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Goal and Contribution
Motivation: Existing Time Series Database Systems (TSDBs) benchmarks are limited in the number
of evaluated systems, the type of workloads, the size and type of data, and the query variability.

Goal: A comprehensive benchmark of TSDBs for monitoring applications.

Contributions:

1. Extensive evaluation of seven popular TSDBs using temporal workloads.

2. A new time series generation technique.

3. Recommendations for understanding and navigating systems’ architectural designs.

Applications
Monitoring of Watercourse (BAFU)

• BAFU monitors the water discharge and
level in Swiss rivers.

• Evaluates water quality.

• Assesses the impact of climate change and
triggers alerts in case of hazard.

Other applications: Internet of Things (IoT),
smart grids, traffic networks, etc.

Time Series Generator
• A new generation technique that combines
GAN with LSH.

• Scalable data generation of large realistic
time series.
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TSM Architecture

• TS-LSH uses sample data to gener-
ate large data streams.

• The executor launches configurable
workload tiers.

• The statistics collection module
records the performance of the
TSDB.
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Data Stream

Experiments
• The performance of the systems depends on
the size of the input/output data.
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(a) Fetching.
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(b) Agggregation.

• The offline and online workloads show differ-
ent trends.
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(a) Offline mode.
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(b) Online mode.

• Time series features heavily impact systems’
compression capability.
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(b) Data Sparsity.

Performance Summary

• Seven discriminative dimensions.

• Performance ranking for different
query types on a 0-5 scale.

• No silver bullet.

• Clickhoouse and extremeDB offer
the best trade-off.
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Additional Info
• Github: https://github.com/eXascaleInfolab/TSM-Bench

• Related works:

– Difallah D., Pavlo A., Curino C., and Cudré-Mauroux P.: “OLTP-Bench: An Extensible
Testbed for Benchmarking Relational Databases”, VLDB 2013.

– Khayati M., Lerner A., Tymchenko Z., and Cudré-Mauroux P.: “Mind the Gap: An Experi-
mental Evaluation of Imputation of Missing Values Techniques in Time Series”, PVLDB 2020.

Presented at the 49th International Conference on Very Large Databases (PVLDB), Vancouver, Canada, August 2023.


