
1 1
1 4 1

1 5 1
4 2

2 2 6
2

2 9 3
5 4 6
2 2 8

4 5

1

L3

1
1 5

6 1
4 2
2 8

2

2 12
9 6
4 8
4 5

1
L2

2 5 10 3

2 10

11 18

8 13

1
L1

7 13

12

29

21

1L0 7 25 5050

L4

D3 (·103) D2 (·102) D1 (·101) D0 (·100)

6 bytes, uerr = 36.7%

6 bytes, uerr = 36.8%

6 bytes, uerr = 45.1%

6 bytes, uerr = 47.1%

0 bytes, uerr = 50.0%

15 bytes, uerr = 14.4%

13 bytes, uerr = 30.7%

8 bytes, uerr = 31.6%

6 bytes, uerr = 33.0%

0 bytes, uerr = 35.0%

31 bytes, uerr = 8.1%

27 bytes, uerr = 10.5%

15 bytes, uerr = 11.3%

11 bytes, uerr = 11.8%

0 bytes, uerr = 12.5%

35 bytes, uerr = 1.5%

29 bytes, uerr = 2.1%

15 bytes, uerr = 2.3%

11 bytes, uerr = 2.4%

0 bytes, uerr = 2.5%

Figure 6: Resolution space with u-error and size.

In order to reduce the digit histograms to a user-defined size S,
we compress the digit histograms while minimizing the error that
is introduced.

Definition 7. (Optimal digit histogram resolutions) Let S be the
maximal number of bytes available for the digit histograms and
size(H) be the number of bytes needed to represent a histogram
H . The optimal set of digit histograms { ˆD0, . . . , ˆDK�1} with
ˆDk 2 res(Dk) for k = 0, . . . ,K�1, satisfies the constraintPK�1

k=0 size(ˆDk)  S and minimizes
PK�1

k=0 uerr(ˆDk).

The set of optimal digit histograms is comprised of one his-
togram from each digit histogram’s resolution space such that the
total number of bytes does not exceed the space budget and the total
u-error is minimized.

THEOREM 2. (Red. to Multiple choice knapsack) The problem
of finding the optimal resolution for each digit histogram can be
formulated as multiple choice knapsack problem.

PROOF. Each digit histogram Dk with 2

L buckets corresponds
to a knapsack class. The resolution space res(Dk) of each digit
histogram, is comprised of the histograms hDL

k , . . . , D
0
ki where

each element Dl
k is a less detailed version of Dk with 2

l buckets.
Each element of the resolution space corresponds to a knapsack
item. The negated u-error (�uerr(Dl

k)) of each element in the
resolution space Dl

k is then the profit and the byte size size(Dl
k)

the weight of the knapsack item. The multiple choice knapsack
problem is to pick exactly one item from each class, such that the
combination of these items maximizes the total profit without ex-
ceeding the weight constraint, which is equivalent to picking a level
of detail for each digit histogram, such that the error is minimized
and the size constraint is not exceeded.

The multiple-choice knapsack solver gets as an input
the byte sizes size(DL

k), . . . , size(D
0
k) and negated errors

�uerr(DL
k), . . . ,�uerr(D0

k) for each digit histogram Dk and
returns the optimal resolutions for each digit histogram as an
output, such that we can create the final digit histograms
{ ˆD0, . . . , ˆDK�1}. Although the multiple-choice knapsack prob-
lem is weakly NP-hard, our problem instances are kept very small.
In our implementation we use a simple dynamic programming ap-
proach for the multi-choice knapsack solver, because its memory
usage and runtime is very predictable, since it only depends on the
number of classes, items and weight constraint, but not on particu-
lar weights and profits.

Example 3. The four digit histograms at level L4 in Fig. 6 have
a total size of 6 + 15 + 31 + 35 = 87 bytes. Assuming a space
of at most 40 bytes for the digit histograms, the resolutions picked
by the multiple-choice knapsack solver are highlighted in boldface.
That is, the two most significant digit histograms keep their initial
resolution, whereas the other two histograms are compressed to a
lower resolution. The selected combination of digit histograms in-
duces an u-error of 36.7% + 14.4% + 11.3% + 2.5% = 64.9%
and requires 36 bytes. There exists no other combination that has a
smaller error and requires less than 40 bytes.

To improve the efficiency of this optimization step, we do not
compute or materialize the entire resolution space, i.e., we do not
compute the u-error and the size for all histograms in the resolu-
tion space. As a consequence, the search space for the knapsack
solver becomes smaller. In particular, if a digit histogram at some
resolution level requires more bytes than the total budget for all
digit histograms, there is no need to consider it in the optimization
phase.

LEMMA 3. Let S be the targeted compression size in bytes. Let
digit histograms be represented in a way that requires at least two
bytes per non-zero bucket. If a digit histogram Dk at resolution l
has more than dS

2 e non-zero buckets, the multiple-choice knapsack
solver will never pick resolution l for Dk.

PROOF. A digit histogram with more than dS
2 e non-zero buck-

ets would have a size exceeding S bytes and therefore necessarily
violates the total weight constraint of the multiple-choice knapsack
problem.

This lemma shows that we do not lose optimality if too large his-
tograms (for the targeted size) in the resolution space are skipped.
Thus, digit histograms at excessively high resolutions are not cre-
ated at all, but only digit histograms that fit into the summary size
S. The range of histograms that need to be generated can easily be
determined from the number of non-zero buckets.

5.2.3 Marginal Histograms
The last construction step is to create the marginal histograms

of the digit histograms as described in Algorithm 3. They are
constructed by distributing the counts of the initial marginal his-
tograms to the marginals of the digit histograms. We begin with
the digit histogram with the highest resolution; if multiple digit
histograms have the same grid resolution, a higher digit coefficient
has precedent. For a multidimensional bucket j of a digit histogram
Dk with bucket frequency fDk

j , we first determine which marginal
buckets are covered by bucket j. Then, we move fDk

j data points
from those buckets in the initial marginal histogram to the corre-
sponding buckets in the marginal histogram M i

Dk
. As the resolu-

tion of the marginal histograms is higher than the resolution of the

digit histograms, we have to decide how many points we take from
each marginal bucket. We simply take proportionally, i.e., if one
marginal bucket has a twice as high count, we take twice as much
from it. This procedure is repeated for all dimensions and all digit
histograms. At the end, all data points from the initial marginal
histograms are distributed to the marginals of the digit histograms.

Algorithm 3: MARGINALS

Input: {D0, . . . , DK�1}, {M1 . . . ,Md}, Smarginal

Output: marginal histograms M̂j
i

foreach i 2 {1, . . . , d} do
M̂k

i = 0 for any k 2 {0, . . . , K � 1}.

foreach Dk 2 {D0, . . . , DK�1} sorted in descending order by grid
resolution do

foreach bucket j of Dk do
foreach i 2 {1, . . . , d} do

c = f
Dk
j

Let I be the indices of Mi’s buckets that intersect bucket j.
Let s =

P
m2I f

Mi
m

foreach m 2 I do

Let � = min(c,

⇠
f
Mi
m
s c

⇡
)

f
M̂k

i
m = f

M̂k
i

m + �

f
Mi
m = f

Mi
m � �

c = c � �

reduce Mk
i to byte size

Smarginal
d·K

return {M̂0
1 , . . . , M̂

K�1
1 , . . . , M̂0

d , . . . , M̂
K�1
d }

Example 4. Figure 7 shows the result of distributing the initial
marginal histograms to the marginals of the digit histograms. First,
the marginals of D3 are constructed, then of D2, D1 and finally
D0. Let us consider the only non-empty bucket in D3, which
counts 1 · 103 = 1000 data points. It intersects two marginal
buckets in each dimension. In dimension one, the intersecting
buckets in the initial marginal histogram count 1261 and 176 data
points, respectively. We take from the first intersected marginal
bucket d 1261

1261+1761000e = 878 points and from the second one
the remaining 1000 � 878 = 122 points. Similarly, in dimen-
sion two we take, respectively, d 1180

1180+41000e = 997 points and
1000� 997 = 3 points from the two intersecting buckets.

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 60 40

0
100

534
66

0
0
0
0

D2(·102)

M
1 2

M2
2

10 3

2 10

4 46 18 52 17 3
68 42

1
69
53

7
26

74
20

0

D1(·101)

M
1 1

M2
1

50
0 7 3 9 15
2 8 6

0
14
14

1
3
9
9

0

D0(·100)

M
1 0

M2
0

Figure 7: Final DigitHist summary.

5.3 Querying DigitHist
Querying DigitHist is similar as for other histograms, except for

how we deal with partially intersected buckets and that we have
to query each of the K digit histograms. If the query region par-
tially intersects a bucket, it has to be estimated how many of the
bucket’s point are in the intersection. Previously, histogram ap-
proaches simply assumed uniform spread. In this work, we consult
the marginal histograms to also factor in the intersection’s loca-
tion. We call our approach AVI spread because it makes use of

the attribute value independence (AVI) assumption, i.e., it assumes
independence between dimensions. Figure 8 shows an example,
where using the AVI spread is visibly more accurate than the uni-
form spread. It should be noted that AVI is a widely used tech-
nique in databases, but it was previously used in place of multi-
dimensional histograms, instead of as something to assist the esti-
mation of spread inside buckets.

(a) data (b) unif. spread (c) AVI spread

Figure 8: Spread Estimation Inside Buckets

Definition 8. (DigitHist selectivity estimate) Let D be a d-
dimensional dataset, Q be a query range, Dk the digit histogram
for the kth digit, M i

k the marginal histogram of dimension i for the
kth digit, and ⇡i a function that project a multi-dimensional range
to the one-dimensional range of dimension i. The DigitHist selec-
tivity estimate is calculated as follows:

selDH(Q) =

1

|D|

K�1X

k=0

X

j

fDk
j ↵Dk

j (Q), where

↵Dk
j (Q) =

8
>>><

>>>:

0 for (Q \ rDk
j) = ?

Qd
i=1

sel
Mi

k
(⇡i[Q\r

Dk
j])

sel
Mi

k
(⇡i[r

Dk
j])

for (Q \ rDk
j) ⇢ rDk

j

1 for (Q \ rDk
j) = rDk

j

and the selectivity of a marginal histogram M i
k is calculated as

selMi
k
([a, b]) =

PJ
j=1 f

Mi
k

j

d([a,b]\r
Mi

k
j)

d(r
Mi

k
j)

, where d([a, b]) is b� a.

The selectivity estimate is computed by going through all digit
histograms and adding the counts of all buckets, whose regions are
intersected by the query region. The counts of bucket that are only
partially intersected are multiplied by a factor, that estimates the
fraction of the bucket’s points, that are in the intersection with the
query region. This factor divides the AVI estimate for the inter-
section by the AVI estimate for the bucket region, where an AVI
estimate is simply the product of the one-dimensional selectivity
estimates based on the marginal histograms.

The lower and upper bound are computed reusing the formula
for the selectivity estimate. In order to compute the lower bound,
one pretends that all partially intersected buckets are not intersected
by the query region and to compute the upper bound, that they are
contained in the query region.

Example 5. Figure 9 shows the final DigitHist summary with an
exemplary query region (hatched rectangle). The selectivity lower
bound of the query is equal to 0% as no bucket is completely cov-
ered by the query region. The selectivity upper bound is computed
as 1

2000

�
10

3
(1) + 10

2
(4 + 1) + 10

1
(1 + 2) + 10

0
(50)

�
= 79%.24% at 1024⇥1024 65.1% at 1024⇥1024 10.5% at 512⇥256 0.4% at 64⇥32

D3 (1kB) D2 (34kB) D1 (34kB) D0 (5kB)

Figure 2: Digit histograms D3, D2, D1 and D0.

a lower resolution since they have a smaller impact on the his-
togram’s precision. Unlike previous histogram approaches, such
as equi-width and equi-depth, which group data points into buck-
ets based on either location or local density, DigitHist groups data
based on both location and local density. As a result, the summary
has good knowledge about the location of most points.

As the bucket granularity necessarily decreases with an increas-
ing dimensionality of the data for a given summary size, we aug-
ment each digit histogram with a one-dimensional marginal his-
togram at a higher resolution for each dimension. The marginal
histograms together with the attribute value independence assump-
tion are used to spread the data points inside the buckets of the
digit histograms. This information significantly improves the pre-
cision when the query region partially overlaps buckets. Previ-
ous approaches assume a uniform data distribution inside buck-
ets, which is far less accurate. The problem with only using one-
dimensional histograms is that the attribute value independence as-
sumption is typically violated in real-world data, resulting in low
accuracy. Using both multi-dimensional and one-dimensional his-
tograms allows us to correct the estimates of the attribute value
independence assumption, such that the estimates never contradict
the multi-dimensional histograms. We thereby combine the knowl-
edge of the multi-dimensional histograms about the dependencies
between attributes and the knowledge of the one-dimensional his-
tograms about the distribution of attribute values.

The construction of DigitHist requires only one scan of the data.
During this scan, the data is aggregated at a very high resolution
into an initial multi-dimensional histogram and a one-dimensional
histogram for each dimension. To achieve otherwise unattainable
high resolutions for skewed data, only non-empty grid cells are
materialized. The size of the initial histogram is then reduced
to fit a desired summary size by using a novel lossy compres-
sion technique. The basic idea is to first decompose the initial
histogram along the digits of the largest bucket count, i.e., one
digit histogram for each digit position. For instance, a histogram
with four buckets and respective counts [10, 152, 1009, 12] would
be decomposed into four digit histograms D3 = [0, 0, 1000, 0],
D2 = [0, 100, 0, 0], D1 = [10, 50, 0, 10] and D0 = [0, 2, 9, 2],
where D3 has only multiples of thousand, D2 only multiples of
hundred, and so on. The digit histograms are then compressed by
reducing their resolution while minimizing the information loss.
This can be formulated as a multiple choice knapsack problem. As
the digit histograms store significantly different amounts of infor-
mation, their resolutions will differ, too. It is easy to see that the
bucket counts of the digit histograms can be stored with small num-
bers and a multiplicative factor. In combination with storing only
non-empty grid cells, we achieve a very compact representation of
the proposed summary structure.

To measure the information loss during the lossy compression
step, we propose a novel error metric, termed u-error, that mea-
sures a histogram’s uncertainty about the data, expressed as the
expected width of the histogram’s selectivity bounds assuming a
random distribution of range queries. The computation of the u-

error is linear in the summary size and independent of the data
size. Existing error metrics optimize for a uniform spread inside
buckets from which we diverge to better deal with higher dimen-
sional data. For instance, spatial skew [2] was proposed as a metric
for histograms over real-valued data and later improved in [21].
The improved spatial skew metric discretizes the data space along
a regular grid, pretends that each grid cell is a discrete value and
computes the V-error [10] over values grouped into buckets. The
V-error is defined as the sum of weighted variances

PJ
j=1 njVj ,

where J is the number of buckets, nj is the number of values and
Vj is the variance of the value frequencies in bucket j. The V-error
optimizes for small density variances inside buckets to reduce es-
timation errors when assuming a uniform spread of points inside
buckets. In comparison, the u-error optimizes for tight bounds and
also works well for more sophisticated spread assumptions.

The main technical contributions can be summarized as follows:

• We propose a new error measure, termed u-error, to measure
a histogram’s quality by calculating the expected width of the
bounds for random range queries.

• We introduce DigitHist, a new summary structure over reg-
ular grids that is composed of a set of multi-dimensional
histograms representing disjoint subsets of the data at dif-
ferent granularity levels, each of which is augmented by a
one-dimensional histogram for each dimension.

• We propose a new histogram compression technique that
chooses higher resolutions in dense regions and lower res-
olutions elsewhere, while minimizing the u-error and com-
pressing the summary to a given size.

• Experiments on real-world data show that DigitHist provides
more accurate selectivity estimates and tighter bounds than
its competitors at a comparable query time.

The rest of the paper is organized as follows. In Section 2 re-
lated work is discussed. In Section 3, the basic concepts of multi-
dimensional histograms and selectivity estimation are introduced.
Section 4 presents the error measure u-error, which is used for the
construction of DigitHist. In Section 5, the DigitHist summary is
described in detail. Section 6 compares DigitHist to random sam-
pling and popular histogram approaches.

2. RELATED WORK
There exists a large body of work on multi-dimensional selec-

tivity estimation inspired by one-dimensional histograms, statis-
tical methods and compression techniques. For a comprehensive
overview of existing approaches we refer to [9, 6, 4].

Multi-dimensional selectivity estimation can be classified into
two types of approaches: Data-driven approaches scan the data up-
front to create the summary, whereas self-tuning approaches [1, 3,
8] use query answers of the database system to dynamically con-
struct a summary. A key property of self-tuning approaches is that
they organically prioritize frequently queried regions, but they can-
not deduce bounds and are inaccurate when an insufficient number
of previous queries intersects the current query region.

A popular data-driven approach are multi-dimensional his-
tograms. A simple example are equi-depth histograms [14] that
group the data points into buckets containing roughly the same
number of points. They excessively prioritize denser regions of
the data, while less dense regions are almost completely neglected.
For large datasets, the construction requires multiple data scans to
either externally sort the data multiple times or to compute multiple
quantiles that depend on each other. Our DigitHist approach scans

5. DATA SUMMARY: DigitHist

5.1 Constructing DigitHist
The basic idea of DigitHist is to summarize the data by a set

of equi-width multi-dimensional and one-dimensional histograms
with different resolutions.

Definition 3. (DigitHist) The DigitHist summary of a d-
dimensional dataset D is composed of a set of d-dimensional equi-
width histograms D0, . . . , DK�1, termed digit histograms, and
for each Dk a set of d one-dimensional equi-width histograms
M1

k , . . . ,M
d
k , termed marginal histograms.

Each digit histogram Dk summarizes a disjoint subset of the data
using a different grid resolution. Histograms that summarize more
points typically use a higher resolution. The one-dimensional his-
tograms, Md

k , associated to the digit histograms are used to spread
the data points inside the buckets of the digit histograms. The con-
struction of the DigitHist summary proceeds in three steps:

1. Create an initial d-dimensional histogram H and, for each
dimension i, a one-dimensional marginal histogram M i.

2. Decompose and compress H into K digit histograms
DK�1, . . . , D0 of maximum S bytes.

3. Distribute each initial marginal histogram M i over
the marginal histograms M i

K�1, . . . ,M
i
0 associated with

DK�1, . . . , D0.

5.1.1 Initial Histograms
The first step scans the data and constructs an initial multi-

dimensional histogram and one marginal histogram per dimension.

Definition 4. (Initial histograms) Let D be a d-dimensional
dataset. The initial multi-dimensional histogram, H , is an equi-
width histogram that has the highest possible resolution such that
all data points are located in at most B buckets and the grid reso-
lution in each dimension is a power of two. The initial marginal
histograms, M1, . . . ,Md, are one-dimensional equi-width his-
tograms of a given resolution C, each summarizing the data pro-
jected onto one of the dimensions.

To achieve a high resolution of the initial multi-dimensional his-
togram, only non-empty buckets are materialized by storing them
in a hash table indexed by the bucket address. The data scan be-
gins with a very high resolution grid (e.g., 262 buckets in our im-
plementation, which is the largest power of two that can be rep-
resented with a signed 64-bit integer). When the number of non-
empty buckets exceeds B, the resolution along one or more dimen-
sions is reduced by merging pairs of adjacent buckets. The dimen-
sions for merging are chosen in a round-robin fashion to prevent
very stretched grid cells. This strategy ensures the construction of
a multi-dimensional histogram with the highest possible precision
we can support. Especially for skewed datasets, we can operate
in orders of magnitude higher resolutions than otherwise would be
possible with a dense representation. For the initial marginal his-
tograms, we assume a fixed granularity C, which is a power of two.

Example 1. Figure 4 illustrates the construction of the initial
histograms for a dataset of 2000 points. Only non-zero bucket
counts are depicted. The maximal number of non-empty cells is
B = 15, and the resolution of the initial marginal histograms
C = 8. The initial grid has 2

62
= 2

31 ⇥ 2

31 cells. After pro-
cessing 4.3% of the data points, the grid has already only 8 ⇥ 8

cells. Since there are more than 15 non-empty cells, the grid reso-
lution has to be further reduced by merging adjacent cells yielding
4⇥8 cells. Processing the remaining data points yields a 4⇥4 grid,
which is the highest resolution with at most 15 non-empty cells.

5
2
1

1
1

37 8
15 1 4 1

2

2
1

1
4

0 3 2 5
54

9 7 6

0
50

24
4
1
3
4
0

8
2
1

4
1

78 1
29
1

6
4

1 2
1
3
4

0 3 5 9
95

15 11 8

0
87

41
7
1
6
4
0

10 152

45 104

1009 13

400 126

2 22

4

28 60

25

4 53 71 21
1

12
61

17
6

13
6

88

4
1180

601
74
29
83
29
0

4.3% 7.3% 100.0%

Figure 4: Initial histograms after processing % of the data.

5.1.2 Digit Histogram Compression
The digit histogram compression is comprised of a decompo-

sition and a shrinking step. The decomposition splits the initial
multi-dimensional histogram, H , into multiple digit histograms,
ˆDK�1, . . . , ˆD0, such that reducing the size of some digit his-
tograms leads to a larger error than others. The subsequent shrink-
ing step determines the optimal size reduction of the digit his-
tograms, D⇤

K�1, . . . , D
⇤
0 , such that they fit into a user-specified

size constraint S and the total u-error is minimized. To get the best
lossy compression of the initial histogram, the decomposition and
shrinking steps are repeated with lower resolutions of the initial
histogram as a starting point. The reason for trying lower resolu-
tions of the initial histogram is that the decomposition operates on
bucket counts and is most effective if they have a large disparity; at
very high resolution all bucket counts tend to be very small.

Definition 5. (Digit histograms) Let H be an initial histogram
and b be the radix of a numeral system such that all bucket counts
in H can be represented by K digits, i.e., fH

j = xK�1 . . . x0.
The K digit histograms of H are defined as ˆDK�1, . . . , ˆD0, where
each ˆDk has the same resolution as H and the bucket counts are
f
D̂k
j = xk · bk.

The digit histogram decomposition transforms an initial multi-
dimensional histogram into a set of digit histograms. The digit
histograms summarize disjoint subsets of the data that originate
from different digit positions. Since all bucket counts of a digit
histogram ˆDk are multiples of the coefficient bk, we store bk only
once and, for each bucket, the digit xk, yielding a compact rep-
resentation. In our implementation, we limit ourselves to numeral
systems with a power of two as a basis b since digit-related opera-
tions can then be efficiently done as bit operations. For illustration
purposes we use in the running example the decimal system.

Example 2. Figure 5 shows the decomposition of the initial his-
togram into K = 4 digit histograms. All digit histograms have the
same bucket regions as the initial histogram, and they store only the
corresponding digits of the bucket counts; the corresponding coeffi-
cient is shown in parentheses. For instance, the digit in the top-right
bucket is a three in ˆD0, a one in ˆD1 and a zero in the other two digit
histograms. Summing up 0 · 103 +0 · 102 +1 · 101 +3 · 100 yields
the top-right bucket count 13 of the initial histogram.

The digit histograms facilitate size reduction with small infor-
mation loss because different resolutions can be used depending on
the number of data points that are represented by a digit histogram.

fir
st

an
in

cr
ea

se
in

qu
er

y
tim

e
fo

ra
n

in
cr

ea
si

ng
su

m
m

ar
y

si
ze

,b
ut

th
en

it
re

m
ai

ns
co

ns
ta

nt
.

Th
e

re
as

on
fo

r
th

is
is

th
at

th
is

st
at

e-
of

-
th

e-
ar

ta
pp

ro
ac

h
do

es
no

ti
nc

re
as

e
th

e
su

m
m

ar
y

si
ze

an
ym

or
e

fr
om

⇡
8
0

kB
on

w
ar

ds
si

nc
e

it
ca

nn
ot

id
en

tif
y

m
or

e
in

fo
rm

at
io

n
to

st
or

e.
D

at
a

D
im

en
sio

na
lit

y.
W

e
no

w
co

m
pa

re
th

e
ap

pr
oa

ch
es

fo
rd

if-
fe

re
nt

da
ta

di
m

en
si

on
al

ity
.

W
e

us
e

th
e

ZI
PF

da
ta

se
ta

nd
va

ry
th

e
di

m
en

si
on

al
ity

fo
rt

w
o

di
ff

er
en

ts
um

m
ar

y
si

ze
s.

Th
e

th
re

e
ve

rti
ca

l
pl

ot
s

in
Fi

gu
re

14
a

sh
ow

th
e

re
su

lt
fo

r
su

m
m

ar
y

si
ze

s
of

at
m

os
t

1
0
0

kB
,i

.e
.,

al
l

ap
pr

oa
ch

es
m

ay
ta

ke
up

to
1
0
0

kB
of

sp
ac

e,
an

d
Fi

gu
re

14
b

fo
rs

um
m

ar
y

si
ze

s
of

at
m

os
t1

0
M

B
fo

ra
ll

ap
pr

oa
ch

es
.

G
H

is
no

ti
nc

lu
de

d
in

th
e

ex
pe

rim
en

ts
w

ith
1
0

M
B

su
m

m
ar

ie
s,

be
-

ca
us

e
its

co
ns

tru
ct

io
n

co
st

s
be

co
m

e
pr

oh
ib

iti
ve

w
he

n
co

ns
tru

ct
in

g
it

on
a

da
ta

sa
m

pl
e

la
rg

er
th

an
1
0

M
B

.G
K

is
in

cl
ud

ed
on

ly
fo

ru
p

to
ei

gh
td

im
en

si
on

s,
be

ca
us

e
fo

rh
ig

he
rd

im
en

si
on

al
ity

th
e

co
ns

tru
c-

tio
n

tim
e

be
co

m
es

ex
ce

ss
iv

e,
an

d
th

e
ap

pr
oa

ch
al

re
ad

y
st

ru
gg

le
s

w
ith

ei
gh

td
im

en
si

on
s.

2
4

6
8

1
0

1
2

1
4

1
6

0
.11

1
0

1
0
0

1
,0
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.error[%]

2
4

6
8

1
0

1
2

1
4

1
6

1
0

1
0
0

1
,0
0
0

1
0
,0
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.widthofbounds[%]

2
4

6
8

1
0

1
2

1
4

1
6

0
.0
0
0
1

0
.0
0
1

0
.0
1

0
.11

1
0

nu
m

be
ro

fd
im

en
si

on
s

avgquerytime[ms]

(a
)S

um
m

ar
y

si
ze


1
0
0

kB

2
4

6
8

1
0

1
2

1
4

1
6

0
.0
0
1

0
.0
1

0
.11

1
0

1
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.error[%]

2
4

6
8

1
0

1
2

1
4

1
6

0
.11

1
0

1
0
0

1
,0
0
0

1
0
,0
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.widthofbounds[%]

2
4

6
8

1
0

1
2

1
4

1
6

0
.0
0
1

0
.0
1

0
.11

1
0

1
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgquerytime[ms]

(b
)S

um
m

ar
y

si
ze


1
0

M
B

A
V
I

D
H

E
W

E
D

G
H

G
K

M
S
K

R
S

Fi
gu

re
14

:V
ar

yi
ng

di
m

en
si

on
al

ity
w

ith
lim

ite
d

su
m

m
ar

y
si

ze
.

W
e

ca
n

ob
se

rv
e

th
at

D
H

be
at

s
th

e
ot

he
r

hi
st

og
ra

m
ap

pr
oa

ch
es

in
se

le
ct

iv
ity

er
ro

r
an

d
w

id
th

of
bo

un
ds

fo
r

al
lc

as
es

,e
xc

ep
tt

ha
t

E
D

ha
s

in
si

xt
ee

n
di

m
en

si
on

s
sl

ig
ht

ly
tig

ht
er

bo
un

ds
w

ith
1
0

M
B

su
m

m
ar

ie
s.

Th
e

se
le

ct
iv

ity
er

ro
ro

fR
S

re
m

ai
ns

co
ns

ta
nt

,w
hi

le
th

e
er

ro
ro

ft
he

hi
st

og
ra

m
ap

pr
oa

ch
es

in
cr

ea
se

s
w

ith
m

or
e

di
m

en
si

on
s

un
til

sa
m

pl
in

g
ov

er
ta

ke
s

th
em

.
R
S

ov
er

ta
ke

s
ex

is
tin

g
hi

st
og

ra
m

ap
pr

oa
ch

es
at

si
x

di
m

en
si

on
s

an
d

th
e

pr
op

os
ed

D
ig

itH
is

ta
pp

ro
ac

h
at

ar
ou

nd
te

n
di

m
en

si
on

s.
A

ls
o

fo
r

th
is

ca
se

E
W

,G
K

an
d
A
V
I

ha
ve

th
e

lo
w

es
tq

ue
ry

tim
e,

bu
tt

he
y

pr
ov

id
e

a
ve

ry
lo

w
pr

ec
is

io
n,

to
o.

Th
e

qu
er

y
tim

e
of

E
W

is
ex

po
ne

nt
ia

li
n

th
e

nu
m

be
ro

fd
im

en
-

si
on

s,
si

nc
e

it
ha

s
O(

2

d
)

tim
e

co
m

pl
ex

ity
.

In
th

e
ne

xt
ex

pe
rim

en
t,

w
e

co
m

pa
re

th
e

di
ff

er
en

ta
pp

ro
ac

he
s

fo
r

va
ry

in
g

di
m

en
si

on
al

ity
an

d
sh

ow
th

e
se

le
ct

iv
ity

er
ro

ra
nd

w
id

th
of

bo
un

ds
fo

r
th

e
ZI

PF
da

ta
se

t.
In

st
ea

d
of

fix
in

g
th

e
su

m
m

ar
y

si
ze

,
th

is
tim

e
w

e
de

pi
ct

th
e

va
lu

es
fo

rt
he

su
m

m
ar

ie
sw

ith
a

fix
ed

qu
er

y
tim

e
of

⇡
1

m
s.

Th
e

re
su

lt
is

sh
ow

n
in

Fi
gu

re
15

.
W

e
ca

n
se

e
th

at
D
H

ou
tp

er
fo

rm
s

th
e

ot
he

r
hi

st
og

ra
m

ap
pr

oa
ch

es
by

on
e

or
de

r
of

m
ag

ni
tu

de
an

d
in

lo
w

er
di

m
en

si
on

al
ity

ev
en

by
m

ul
tip

le
or

de
rs

of

m
ag

ni
tu

de
.

Fo
r

hi
gh

di
m

en
si

on
al

da
ta

,R
S

at
so

m
e

po
in

to
ut

pe
r-

fo
rm

s
D
H

,b
ut

R
S

ca
nn

ot
pr

ov
id

e
tig

ht
bo

un
ds

,b
ec

au
se

it
on

ly
kn

ow
s

ab
ou

ta
sm

al
lf

ra
ct

io
n

of
th

e
da

ta
.

2
4

6
8

1
0

1
2

1
4

1
6

0
.0
0
1

0
.0
1

0
.11

1
0

1
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.error[%]

2
4

6
8

1
0

1
2

1
4

1
6

0
.11

1
0

1
0
0

1
,0
0
0

1
0
,0
0
0

nu
m

be
ro

fd
im

en
si

on
s

avgrel.widthofbounds[%]

A
V
I

D
H

E
W

E
D

G
H

G
K

M
S
K

R
S

Fi
gu

re
15

:V
ar

yi
ng

di
m

en
si

on
al

ity
w

ith
qu

er
y

tim
e
⇡
1

m
s.

Sc
at

te
rp

lo
ts

U
sin

g
Q

ue
ry

Ti
m

e.
In

th
e

ne
xt

ex
pe

rim
en

t,
w

e
an

al
yz

e
th

e
qu

er
y

tim
e.

W
e

co
ns

tru
ct

m
an

y
su

m
m

ar
ie

s
of

di
ff

er
-

en
ts

iz
e

(
1
0

M
B

)
fo

r
ea

ch
ap

pr
oa

ch
an

d
de

pi
ct

a
sc

at
te

rp
lo

tf
or

qu
er

y
tim

e
w

ith
se

le
ct

iv
ity

er
ro

ra
nd

fo
rq

ue
ry

tim
e

w
ith

w
id

th
s

of
bo

un
ds

.
Th

e
re

su
lt

fo
r

th
e

O
SM

an
d

H
IG

G
S

da
ta

se
ts

is
sh

ow
n

in
Fi

gu
re

16
a

an
d

Fi
gu

re
16

b,
re

sp
ec

tiv
el

y.

0
.0
0
1

0
.0
1

0
.1

1
1
0

0
.0
1

0
.11

1
0

1
0
0

av
g

qu
er

y
tim

e
[m

s]

avgrel.error[%]

0
.0
0
1

0
.0
1

0
.1

1
1
0

0
.11

1
0

1
0
0

1
,0
0
0

1
0
,0
0
0

av
g

qu
er

y
tim

e
[m

s]

avgrel.widthofbounds[%]

(a
)O

SM

0
.0
0
1

0
.0
1

0
.1

1
1
0

1

1
0

1
0
0

1
,0
0
0

av
g

qu
er

y
tim

e
[m

s]

avgrel.error[%]

0
.0
0
1

0
.0
1

0
.1

1
1
0

1
0

1
0
0

1
,0
0
0

1
0
,0
0
0

av
g

qu
er

y
tim

e
[m

s]

avgrel.widthofbounds[%]

(b
)H

IG
G

S
A
V
I

D
H

E
W

E
D

G
H

G
K

M
S
K

R
S

W
Y

Fi
gu

re
16

:C
om

pa
ris

on
of

su
m

m
ar

ie
s

on
tw

o
re

al
-w

or
ld

da
ta

se
ts

.

D
H

is
th

e
on

ly
ap

pr
oa

ch
to

ac
hi

ev
e

hi
gh

-p
re

ci
si

on
in

al
lc

as
es

.
R
S

ac
hi

ev
es

lo
w

er
es

tim
at

io
n

er
ro

rs
fo

r
th

e
hi

gh
-d

im
en

si
on

al
da

ta
se

t,
bu

td
oe

s
no

ta
ch

ie
ve

tig
ht

bo
un

ds
lik

e
D
H

.
E
W

is
ve

ry
fa

st
,

bu
t

re
ac

hi
ng

th
e

sa
m

e
le

ve
l

of
pr

ec
is

io
n

w
ou

ld
re

qu
ire

pr
o-

hi
bi

tiv
el

y
la

rg
e

su
m

m
ar

ie
s,

i.e
.,

m
uc

h
la

rg
er

th
an

1
0

M
B

.G
K

is
al

so
fa

st
to

qu
er

y
an

d
ca

n
w

ith
1
0
0

M
B

re
ac

h
a

hi
gh

er
pr

ec
is

io
n

fo
r

th
e

O
SM

da
ta

se
t,

bu
tr

eq
ui

re
s

a
co

ns
tru

ct
io

n
tim

e
of

8
ho

ur
s.

W
or

st
-c

as
e

Pr
ec

isi
on

.
W

hi
le

in
th

e
ab

ov
e

ev
al

ua
tio

n
w

e
fo

-
cu

se
d

on
th

e
av

er
ag

e
pr

ec
is

io
n,

w
e

al
so

m
ea

su
re

d
th

e
m

ax
im

al
re

l-
at

iv
e

er
ro

rs
an

d
bo

un
ds

en
co

un
te

re
d

in
th

e
ex

pe
rim

en
ts

.I
n

ge
ne

ra
l,

w
e

ob
se

rv
ed

fo
ra

ll
ap

pr
oa

ch
es

th
at

th
e

m
ax

im
al

er
ro

r/b
ou

nd
s

ar
e

ab
ou

t1
0

tim
es

hi
gh

er
th

an
th

e
av

er
ag

e.
O

n
th

e
O

SM
da

ta
se

t,
M
S
K

ha
s

sm
al

le
rm

ax
im

al
es

tim
at

io
n

er
ro

rs
fo

rs
um

m
ar

y
si

ze
s

le
ss

th
an

1
0
0

K
B

co
m

pa
re

d
to

D
H

.F
or

m
or

e
th

an
th

re
e

di
m

en
si

on
s,

al
la

p-
pr

oa
ch

es
ex

ce
pt

R
S

an
d
G
H

re
ac

h
th

ei
rl

im
its

of
ap

pl
ic

ab
ili

ty
an

d
pr

ov
id

e
m

ax
im

al
es

tim
at

io
n

er
ro

rs
th

at
co

ul
d

be
ou

tp
er

fo
rm

ed
by

na
iv

el
y

es
tim

at
in

g
0
%

se
le

ct
iv

ity
fo

ra
ll

qu
er

ie
s.

Th
is

do
es

no
ta

p-
pl

y
to

th
e

w
id

th
of

bo
un

ds
,

w
he

re
D
H

st
ill

cl
ea

rly
pr

ov
id

es
th

e
tig

ht
es

tb
ou

nd
s,

bu
tb

y
a

th
in

ne
rm

ar
gi

n.

DigitHist Construction

Experimental Results

first an increase in query time for an increasing summary size, but
then it remains constant. The reason for this is that this state-of-
the-art approach does not increase the summary size anymore from
⇡ 80kB onwards since it cannot identify more information to store.

Data Dimensionality. We now compare the approaches for dif-
ferent data dimensionality. We use the ZIPF dataset and vary the
dimensionality for two different summary sizes. The three vertical
plots in Figure 14a show the result for summary sizes of at most
100kB, i.e., all approaches may take up to 100kB of space, and
Figure 14b for summary sizes of at most 10MB for all approaches.
GH is not included in the experiments with 10MB summaries, be-
cause its construction costs become prohibitive when constructing
it on a data sample larger than 10MB. GK is included only for up to
eight dimensions, because for higher dimensionality the construc-
tion time becomes excessive, and the approach already struggles
with eight dimensions.

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16

0.0001

0.001

0.01

0.1

1

10

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(a) Summary size  100kB

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(b) Summary size  10MB
AVI DH EW ED GH GK MSK RS

Figure 14: Varying dimensionality with limited summary size.

We can observe that DH beats the other histogram approaches
in selectivity error and width of bounds for all cases, except that
ED has in sixteen dimensions slightly tighter bounds with 10MB
summaries. The selectivity error of RS remains constant, while the
error of the histogram approaches increases with more dimensions
until sampling overtakes them. RS overtakes existing histogram
approaches at six dimensions and the proposed DigitHist approach
at around ten dimensions. Also for this case EW , GK and AVI
have the lowest query time, but they provide a very low precision,
too. The query time of EW is exponential in the number of dimen-
sions, since it has O(2

d
) time complexity.

In the next experiment, we compare the different approaches for
varying dimensionality and show the selectivity error and width of
bounds for the ZIPF dataset. Instead of fixing the summary size,
this time we depict the values for the summaries with a fixed query
time of ⇡ 1ms. The result is shown in Figure 15. We can see that
DH outperforms the other histogram approaches by one order of
magnitude and in lower dimensionality even by multiple orders of

magnitude. For high dimensional data, RS at some point outper-
forms DH , but RS cannot provide tight bounds, because it only
knows about a small fraction of the data.

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

AVI DH EW ED GH GK MSK RS

Figure 15: Varying dimensionality with query time ⇡1ms.

Scatterplots Using Query Time. In the next experiment, we
analyze the query time. We construct many summaries of differ-
ent size ( 10MB) for each approach and depict a scatterplot for
query time with selectivity error and for query time with widths of
bounds. The result for the OSM and HIGGS datasets is shown in
Figure 16a and Figure 16b, respectively.

0.001 0.01 0.1 1 10

0.01

0.1

1

10

100

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]

0.001 0.01 0.1 1 10

0.1

1

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(a) OSM

0.001 0.01 0.1 1 10

1

10

100

1,000

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]

0.001 0.01 0.1 1 10

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(b) HIGGS
AVI DH EW ED GH GK MSK RS WY

Figure 16: Comparison of summaries on two real-world datasets.

DH is the only approach to achieve high-precision in all cases.
RS achieves lower estimation errors for the high-dimensional
dataset, but does not achieve tight bounds like DH . EW is very
fast, but reaching the same level of precision would require pro-
hibitively large summaries, i.e., much larger than 10MB. GK is
also fast to query and can with 100MB reach a higher precision for
the OSM dataset, but requires a construction time of 8 hours.

Worst-case Precision. While in the above evaluation we fo-
cused on the average precision, we also measured the maximal rel-
ative errors and bounds encountered in the experiments. In general,
we observed for all approaches that the maximal error/bounds are
about 10 times higher than the average. On the OSM dataset, MSK
has smaller maximal estimation errors for summary sizes less than
100KB compared to DH . For more than three dimensions, all ap-
proaches except RS and GH reach their limits of applicability and
provide maximal estimation errors that could be outperformed by
naively estimating 0% selectivity for all queries. This does not ap-
ply to the width of bounds, where DH still clearly provides the
tightest bounds, but by a thinner margin.

first an increase in query time for an increasing summary size, but
then it remains constant. The reason for this is that this state-of-
the-art approach does not increase the summary size anymore from
⇡ 80kB onwards since it cannot identify more information to store.

Data Dimensionality. We now compare the approaches for dif-
ferent data dimensionality. We use the ZIPF dataset and vary the
dimensionality for two different summary sizes. The three vertical
plots in Figure 14a show the result for summary sizes of at most
100kB, i.e., all approaches may take up to 100kB of space, and
Figure 14b for summary sizes of at most 10MB for all approaches.
GH is not included in the experiments with 10MB summaries, be-
cause its construction costs become prohibitive when constructing
it on a data sample larger than 10MB. GK is included only for up to
eight dimensions, because for higher dimensionality the construc-
tion time becomes excessive, and the approach already struggles
with eight dimensions.

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16

0.0001

0.001

0.01

0.1

1

10

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(a) Summary size  100kB

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(b) Summary size  10MB
AVI DH EW ED GH GK MSK RS

Figure 14: Varying dimensionality with limited summary size.

We can observe that DH beats the other histogram approaches
in selectivity error and width of bounds for all cases, except that
ED has in sixteen dimensions slightly tighter bounds with 10MB
summaries. The selectivity error of RS remains constant, while the
error of the histogram approaches increases with more dimensions
until sampling overtakes them. RS overtakes existing histogram
approaches at six dimensions and the proposed DigitHist approach
at around ten dimensions. Also for this case EW , GK and AVI
have the lowest query time, but they provide a very low precision,
too. The query time of EW is exponential in the number of dimen-
sions, since it has O(2

d
) time complexity.

In the next experiment, we compare the different approaches for
varying dimensionality and show the selectivity error and width of
bounds for the ZIPF dataset. Instead of fixing the summary size,
this time we depict the values for the summaries with a fixed query
time of ⇡ 1ms. The result is shown in Figure 15. We can see that
DH outperforms the other histogram approaches by one order of
magnitude and in lower dimensionality even by multiple orders of

magnitude. For high dimensional data, RS at some point outper-
forms DH , but RS cannot provide tight bounds, because it only
knows about a small fraction of the data.

2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

AVI DH EW ED GH GK MSK RS

Figure 15: Varying dimensionality with query time ⇡1ms.

Scatterplots Using Query Time. In the next experiment, we
analyze the query time. We construct many summaries of differ-
ent size ( 10MB) for each approach and depict a scatterplot for
query time with selectivity error and for query time with widths of
bounds. The result for the OSM and HIGGS datasets is shown in
Figure 16a and Figure 16b, respectively.

0.001 0.01 0.1 1 10

0.01

0.1

1

10

100

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]

0.001 0.01 0.1 1 10

0.1

1

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(a) OSM

0.001 0.01 0.1 1 10

1

10

100

1,000

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]

0.001 0.01 0.1 1 10

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(b) HIGGS
AVI DH EW ED GH GK MSK RS WY

Figure 16: Comparison of summaries on two real-world datasets.

DH is the only approach to achieve high-precision in all cases.
RS achieves lower estimation errors for the high-dimensional
dataset, but does not achieve tight bounds like DH . EW is very
fast, but reaching the same level of precision would require pro-
hibitively large summaries, i.e., much larger than 10MB. GK is
also fast to query and can with 100MB reach a higher precision for
the OSM dataset, but requires a construction time of 8 hours.

Worst-case Precision. While in the above evaluation we fo-
cused on the average precision, we also measured the maximal rel-
ative errors and bounds encountered in the experiments. In general,
we observed for all approaches that the maximal error/bounds are
about 10 times higher than the average. On the OSM dataset, MSK
has smaller maximal estimation errors for summary sizes less than
100KB compared to DH . For more than three dimensions, all ap-
proaches except RS and GH reach their limits of applicability and
provide maximal estimation errors that could be outperformed by
naively estimating 0% selectivity for all queries. This does not ap-
ply to the width of bounds, where DH still clearly provides the
tightest bounds, but by a thinner margin.

(= without marginals) increases the selectivity error by 1.5 times
for more than two dimensions, but it has only a negligible impact
on the query time. This indicates that the digit compression has
a favorable impact on precision for all values of dimensionality,
whereas the marginal histograms tend to be more important for data
with a higher dimensionality, which allows DH to deal with higher
dimensional data than previous histogram approaches.

2 4 6 8 10 12 14 16

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

DH naive compression without marginals

Figure 12: Contribution of DigitHist’s core features.

We run the same experiment on the two real-world datasets. For
the two-dimensional OSM dataset we got the same result as for
the ZIPF data with two dimensions. For the 7-dimensional HIGGS
dataset, the effects of using marginal histograms is the same, but the
compression has a lower impact for ZIPF with 7 dimensions. The
reason is that HIGGS contains very small clusters that can be al-
ready precisely captured by one sparsely populated high-resolution
grid. For all these experiments, we also measured the impact on the
width of bounds, and we got the same behavior as for the selectivity
error.

Construction Time. Next, we show the impact of DH ’s core
features on the construction time. The results are summarized in
Table 2. The construction time is measured by recording the wall
clock time at the beginning and the end of the summary construc-
tion. The core features have no significant impact on the con-
struction time for larger datasets. DigitHist’s construction time is
significantly slower than AVI and EW , but operates in the same
time complexity. Random sampling has a very small construction
time, while ED , WY and GK have comparably large construction
times.

Table 2: Total construction time for 100kB and 1MB summaries.

datasets OSM (2D - 46.4GB) HIGGS (7D - 616MB)

summary size 100kB 1MB 100kB 1MB

DH 16 mins 17 mins 35 secs 3 mins
without marginals 16 mins 17 mins 35 secs 3 mins
naive compression 16 mins 16 mins 7 secs 8 secs

AVI 3 mins 3 mins 2 secs 3 secs
EW 5 mins 5 mins 2 secs 3 secs
ED 2.2 hours 2.5 hours 29 secs 34 secs
WY 2.5 hours 3.1 hours - -
GK 1 hour 2.1 hours 20 mins 40 mins

The marginal histograms and compression only add a very small
query and construction time overhead, but they bring large im-
provements in selectivity estimation and width of bounds.

Summary Size. In this experiment, we compare the selectivity
error, width of bounds, and query time of different approaches with
the same summary size. The three vertical plots in Figure 13a show
the result for the OSM dataset and in Figure 13b for the HIGGS
dataset. We can see that for the low-dimensional OSM dataset,
given the same summary size, DH beats all the other approaches

10 100 1,000 10,000
0.01

0.1

1

10

100

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
0.1

1

10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(a) OSM dataset

10 100 1,000 10,000
1

10

100

1,000

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(b) HIGGS dataset
AVI DH EW ED GH GK MSK RS WY

Figure 13: Varying summary size on real-world datasets.

in terms of selectivity error and width of bounds. The approaches
EW , AVI , GK and WY are noticeably faster, but are in turn
much less precise. AVI does well for low precision, but increasing
the summary size does not help beyond a certain point, because it
is limited to one-dimensional information. EW needs excessively
large summaries to compete with much smaller DH summaries in
terms of precision. For test purposes we constructed a 16GB EW
summary for the OSM dataset, but it still had a slightly larger esti-
mation error than a 10MB DigitHist summary. We also constructed
a 47MB GK summary to see how it behaves with more space. The
result was the same, i.e., the average estimation error was slightly
higher than for a 10MB DigitHist summary, but it took 5 hours to
construct the GK summary, whereas the 10MB DigitHist summary
was constructed in half an hour. We observed the same behavior for
a 120MB WY summary, constructed in 3.7 hours using more than
46GB of main memory.

For the higher dimensional HIGGS dataset, RS offers the lowest
selectivity error, and DH offers the tightest bounds and a lower se-
lectivity error than other histogram approaches. The relative width
of bounds of RS and GH exceed 1000%, because their lower
bound is close to 0% and their upper bound close to 100% selec-
tivity. Compared to DH , all other histogram approaches, such as
AVI , EW , ED and MSK , get much worse in terms of selectivity
error and/or width of bounds for this higher-dimensional dataset.
The same holds for GK . To better understand how GK performs
for larger summaries, we constructed a 88MB GK summary in 32

hours. It has a larger average/maximum estimation error/width of
bounds than a 1MB DH summary constructed in 3 minutes.

Regarding query time, approaches that are faster for this dataset
have a much lower precision in terms of selectivity error or width
of bounds. For the HIGGS dataset, we also note that MSK shows

(= without marginals) increases the selectivity error by 1.5 times
for more than two dimensions, but it has only a negligible impact
on the query time. This indicates that the digit compression has
a favorable impact on precision for all values of dimensionality,
whereas the marginal histograms tend to be more important for data
with a higher dimensionality, which allows DH to deal with higher
dimensional data than previous histogram approaches.

2 4 6 8 10 12 14 16

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

DH naive compression without marginals

Figure 12: Contribution of DigitHist’s core features.

We run the same experiment on the two real-world datasets. For
the two-dimensional OSM dataset we got the same result as for
the ZIPF data with two dimensions. For the 7-dimensional HIGGS
dataset, the effects of using marginal histograms is the same, but the
compression has a lower impact for ZIPF with 7 dimensions. The
reason is that HIGGS contains very small clusters that can be al-
ready precisely captured by one sparsely populated high-resolution
grid. For all these experiments, we also measured the impact on the
width of bounds, and we got the same behavior as for the selectivity
error.

Construction Time. Next, we show the impact of DH ’s core
features on the construction time. The results are summarized in
Table 2. The construction time is measured by recording the wall
clock time at the beginning and the end of the summary construc-
tion. The core features have no significant impact on the con-
struction time for larger datasets. DigitHist’s construction time is
significantly slower than AVI and EW , but operates in the same
time complexity. Random sampling has a very small construction
time, while ED , WY and GK have comparably large construction
times.

Table 2: Total construction time for 100kB and 1MB summaries.

datasets OSM (2D - 46.4GB) HIGGS (7D - 616MB)

summary size 100kB 1MB 100kB 1MB

DH 16 mins 17 mins 35 secs 3 mins
without marginals 16 mins 17 mins 35 secs 3 mins
naive compression 16 mins 16 mins 7 secs 8 secs

AVI 3 mins 3 mins 2 secs 3 secs
EW 5 mins 5 mins 2 secs 3 secs
ED 2.2 hours 2.5 hours 29 secs 34 secs
WY 2.5 hours 3.1 hours - -
GK 1 hour 2.1 hours 20 mins 40 mins

The marginal histograms and compression only add a very small
query and construction time overhead, but they bring large im-
provements in selectivity estimation and width of bounds.

Summary Size. In this experiment, we compare the selectivity
error, width of bounds, and query time of different approaches with
the same summary size. The three vertical plots in Figure 13a show
the result for the OSM dataset and in Figure 13b for the HIGGS
dataset. We can see that for the low-dimensional OSM dataset,
given the same summary size, DH beats all the other approaches

10 100 1,000 10,000
0.01

0.1

1

10

100

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
0.1

1

10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(a) OSM dataset

10 100 1,000 10,000
1

10

100

1,000

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(b) HIGGS dataset
AVI DH EW ED GH GK MSK RS WY

Figure 13: Varying summary size on real-world datasets.

in terms of selectivity error and width of bounds. The approaches
EW , AVI , GK and WY are noticeably faster, but are in turn
much less precise. AVI does well for low precision, but increasing
the summary size does not help beyond a certain point, because it
is limited to one-dimensional information. EW needs excessively
large summaries to compete with much smaller DH summaries in
terms of precision. For test purposes we constructed a 16GB EW
summary for the OSM dataset, but it still had a slightly larger esti-
mation error than a 10MB DigitHist summary. We also constructed
a 47MB GK summary to see how it behaves with more space. The
result was the same, i.e., the average estimation error was slightly
higher than for a 10MB DigitHist summary, but it took 5 hours to
construct the GK summary, whereas the 10MB DigitHist summary
was constructed in half an hour. We observed the same behavior for
a 120MB WY summary, constructed in 3.7 hours using more than
46GB of main memory.

For the higher dimensional HIGGS dataset, RS offers the lowest
selectivity error, and DH offers the tightest bounds and a lower se-
lectivity error than other histogram approaches. The relative width
of bounds of RS and GH exceed 1000%, because their lower
bound is close to 0% and their upper bound close to 100% selec-
tivity. Compared to DH , all other histogram approaches, such as
AVI , EW , ED and MSK , get much worse in terms of selectivity
error and/or width of bounds for this higher-dimensional dataset.
The same holds for GK . To better understand how GK performs
for larger summaries, we constructed a 88MB GK summary in 32

hours. It has a larger average/maximum estimation error/width of
bounds than a 1MB DH summary constructed in 3 minutes.

Regarding query time, approaches that are faster for this dataset
have a much lower precision in terms of selectivity error or width
of bounds. For the HIGGS dataset, we also note that MSK shows

digit histograms, we have to decide how many points we take from
each marginal bucket. We simply take proportionally, i.e., if one
marginal bucket has a twice as high count, we take twice as much
from it. This procedure is repeated for all dimensions and all digit
histograms. At the end, all data points from the initial marginal
histograms are distributed to the marginals of the digit histograms.

Algorithm 3: MARGINALS

Input: {D0, . . . , DK�1}, {M1 . . . ,Md}, Smarginal

Output: marginal histograms M̂j
i

foreach i 2 {1, . . . , d} do
M̂k

i = 0 for any k 2 {0, . . . , K � 1}.

foreach Dk 2 {D0, . . . , DK�1} sorted in descending order by grid
resolution do

foreach bucket j of Dk do
foreach i 2 {1, . . . , d} do

c = f
Dk
j

Let I be the indices of Mi’s buckets that intersect bucket j.
Let s =

P
m2I f

Mi
m

foreach m 2 I do

Let � = min(c,

⇠
f
Mi
m
s c

⇡
)

f
M̂k

i
m = f

M̂k
i

m + �

f
Mi
m = f

Mi
m � �

c = c � �

reduce Mk
i to byte size

Smarginal
d·K

return {M̂0
1 , . . . , M̂

K�1
1 , . . . , M̂0

d , . . . , M̂
K�1
d }

Example 4. Figure 7 shows the result of distributing the initial
marginal histograms to the marginals of the digit histograms. First,
the marginals of D3 are constructed, then of D2, D1 and finally
D0. Let us consider the only non-empty bucket in D3, which
counts 1 · 103 = 1000 data points. It intersects two marginal
buckets in each dimension. In dimension one, the intersecting
buckets in the initial marginal histogram count 1261 and 176 data
points, respectively. We take from the first intersected marginal
bucket d 1261

1261+1761000e = 878 points and from the second one
the remaining 1000 � 878 = 122 points. Similarly, in dimen-
sion two we take, respectively, d 1180

1180+41000e = 997 points and
1000� 997 = 3 points from the two intersecting buckets.

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 60 40

0
100

534
66

0
0
0
0

D2(·102)

M
1 2

M2
2

10 3

2 10

4 46 18 52 17 3
68 42

1
69
53

7
26

74
20

0

D1(·101)

M
1 1

M2
1

50

0 7 3 9 15
2 8 6

0
14
14

1
3
9
9

0

D0(·100)

M
1 0

M2
0

Figure 7: Final DigitHist summary.

5.3 Querying DigitHist
Querying DigitHist is similar as for other histograms, except for

how we deal with partially intersected buckets and that we have
to query each of the K digit histograms. If the query region par-
tially intersects a bucket, it has to be estimated how many of the
bucket’s point are in the intersection. Previously, histogram ap-
proaches simply assumed uniform spread. In this work, we consult
the marginal histograms to also factor in the intersection’s loca-
tion. We call our approach AVI spread because it makes use of

the attribute value independence (AVI) assumption, i.e., it assumes
independence between dimensions. Figure 8 shows an example,
where using the AVI spread is visibly more accurate than the uni-
form spread. It should be noted that AVI is a widely used tech-
nique in databases, but it was previously used in place of multi-
dimensional histograms, instead of as something to assist the esti-
mation of spread inside buckets.

(a) data (b) unif. spread (c) AVI spread

Figure 8: Spread Estimation Inside Buckets

Definition 8. (DigitHist selectivity estimate) Let D be a d-
dimensional dataset, Q be a query range, Dk the digit histogram
for the kth digit, M i

k the marginal histogram of dimension i for the
kth digit, and ⇡i a function that project a multi-dimensional range
to the one-dimensional range of dimension i. The DigitHist selec-
tivity estimate is calculated as follows:

selDH(Q) =

1

|D|

K�1X

k=0

X

j

fDk
j ↵Dk

j (Q), where

↵Dk
j (Q) =

8
>>><

>>>:

0 for (Q \ rDk
j) = ?

Qd
i=1

sel
Mi

k
(⇡i[Q\r

Dk
j])

sel
Mi

k
(⇡i[r

Dk
j])

for (Q \ rDk
j) ⇢ rDk

j

1 for (Q \ rDk
j) = rDk

j

and the selectivity of a marginal histogram M i
k is calculated as

selMi
k
([a, b]) =

PJ
j=1 f

Mi
k

j

d([a,b]\r
Mi

k
j)

d(r
Mi

k
j)

, where d([a, b]) is b� a.

The selectivity estimate is computed by going through all digit
histograms and adding the counts of all buckets, whose regions are
intersected by the query region. The counts of bucket that are only
partially intersected are multiplied by a factor, that estimates the
fraction of the bucket’s points, that are in the intersection with the
query region. This factor divides the AVI estimate for the inter-
section by the AVI estimate for the bucket region, where an AVI
estimate is simply the product of the one-dimensional selectivity
estimates based on the marginal histograms.

The lower and upper bound are computed reusing the formula
for the selectivity estimate. In order to compute the lower bound,
one pretends that all partially intersected buckets are not intersected
by the query region and to compute the upper bound, that they are
contained in the query region.

Example 5. Figure 9 shows the final DigitHist summary with an
exemplary query region (hatched rectangle). The selectivity lower
bound of the query is equal to 0% as no bucket is completely cov-
ered by the query region. The selectivity upper bound is computed
as 1

2000

�
10

3
(1) + 10

2
(4 + 1) + 10

1
(1 + 2) + 10

0
(50)

�
= 79%.

digit histograms, we have to decide how many points we take from
each marginal bucket. We simply take proportionally, i.e., if one
marginal bucket has a twice as high count, we take twice as much
from it. This procedure is repeated for all dimensions and all digit
histograms. At the end, all data points from the initial marginal
histograms are distributed to the marginals of the digit histograms.

Algorithm 3: MARGINALS

Input: {D0, . . . , DK�1}, {M1 . . . ,Md}, Smarginal

Output: marginal histograms M̂j
i

foreach i 2 {1, . . . , d} do
M̂k

i = 0 for any k 2 {0, . . . , K � 1}.

foreach Dk 2 {D0, . . . , DK�1} sorted in descending order by grid
resolution do

foreach bucket j of Dk do
foreach i 2 {1, . . . , d} do

c = f
Dk
j

Let I be the indices of Mi’s buckets that intersect bucket j.
Let s =

P
m2I f

Mi
m

foreach m 2 I do

Let � = min(c,

⇠
f
Mi
m
s c

⇡
)

f
M̂k

i
m = f

M̂k
i

m + �

f
Mi
m = f

Mi
m � �

c = c � �

reduce Mk
i to byte size

Smarginal
d·K

return {M̂0
1 , . . . , M̂

K�1
1 , . . . , M̂0

d , . . . , M̂
K�1
d }

Example 4. Figure 7 shows the result of distributing the initial
marginal histograms to the marginals of the digit histograms. First,
the marginals of D3 are constructed, then of D2, D1 and finally
D0. Let us consider the only non-empty bucket in D3, which
counts 1 · 103 = 1000 data points. It intersects two marginal
buckets in each dimension. In dimension one, the intersecting
buckets in the initial marginal histogram count 1261 and 176 data
points, respectively. We take from the first intersected marginal
bucket d 1261

1261+1761000e = 878 points and from the second one
the remaining 1000 � 878 = 122 points. Similarly, in dimen-
sion two we take, respectively, d 1180

1180+41000e = 997 points and
1000� 997 = 3 points from the two intersecting buckets.

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 60 40

0
100

534
66

0
0
0
0

D2(·102)

M
1 2

M2
2

10 3

2 10

4 46 18 52 17 3
68 42

1
69
53

7
26

74
20

0

D1(·101)

M
1 1

M2
1

50

0 7 3 9 15
2 8 6

0
14
14

1
3
9
9

0

D0(·100)

M
1 0

M2
0

Figure 7: Final DigitHist summary.

5.3 Querying DigitHist
Querying DigitHist is similar as for other histograms, except for

how we deal with partially intersected buckets and that we have
to query each of the K digit histograms. If the query region par-
tially intersects a bucket, it has to be estimated how many of the
bucket’s point are in the intersection. Previously, histogram ap-
proaches simply assumed uniform spread. In this work, we consult
the marginal histograms to also factor in the intersection’s loca-
tion. We call our approach AVI spread because it makes use of

the attribute value independence (AVI) assumption, i.e., it assumes
independence between dimensions. Figure 8 shows an example,
where using the AVI spread is visibly more accurate than the uni-
form spread. It should be noted that AVI is a widely used tech-
nique in databases, but it was previously used in place of multi-
dimensional histograms, instead of as something to assist the esti-
mation of spread inside buckets.

(a) data (b) unif. spread (c) AVI spread

Figure 8: Spread Estimation Inside Buckets

Definition 8. (DigitHist selectivity estimate) Let D be a d-
dimensional dataset, Q be a query range, Dk the digit histogram
for the kth digit, M i

k the marginal histogram of dimension i for the
kth digit, and ⇡i a function that project a multi-dimensional range
to the one-dimensional range of dimension i. The DigitHist selec-
tivity estimate is calculated as follows:

selDH(Q) =

1

|D|

K�1X

k=0

X

j

fDk
j ↵Dk

j (Q), where

↵Dk
j (Q) =

8
>>><

>>>:

0 for (Q \ rDk
j) = ?

Qd
i=1

sel
Mi

k
(⇡i[Q\r

Dk
j])

sel
Mi

k
(⇡i[r

Dk
j])

for (Q \ rDk
j) ⇢ rDk

j

1 for (Q \ rDk
j) = rDk

j

and the selectivity of a marginal histogram M i
k is calculated as

selMi
k
([a, b]) =

PJ
j=1 f

Mi
k

j

d([a,b]\r
Mi

k
j)

d(r
Mi

k
j)

, where d([a, b]) is b� a.

The selectivity estimate is computed by going through all digit
histograms and adding the counts of all buckets, whose regions are
intersected by the query region. The counts of bucket that are only
partially intersected are multiplied by a factor, that estimates the
fraction of the bucket’s points, that are in the intersection with the
query region. This factor divides the AVI estimate for the inter-
section by the AVI estimate for the bucket region, where an AVI
estimate is simply the product of the one-dimensional selectivity
estimates based on the marginal histograms.

The lower and upper bound are computed reusing the formula
for the selectivity estimate. In order to compute the lower bound,
one pretends that all partially intersected buckets are not intersected
by the query region and to compute the upper bound, that they are
contained in the query region.

Example 5. Figure 9 shows the final DigitHist summary with an
exemplary query region (hatched rectangle). The selectivity lower
bound of the query is equal to 0% as no bucket is completely cov-
ered by the query region. The selectivity upper bound is computed
as 1

2000

�
10

3
(1) + 10

2
(4 + 1) + 10

1
(1 + 2) + 10

0
(50)

�
= 79%.

digit histograms, we have to decide how many points we take from
each marginal bucket. We simply take proportionally, i.e., if one
marginal bucket has a twice as high count, we take twice as much
from it. This procedure is repeated for all dimensions and all digit
histograms. At the end, all data points from the initial marginal
histograms are distributed to the marginals of the digit histograms.

Algorithm 3: MARGINALS

Input: {D0, . . . , DK�1}, {M1 . . . ,Md}, Smarginal

Output: marginal histograms M̂j
i

foreach i 2 {1, . . . , d} do
M̂k

i = 0 for any k 2 {0, . . . , K � 1}.

foreach Dk 2 {D0, . . . , DK�1} sorted in descending order by grid
resolution do

foreach bucket j of Dk do
foreach i 2 {1, . . . , d} do

c = f
Dk
j

Let I be the indices of Mi’s buckets that intersect bucket j.
Let s =

P
m2I f

Mi
m

foreach m 2 I do

Let � = min(c,

⇠
f
Mi
m
s c

⇡
)

f
M̂k

i
m = f

M̂k
i

m + �

f
Mi
m = f

Mi
m � �

c = c � �

reduce Mk
i to byte size

Smarginal
d·K

return {M̂0
1 , . . . , M̂

K�1
1 , . . . , M̂0

d , . . . , M̂
K�1
d }

Example 4. Figure 7 shows the result of distributing the initial
marginal histograms to the marginals of the digit histograms. First,
the marginals of D3 are constructed, then of D2, D1 and finally
D0. Let us consider the only non-empty bucket in D3, which
counts 1 · 103 = 1000 data points. It intersects two marginal
buckets in each dimension. In dimension one, the intersecting
buckets in the initial marginal histogram count 1261 and 176 data
points, respectively. We take from the first intersected marginal
bucket d 1261

1261+1761000e = 878 points and from the second one
the remaining 1000 � 878 = 122 points. Similarly, in dimen-
sion two we take, respectively, d 1180

1180+41000e = 997 points and
1000� 997 = 3 points from the two intersecting buckets.

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 60 40

0
100

534
66

0
0
0
0

D2(·102)

M
1 2

M2
2

10 3

2 10

4 46 18 52 17 3
68 42

1
69
53

7
26

74
20

0

D1(·101)

M
1 1

M2
1

50

0 7 3 9 15
2 8 6

0
14
14

1
3
9
9

0

D0(·100)

M
1 0

M2
0

Figure 7: Final DigitHist summary.

5.3 Querying DigitHist
Querying DigitHist is similar as for other histograms, except for

how we deal with partially intersected buckets and that we have
to query each of the K digit histograms. If the query region par-
tially intersects a bucket, it has to be estimated how many of the
bucket’s point are in the intersection. Previously, histogram ap-
proaches simply assumed uniform spread. In this work, we consult
the marginal histograms to also factor in the intersection’s loca-
tion. We call our approach AVI spread because it makes use of

the attribute value independence (AVI) assumption, i.e., it assumes
independence between dimensions. Figure 8 shows an example,
where using the AVI spread is visibly more accurate than the uni-
form spread. It should be noted that AVI is a widely used tech-
nique in databases, but it was previously used in place of multi-
dimensional histograms, instead of as something to assist the esti-
mation of spread inside buckets.

(a) data (b) unif. spread (c) AVI spread

Figure 8: Spread Estimation Inside Buckets

Definition 8. (DigitHist selectivity estimate) Let D be a d-
dimensional dataset, Q be a query range, Dk the digit histogram
for the kth digit, M i

k the marginal histogram of dimension i for the
kth digit, and ⇡i a function that project a multi-dimensional range
to the one-dimensional range of dimension i. The DigitHist selec-
tivity estimate is calculated as follows:

selDH(Q) =

1

|D|

K�1X

k=0

X

j

fDk
j ↵Dk

j (Q), where

↵Dk
j (Q) =

8
>>><

>>>:

0 for (Q \ rDk
j) = ?

Qd
i=1

sel
Mi

k
(⇡i[Q\r

Dk
j])

sel
Mi

k
(⇡i[r

Dk
j])

for (Q \ rDk
j) ⇢ rDk

j

1 for (Q \ rDk
j) = rDk

j

and the selectivity of a marginal histogram M i
k is calculated as

selMi
k
([a, b]) =

PJ
j=1 f

Mi
k

j

d([a,b]\r
Mi

k
j)

d(r
Mi

k
j)

, where d([a, b]) is b� a.

The selectivity estimate is computed by going through all digit
histograms and adding the counts of all buckets, whose regions are
intersected by the query region. The counts of bucket that are only
partially intersected are multiplied by a factor, that estimates the
fraction of the bucket’s points, that are in the intersection with the
query region. This factor divides the AVI estimate for the inter-
section by the AVI estimate for the bucket region, where an AVI
estimate is simply the product of the one-dimensional selectivity
estimates based on the marginal histograms.

The lower and upper bound are computed reusing the formula
for the selectivity estimate. In order to compute the lower bound,
one pretends that all partially intersected buckets are not intersected
by the query region and to compute the upper bound, that they are
contained in the query region.

Example 5. Figure 9 shows the final DigitHist summary with an
exemplary query region (hatched rectangle). The selectivity lower
bound of the query is equal to 0% as no bucket is completely cov-
ered by the query region. The selectivity upper bound is computed
as 1

2000

�
10

3
(1) + 10

2
(4 + 1) + 10

1
(1 + 2) + 10

0
(50)

�
= 79%.

marginal hists.uniformityoriginal data

2. intra-bucket spread estimation using marginal histograms

1. digit histogram lossy compression

Key Ideas of DigitHist

DigitHist: a Histogram-Based Data Summary with Tight Error Bounds

DigitHist Data Summary: Overview
• small no. of multi-dimensional histograms (digit hists.) along regular grids

each accompanied by hi-res projections on individual axes (marginal hists.)
• single-pass construction; linear in summary and data size, and no. of dims
• efficient representation of histograms with mostly empty buckets
• individual error bounds for each query box

• best estimation precision for up to six data dimensions
• best scalability with dimensionality (except sampling)
• tightest error bounds (100% confidence intervals)

①
 la

rg
e

in
iti

al
 h

ist
og

ra
m

s
③

 lo
ss

y
co

m
pr

es
sio

n
⑤

 D
ig

itH
ist

② split counts by digits; create digit histograms

④ split initial marginal histograms

89% of points at hi-res 10.5% mid-res 0.4% low-res

marginal
histograms

multi-dim.
histogram

Prelim.: Multi-dim. Histograms
• multi-dim. histograms divide space into regions (buckets)
• count number of points in each bucket
• buckets contained in query region give lower bound
• buckets intersected by query region give upper bound

Problem Setting
• problem:

• take set of multi-dimensional points in euclidean space
• create summary to estimate no. of points in any query box

• motivation:
• selectivity estimation (guiding query optimizers)
• approximate query answering (OLAP/DSS)

• challenges:
• high precision, low costs and good scalability
• tight (deterministic) error bounds

1 3

2 0

histogram
DigitHist: a Histogram-Based Data Summary with Tight

Error Bounds

Michael Shekelyan

Faculty of Computer Science

Free University of

Bozen-Bolzano, Italy

mshekelyan@unibz.it

Anton Dign¨os

Faculty of Computer Science

Free University of

Bozen-Bolzano, Italy

dignoes@inf.unibz.it

Johann Gamper

Faculty of Computer Science

Free University of

Bozen-Bolzano, Italy

gamper@inf.unibz.it

ABSTRACT
We propose DigitHist, a histogram summary for selectivity estima-
tion on multi-dimensional data with tight error bounds. By combin-
ing multi-dimensional and one-dimensional histograms along regu-
lar grids of different resolutions, DigitHist provides an accurate and
reliable histogram approach for multi-dimensional data. To achieve
a compact summary, we use a sparse representation combined with
a novel histogram compression technique that chooses a higher res-
olution in dense regions and a lower resolution elsewhere. For the
construction of DigitHist, we propose a new error measure, termed
u-error, which minimizes the width between the guaranteed upper
and lower bounds of the selectivity estimate. The construction al-
gorithm performs a single data scan and has linear time complexity.
An in-depth experimental evaluation shows that DigitHist delivers
superior precision and error bounds than state-of-the-art competi-
tors at a comparable query time.

1. INTRODUCTION
Selectivity estimation based on data summary structures plays a

crucial role for query optimization and approximate query answer-
ing in applications such as OLAP and decision support systems.
A critical aspect of summary structures is reliability, i.e., how re-
liable is the query result derived from the structure. Histograms
summarize data points by grouping them into buckets and count-
ing the number of data points per bucket. The resulting aggrega-
tion of the data can be used to deduce guaranteed lower and upper
bounds for the selectivity of range queries. This is not possible
with non-histogram approaches, such as random sampling, kernel
density estimation or wavelets. They only permit to obtain con-
fidence intervals for query results that are probabilistic in nature
and therefore less reliable than the bounds provided by histograms.
Though the bounds are guaranteed, existing histogram approaches
become imprecise when datasets are large and have more than a
few dimensions. To tackle this problem, we propose DigitHist, a
histogram that provides tight bounds and accurate selectivity esti-
mates for large datasets and a moderate number of dimensions.

Consider the example in Figure 1. It shows a large spatial dataset
of around 2.9 billion GPS coordinates around the world zoomed in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

(a) Data (46.4GB) (b) MinSkew (113kB) (c) DigitHist (97kB)

MinSkew DigitHist

Estimated selectivity selH(Q) 0.177% 0.215%
Relative error 17.3% 0.5%
Bounds [0.102%, 0.24%] [0.195%, 0.251%]
Width of bounds wH(Q) 0.138% 0.056%

(d) Estimates and bounds of MinSkew and DigitHist

Figure 1: Summary Structures: MinSkew vs. DigitHist.

on Italy (Figure 1a), which were collected for the OpenStreetMap
project1. The query region of size 100 km around Rome contains
6.2 million points and has a (true) selectivity of 6.2·106

2.9·109 = 0.214%,
i.e., 0.214% of all data points are inside the query region. The
figure shows two histogram summaries of the data, visualized as
density heat maps depicting denser regions with darker shades.
MinSkew [2], a state-of-the-art summary approach for spatial data,
in Figure 1b estimates the selectivity of the query to be 0.177%
with guaranteed bounds of [0.102%, 0.24%]; the relative estima-
tion error is 17.3%. In contrast, the proposed DigitHist approach
of roughly the same size in Figure 1c estimates the selectivity to
be 0.215% with bounds [0.195%, 0.251%]; the relative estimation
error is 0.5%. Thus, DigitHist has 2.4⇥ tighter bounds and a 34⇥
smaller estimation error than the MinSkew summary. Averaging
over all 193 world capitals, DigitHist has 4.8⇥ tighter bounds and
a 3.5⇥ smaller estimation error.

A DigitHist summary is comprised of a small number of multi-
dimensional equi-width histograms, termed digit histograms, each
of which is augmented with a one-dimensional marginal histogram
for each dimension; all histograms are along regular grids. The
digit histograms summarize disjoint subsets of the data at differ-
ent resolutions with a higher resolution for denser parts of the data.
For instance, Figure 2 shows the four digit histograms of DigitHist
(without the marginals) for the dataset in Figure 1 together with
the percentage of data points summarized by each histogram, its
resolution and size. The first two histograms summarize almost
90% of the data at a high resolution, consuming less than half of
the summary size. The remaining data points are summarized at

1
www.openstreetmap.org

ex
am

pl
e

DigitHist sampling

• use 1d information
for spread estimation
inside buckets

• summarizes regions with many points using higher resolution

es
tim

at
io

n
er

ro
r

er
ro

r
bo

un
ds

real-world 2D synthetic ≤16D

Grafische Grundlagen
Principi grafici

CORPORATE
DESIGN

Michael Shekelyan, Anton Dignös, Johann Gamper (Free University of Bozen-Bolzano)

• minimize error bounds instead of skew inside buckets
• assume uniformly distributed queries (for sake of simplicity)

data
points

query box

?

kilobytes no. of dimensions

[1]

[1] Shekelyan et. al., VLDB’17; [2] Acharya et al., SIGMOD’99

[2]

3. measure hist. precision with u-error [1] metric

