ —B— oMmJl — 1 RIT —©— GiST - .- SPGiST —aA— PGIS
s — = 1500 — 60 \ \ Our solution supports the combination of the overlaps
S ol E L ooo | g N predicate with non-temporal equality constraints.
) Q,
£ Z :
2 50| s 500 2 20 We provide a strict total order for period boundaries over
= - . R . .
S ° oL S discrete and continuous domains and prove 1ts correct-
0 20 40 60 80 100 0 20 40 60 80 100 . .
of tuples in r and s [M] # of tuples in r and s [M] # of tuples in r and s [M] # of tuples in r and s [M] neSS This enal?les §upp0rt for all common ln.teI'Val def-
initions for period timestamps as well as relations where
ti b) Output Noncl 1 . o L .
(a) Runtime (b) Outpu (a) Nonclustered (b) Clustered tuples might have period timestamps with different inter-
. val definitions.
e With equality condition e With equality condition
—O— bgF'S —— OMJ —8— OMJ! i+ RIT —6— GiST - % SPGiST —A— PGIS —6— BtGiST We show how to evaluate overlap joins in DBMSs by tak-
150 — o 150 — 100 - 100 ing advantage of B+-trees.
é o g 80 é 80
— 100 |- <@ 100 [~ B B . e .
= 5 o % o % We show how the rewriting can be used to devise an etfi-
e . = . = 40 = 40
= 5 % S S I cient yet simple main memory algorithm for overlap joins
0 5 ol SR 2 o based on the sort-merge join paradigm.
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
of tuples in r and s [M] # of tuples in r and s [M] number of input tuples [M] number of input tuples [M] A ¢ . irical luat h that () .
n extensive empirical evaluation shows that (a) our main
(a) Runtime (b) Output (2) Nonclustered (b) Clustered memory algorithm performs on par with the state-of-the-
. art stand-alone competitors and that (b) the evaluation of
e On par with the state-of-the art [3] e Much faster compared to the state-of-the art (e.g., [4]) the overlap join using B+-trees in an existing DBMS out-
e More general algorithm e Clustering is very effective performs the state-of-the-art systems competitors.

FUNDING

This work was funded by the Autonomous Province
of Bozen-Bolzano Research “Sidtirol/Alto Adige 2019”

REFERENCES
1] Kulkarni and Michels: Temporal features in SQL: 2011. SIGMOD Record 2012.

2] https://tpg.inf.unibz.it/project—rm:
) - o j through the project Enabling Industrial-Strength, Open-

Source Temporal Query Processing — ISTeP and by the In-
novation Fund Denmark centre, DIREC.

3] Bouros and Mamoulis: A Forward Scan based Plane Sweep Algorithm for Parallel Interval Joins. PVLDB 2017.
4] Enderle et al: Joining Interval Data in Relational Databases. SIGMOD 2004.

Published in: The VLDB Journal, Volume 31, Number 1, January 2022.
Presented at: 48th International Conference on Very Large Data Bases, Sydney, Australia (and hybrid), September 05-09, 2022.

