From the other side of the alps ...

DigitHist: a Histogram-Based Data Summary with Tight Error Bounds

Michael Shekelyan, Anton Dignös, Johann Gamper (Free University of Bozen-Bolzano)

VLDB 43rd International Conference on Very Large Data Bases

Motivation for Data Summaries

Data Management

 selectivity estimation to help guide query optimization

Data Analysis

 approximate query answering in DSS/OLAP systems

Data Summaries for Range Queries

data points

data

 multi-dimensional points in euclidean space

multi-dimensional histogram

1		1	1
			1
	2		

summary

 data structure approximating no. of points in any query box

Data Summaries for Range Queries

data

 multi-dimensional points in euclidean space

multi-dimensional histogram

summary

 data structure approximating no. of points in any query box

Related Work

sampling		multi-dim. histograms	ε-approximation	DigitHist (proposed)
references	TOMS'85	SIGMOD'99,'00	SCG'04, SODA'13,	VLDB'17
basic idea	take random subset	split space into buckets	quantile-based or sampling	count along regular grids
for more data?	very good	ok	ok	good
for few dims.?		good good		good
for more dims.? very good		bad	bad	ok
error bounds?	only confidence intervals	individual for each query	same for all datasets and queries	individual for each query

other notable approaches:

• Wavelets, DCT, Kernel Density Estimation, Dyadic Decomposition (e.g., Sketches)

DigitHist Key Idea

digit histograms

- summarize majority of points at higher resolution
 - e.g. 89.1% at 1024×1024 (99.6% of points at 512×256 or higher)
- summarize remaining points at lower resolution

increasing impact on precision

DigitHist: Initial Histograms

initial histograms

- create in single scan
- materialize only nonempty buckets
- sufficiently precise
- too large
- (and slow to query)

1261							
4 2	33 71 211	176	136				
. 10	152	1009	13	1180			
.45	104	400	126	601 74			
2	22	28	60	74 29 83			
	4		25	29 0			

DigitHist: Digit Histograms

digit histograms

- · split counts by digits
- treat digit histograms differently

			_								
	53	71		176	136						
	. 10	152	d	009	13	4	118	0			
	45	104	4	00	126	74	601				
	2	22		28/	60	29 83		spli	t co	oun	ts
		4			25	29 0		by	digi	ts	
'		$\overline{/}$									
	\supset		1	5		1			2	9	3
	1		4			2		5	4		6

1		
1	4	1

1	5		1
4			2
	2	2	6
			2

2

DigitHist: Lossy compression / u-error

lossy compression

- targeted size
- pick resolutions minimizing u-error

u-error

- expected width of bounds
- random query box
- uniform in location and size

DigitHist: Accompany with Marginals

DigitHist

final summary

- four multi-dimensional histograms
- · accompanied by hi-res marginal histogram in each dimension

Intra-Bucket Assumption

problem

- location of points inside buckets not stored and needs to be estimated
- assuming uniformity inside buckets assumes uniformity in marginals

DigitHist intra-bucket spread

- spread points using marginal histograms and assuming independence
- no significant query time overhead

data points

multidim. hists.

DigitHist

Properties of DigitHist

efficient construction

- data can be treated as stream (single-pass)
- user-controlled memory usage (2GB in our experiments)
- construction time linear in data size, data dim. and summary size

convenient storage

· stored and queried as byte stream

fast, light-weight querying

 time linear in summary size and no significant memory usage precision

 query-individual estimates and error bounds updatability

reconstruct from updated regular grid histogram in secondary storage

Experimental Setup

datasets

- OpenStreetMap 46.4 GB(2D spatial data)
- HIGGS 616 MB (7D scientific data)
- Zipf/Gauss ≤1.2GB (2-16D synthetic data)

methodology

- construct all tested data summaries.
- randomly create ranges with low selectivity (1-5%).
- compute avg. estimates and bounds of tested summaries.

precision measures

- relative error = (estimate correct) / correct
- relative width of bounds = (width of bounds) / correct

Construction Time

- DigitHist can be constructed in a few minutes
- simple summaries faster to construct (but less precise)
- quantile-based summaries take hours to construct

datasets	OSM (2D	- 46.4 GB)	HIGGS (7D - 616 MB)		
summary size	100kB 1MB		100kB	1MB	
DigitHist	16 mins	17 mins	35 secs	3 mins	
1d Histograms	3 mins	3 mins	2 secs	3 secs	
Equi-Width	5 mins	5 mins	2 secs	3 secs	
Equi-Depth	2.2 hours	2.5 hours	29 secs	34 secs	
Wei-Yi	2.5 hours	3.1 hours			
Cross GK	1 hour	2.1 hours	20 mins	40 mins	

Precision: Errors and Bounds

- <6D: DigitHist smallest error and bounds
- ≥6D: Sampling smallest error and DigitHist tightest bounds

Summary

DigitHist

- aggregate data along regular grids
- split counts by digits
- aggregate denser data regions at higher resolution
- integrate high-res one-dimensional histograms

u-error

- measures precision to guides lossy compression of DigitHist
- takes histogram and computes its expected width of bounds
- assumes uniform distribution of queries

experimental results

- <6D: DigitHist smallest error and bounds
- ≥6D: Sampling smallest error and DigitHist smallest bounds

Outlook

DigitHist

- optimize summary for known workload
- deal with mix of categorical, discrete and real attributes
- try to improve performance for more dimensions

beyond DigitHist

 lower-dimensional summaries with ultra-fast query times and theoretical guarantees

Thank you for attention!