Continuous Imputation of Missing Values in Streams of Pattern-Determining Time Series

Kevin Wellenzohn¹ Michael H. Böhlen¹ Anton Dignös² Johann Gamper² Hannes Mitterer²

> ¹Department of Computer Science University of Zurich

²Faculty of Computer Science Free University of Bolzano

March 24, 2017

Overview

<u>Problem.</u> Streaming time series often have missing values, e.g. due to sensor failures or transmission delays!

<u>Goal.</u> Accurately **impute** (i.e. recover) the latest measurement by exploiting the **correlation** among streams.

<u>Challenge.</u> Streaming time series are often non-linearly correlated, e.g. due to phase shifts.

Example

➤ The latest value at time 14:20 is **missing** and needs to be **imputed** (i.e. recovered).

Approach

<u>Intuition</u>. Impute a missing value in time series *s* with past values from *s* when a set of correlated **reference time series** exhibited similar **patterns**.

<u>Intuition.</u> Impute a missing value in time series *s* with past values from *s* when a set of correlated **reference time series** exhibited similar **patterns**.

Imputation Steps:

1. Draw query pattern over most recent values

<u>Intuition.</u> Impute a missing value in time series *s* with past values from *s* when a set of correlated **reference time series** exhibited similar **patterns**.

Imputation Steps:

- 1. Draw query pattern over most recent values
- 2. Find k most similar non-overlapping patterns

<u>Intuition.</u> Impute a missing value in time series *s* with past values from *s* when a set of correlated **reference time series** exhibited similar **patterns**.

Imputation Steps:

- 1. Draw query pattern over most recent values
- 2. Find k most similar non-overlapping patterns
- 3. Impute missing value using the k most-similar patterns

1. Define query pattern P(14:20) over d=2 reference time series $\{r_1, r_2\}$ in a time frame of I=10 minutes

2. The k=2 most similar non-overlapping patterns are P(14:00) and P(13:35)

3. Missing value is imputed as $\hat{s}(14:20) = \frac{1}{2}(s(14:00) + s(13:35)) = 21.85^{\circ}C$

Query Pattern

- ▶ With *l* > 1, TKCM takes the temporal context into account and captures how time series change over time
- Pattern length / is important to deal with non-linear correlations

Related Work

1. Centroid Decomposition (CD)

- M. Khayati, M. H. Böhlen, and J. Gamper. Memory-efficient centroid decomposition for long time series. ICDE 2014
- Singular Value Decomposition (SVD) that expects linear correlations

2. SPIRIT

- S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. VLDB 2005
- Principal Component Analysis (PCA) that expects linear correlations

3. MUSCLES

- B. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
 C. Faloutsos, and A. Biliris. Online data mining for co-evolving time sequences. ICDE 2000
- Multi-variate linear regression that expects linear correlations

Linear vs. Non-Linear Correlations

Linear Correlations

▶ Time series *s* and *r* have different **amplitude** and **offset**

Linear Correlations

- Time series s and r have different amplitude and offset
- ► They are **linearly correlated** and their Pearson Correlation Coefficient is 1!

Linear Correlations

- Time series s and r have different amplitude and offset
- ► They are **linearly correlated** and their Pearson Correlation Coefficient is 1!

Non-Linear Correlations

- ▶ Time series *s* and *r* are **phase-shifted** by 90 degrees
- ► They are **non-linearly correlated** and their Pearson Correlation Coefficient is 0!

Non-Linear Correlations

- ▶ Time series *s* and *r* are **phase-shifted** by 90 degrees
- ► They are **non-linearly correlated** and their Pearson Correlation Coefficient is 0!

Pattern Length / and Non-Linear Correlations

Pattern length $\it l=1$

Time t

Pattern Length / and Non-Linear Correlations

• With l > 1 there are less patterns with pattern dissimilarity 0

Chlorine Dataset

 Chlorine dataset is phase-shifted and hence non-linearly correlated

Importance of Pattern Length /

 A larger pattern length decreases the oscillation in the imputed time series

Experiments

Datasets

We use 4 datasets:

- 1. SBR
 - ▶ 130 meteorological time series from South Tyrol
 - linearly correlated
- 2. SBR-1d
 - SBR dataset shifted up to 1 day
 - non-linearly correlated
- 3. Flights
 - 8 time series
 - non-linearly correlated
- 4. Chlorine
 - ▶ 166 time series
 - non-linearly correlated

Pattern Length /

Comparison

► TKCM is more accurate on all non-linearly correlated datasets (SBR-1d, Flights, and Chlorine).

Conclusion & Future Work

Conclusion

- ► TKCM imputes the current missing value in a stream using reference time series
- TKCM exploits linear and non-linear correlations among time series

Future work

- Automatically choose reference time series
- ▶ Improve efficiency of TKCM by pruning candidate patterns

Thanks!