Free University of Bozen-Bolzano – Faculty of Computer Science Master of Science in Computer Science Theory of Computing – A.A. 2005/2006 Final exam – 6/2/2006 – Part 1

Time: 90 minutes

Problem 1.1 [4.5 points] Decide which of the following statements is TRUE and which is FALSE. You must give a brief explanation of your answer to receive full credit.

- (a) For all languages L_1 and L_2 , it holds that $((L_1 \cup \{\varepsilon\}) \cdot (L_2 \cup \{\varepsilon\}))^* = (L_1 \cup L_2)^*$.
- (b) For all languages L_1 and L_2 , if L_1 is regular and $L_2 \subseteq L_1$, then L_2 is regular.
- (c) There exist nonempty languages L_1 and L_2 , with $L_1 \neq \{\varepsilon\}$, $L_2 \neq \{\varepsilon\}$, and $L_1 \neq L_2$, such that $L_1 \cdot L_2 = L_2 \cdot L_1$.

Problem 1.2 [1.5 points] Find a regular expression for the set of binary strings that have 00 but not 11 as substrings.

Problem 1.3 [4 points] Consider the language $L = \{x0^n y1^n z \mid n \ge 0, x \in L_1, y \in L_2, z \in L_3\}$, where L_1, L_2, L_3 are nonempty languages over the alphabet $\{0, 1\}$.

- (a) Find nonempty regular languages L_1, L_2, L_3 such that L is regular.
- (a) Find nonempty regular languages L_1, L_2, L_3 such that L is not regular.

Problem 1.4 [6 points] Consider the regular expression $E = (b + a)^* + (a \cdot b)^*$. Construct an ε -NFA A_{ε} such that $\mathcal{L}(A_{\varepsilon}) = \mathcal{L}(E)$. Simplify intermediate results whenever possible. Then, by eliminating ε -transitions from A_{ε} , construct an NFA A such that $\mathcal{L}(A) = \mathcal{L}(A_{\varepsilon})$. Illustrate the steps of the algorithm you have followed to construct A_{ε} and A.

Problem 1.5 [6 points] Consider the following DFA A over $\{0, 1\}$:

Construct a DFA A_m with minimal number of states such that $\mathcal{L}(A_m) = \mathcal{L}(A)$. Illustrate the steps of the algorithm you have followed to construct A_m .

Problem 1.6 [4 points] Show that the language $\{a^m b^n \mid m, n \ge 0, m \ne n\}$ is context free by exhibiting a context free grammar that generates it.

Problem 1.7 [4 points] A context-free grammar $G = (V_N, V_T, P, S)$ is said to be *linear* if every production in P is of the form $A \longrightarrow xB$ or $A \longrightarrow Bx$ or $A \longrightarrow x$, where $A, B \in V_N$ and $x \in V_T^*$. Show that the language generated by a linear grammar is not necessarily regular.