
An Interval Join Optimized for Modern Hardware
Danila Piatov Sven Helmer Anton Dignös

Free University of Bozen-Bolzano, Italy

Overlap Interval Join
Problem: Find all pairs of intervals from r and s that overlap in time.

Answer: ⟨r1, s1⟩, ⟨r1, s2⟩, ⟨r1, s3⟩, ⟨r1, s4⟩, ⟨r2, s1⟩, ⟨r2, s2⟩, ⟨r2, s3⟩, ⟨r2, s4⟩, ⟨r2, s5⟩,
⟨r3, s2⟩, ⟨r3, s5⟩.

Very Naïve Solution
Why not use simple SQL?
SELECT * FROM r, s WHERE r.Ts <= s.Te AND s.Ts <= r.Te

It will work, just very slowly, because it is a join on two independent in-
equality predicates, and standard RDBMSs are not optimized for that.

Naïve Solution
Endpoint Index
List tuple events ⟨Ts, start, TID⟩ and ⟨Te, end, TID⟩ in chronological order.
For example, the endpoint index for relation r from the above example is:
[⟨1, start, 1⟩, ⟨1, start, 2⟩, ⟨5, end, 1⟩, ⟨7, start, 3⟩, ⟨10, end, 2⟩, ⟨11, end, 3⟩]. It
can be read as “at time 1 tuple 1 started, at time 1 tuple 2 started, etc.”

The Algorithm
1) Build endpoint indices for r and s;
2) Initialize two sets of active tuples

(one for each relation);
3) Perform interleaved scan of the in-

dexes (like in sort-merge join);
4) For each encountered endpoint:

• If it is a left endpoint, load this
tuple, add it to the set of active
tuples of the corresponding rela-
tion and produce cross-product
with active tuples of another re-
lation;

• If it is a right endpoint, remove
the tuple from the set of active
tuples of the corresponding rela-
tion.

Implementation of Active Tuple Sets
Active tuple sets should support tuple
insertion, tuple removal by the tuple
id and scanning of all tuples. Good
candidate is a hash map, but it’s not
very well suited for scanning. We can
connect elements via linked list (like
in java.util.LinkedHashMap). This’ll
give us scanning in linear time with
respect to the number of tuples.

Key Next
Bucket

Prev
List

Next
List

5

9

2

7

Hash table Head
List

Value

Tuple 5

Tuple 7

Tuple 9

Tuple 2

Problem: Random memory access when scanning (up to 200 CPU cycles
for one access).

Our Contribution
Gapless Hash Map
Idea: Store items in contiguous memory area. When an element is removed,
move the last element to its place. Update all references accordingly (keep
back-references for that):

5

9

2

7

Key Prev NextHash table Tail
BucketBucket

Value

Tuple 5

Tuple 7

Tuple 9

Tuple 2

5

9

2

7

Key Prev NextHash table Tail
BucketBucket

Values

Tuple 5

Tuple 7

Tuple 9

Tuple 2

Here normal pointers needed for the hash map are showed as solid arrows,
and back-references, needed to update the normal pointers, are showed as
dashed arrows. On the right picture values are stored in a separate contigu-
ous memory area under the same indices as the items (i.e. they are logically
linked). All item operations are mirrored for values.
Profit: This way we are able to scan hash map values as fast as it is possi-
ble—by scanning an array of values.

Reducing the Number of Scans
Observation: Often in real-world data multiple tuples start sequentially in
one relation while nothing happens in another, causing multiple scans of
unmodified active tuple set.
Idea: In such case we can collect all such starting tuples into small array
fitting L1 data cache and produce cross-product with the active tuple set by
scanning it just once.

Results
Gapless Hash Map vs. Linked Hash Map

Algorithm Comparison Using Synthetic Data

Workload: two relations with 106 tules each, varying average tuple length.

D. Piatov, S. Helmer, A. Dignös. An interval join optimized for modern hardware. In Proc. of ICDE 2016. Helsinki, Finland.

