Reasoning on Labelled Petri Nets and Their Dynamics in a Stochastic Setting Sander Leemans, Fabrizio Maggi, <u>Marco Montali</u>

RNTHAACHEN INVFRSITY

BPM 2022, Münster

Stochastic process mining Revived interest in stochastic processes

Stochastic process mining **Revived interest in stochastic processes**

Stochastic process mining **Revived interest in stochastic processes**

stochastic conformance checking, probabilistic trace alignment, probabilistic declarative process mining

Our focus

stochastic conformance checking, probabilistic trace alignment, probabilistic declarative p ocess mining

Process control-flow with Petri nets Characteristics

Process control-flow with Petri nets Characteristics

Process control-flow with Petri nets Characteristics

Unlogged tasks as silent transitions

Unlogged tasks as silent transitions

Unlogged tasks as silent transitions

Semantics via finite traces Start, end(s)

1 marking as initial state

Semantics via finite traces Start, end(s)

Semantics via finite traces Runs and traces

Run: valid sequence of transitions from the initial state to some final state Trace: projection of the run on labels of visible transitions

> How many runs for the same trace? Potentially infinitely many!

Semantics via finite traces Runs and traces

<open, finalize, accept, finalize, reject>

Semantics via finite traces Runs and traces

<open, finalize, accept, finalize, reject>

From net to transition system

Stochastic Petri nets

Every transition gets a weight

- Immediate transition: relative likelihood to fire

Timed transition: rate/decay of exponential distribution for waiting time

Stochastic Petri nets

Every transition gets a weight

- Immediate transition: relative likelihood to fire

Our interest: transition firings -> ordering without time

Timed transition: rate/decay of exponential distribution for waiting time

P(fire t enabled in m | marking m) =

weight of *t* $\mathbf{L}_{t'}$ enabled in m weight of t'

Works both for set of immediate OR of timed transitions

P(fire **t** enabled in **m** | marking **m**) = $\frac{\text{weight of } t}{\sum_{t' \text{ enabled in } m} \text{weight of } t'}$

Every firing is independent

- Probability of a run = product of firing probabilities

Probability of a trace = (possibly infinite) sum of probabilities of its runs

Every firing is independent

- Probability of a run = product of firing probabilities

So far:

- <u>approximate</u> computation, or

Probability of a trace = (possibly infinite) sum of probabilities of its runs

exact computation for <u>restricted nets</u> (no fully silent loops)

Semantics via stochastic transition systems

Key problems

- 1. Probability of a trace
- automaton
- that defines constraint scenarios, each coming with a different probability (or range of probabilities)

2. Probability of satisfying a qualitative property expressed in temporal logics over finite traces, or as a finite-state

3. Conformance to a probabilistic Declare specification

Observation

1. Probability of a trace

Encode trace as an automaton

automaton

<open, finalize, accept, finalize, reject>

2. Probability of satisfying a qualitative property expressed in temporal logics over finite traces, or as a finite-state

Reasoning on states and probabilities

Reasoning on tasks and transitions

Reasoning on states and probabilities

Markov chains

Elegant trick to deal with silent transitions

Qualitative model checking

Reasoning on tasks and transitions

0. Outcome probability Probability of completing the process in some final states

- 1. Probability of a trace
- 2. Probability of satisfying a qualitative property
- 3. Conformance to a probabilistic **Declare specification**

0. Outcome probability Probability of completing the process in some final states

1. Probability of a trace

- 2. Probability of satisfying a qualitative property
- 3. Conformance to a probabilistic **Declare specification**

Reasoning on states and probabilities

Markov chains

Elegant trick to deal with silent transitions

Qualitative model checking

Reasoning on tasks and transitions

Recall the good-old days of studying?

Fundamentals of Business Process Management

Marlon Dumas · Marcello La Rosa Jan Mendling · Hajo A. Reijers

Second Edition

Recall the good-old days of studying?

Fundamentals of **Business** Process Management

Marlon Dumas · Marcello La Rosa Jan Mendling · Hajo A. Reijers

Second Edition

D Springer

260

Fig. 7.8 Rework pattern

Figure 7.8 is:

In this formula, the parameter r is called the *rework probability*, that is, the probability that the fragment inside the cycle will need to be reworked. This type of block is called a *rework block* or *repetition block*.

Quantitative Process Analysis

Hence, the average number of times that B is expected to be executed is 1/(1 - 1)(0.2) = 1.25. Now, if we multiply this expected number of instances of B times the cycle time of task B, we get $1.25 \times 20 = 25$. Thus the total cycle time of the process in Figure 7.7 is 10 + 25 = 35.

More generally, the cycle time of a fragment with the structure shown in

$$CT = \frac{T}{1-r}.$$
(7)

Outcome probability What is the probability of ending with order paid?

pay S_4 S_6 $\lfloor q_4 \rfloor$ q_6 acc $\rho_p = \frac{\omega}{b+p}$ = at' fin s_3 pa $\lfloor q_3 \rfloor$ $\rho_d = \frac{d}{b+p+d}$ rej au $\overline{m+}$ Pr 1 S_7 q_7 S_5 S_8

 $\lfloor q_5 \rfloor$

del

 q_8

Outcome probability

3 cases:

- final desired state (good deadlock)
- final non-desired state (bad deadlock)
- other states...

3 cases:

- final desired state (good deadlock) -> 1
- final non-desired state (bad deadlock) -> 0
- other states... -> recursive definition via linear equations

3 cases:

- final desired state (good deadlock) -> 1
- final non-desired state (bad deadlock) -> 0
- other states... -> recursive definition via linear equations

 $x_{s_7} = 0$ $x_{s_4} = \rho_b x_{s_1} + \rho_d x_{s_5} + \rho_p x_{s_6}$ $x_{s_6} = 1$ $x_{s_3} = \rho_a x_{s_4} + \rho_r x_{s_7}$

 $x_{s_1} = \rho_i x_{s_2} + \rho_c x_{s_5}$ $x_{s_0} = x_{s_1}$

Outcome probability What is the probability of ending with order paid? S_4 S_6 $\lfloor q_4 \rfloor$ $|q_6|$ $\rho_b = \frac{b}{b+p+d}$ $\rho_m = \frac{m}{m+f}$ $\rho_p = \frac{d}{b+p+d}$ $\rho a = \frac{a}{a+r}$ S_1 S_2 S_3 S_0 $|q_1|$ $\lfloor q_2 \rfloor$ $\lfloor q_3 \rfloor$ q_0 $\rho_d = \frac{d}{b+p+d}$ $\rho_i =$ $\overline{i+c}$ $\overline{m+}$ Pr Q_7 $\rho_c = \frac{c}{i+c}$ S_5 S_8 $\lfloor q_5 \rfloor$ q_8 x_{s_8} $f \mathcal{X}_{s_3}$ λ_0 x_{s_7} x_{s_5} $1 - \rho_i \rho_m - \rho_i \rho_f \rho_a \rho_b$ x_{s_6}

Outcome probability What is the probability of ending with order paid? S_4 S_6 $\lfloor q_4 \rfloor$ $|q_6|$ $\rho_b = \frac{b}{b+p+d}$ $\rho_m = \frac{m}{m+f}$ $ho_p = rac{d}{b+p+d}$ $\rho a = \frac{a}{a+r}$ S_2 S_0 S_3 S_1 $\left| q_{2} \right|$ $\lfloor q_3 \rfloor$ q_1 q_0 $\rho_d = \frac{d}{b+p+d}$ $\rho_i = \frac{i}{i+c}$ $\overline{m+}$ Pr S_7 q_7 $\rho_c = \frac{c}{i+c}$ S_5 S_8 $\lfloor q_5 \rfloor$ q_8 x_{s_8} $f \mathcal{X}_{s_3}$ λ_0 x_{s_7} x_{s_5} $1 - \rho_i \rho_m - \rho_i \rho_f \rho_a \rho_b$ x_{s_6}

Outcome probability What is the probability of ending with order paid?

More care needed...

More care needed...

More care needed...

General case Exit/absorption probability computation from Markov chains

Return x_{s_0} from the minimal non-negative solution of $x_{s_i} = 1$ $x_{s_{i}} = 0$ $x_{s_k} = \sum p(\langle s_k, l, s'_k \rangle) \cdot x_{s'_k} \quad \text{for each } s_k \in S \text{ s.t. } |succ_{RG(\mathcal{N})}(s_k)| > 0$ $\langle s_k, l, s'_k \rangle \in succ_{RG(\mathcal{N})}(s_k)$

- OUTCOME-PROB (\mathcal{N}, F) with $RG(\mathcal{N}) = \langle S, s_0, S_f, \varrho, p \rangle$

 - for each $s_i \in F$
 - for each $s_j \in S \setminus F$ s.t. $|succ_{RG(\mathcal{N})}(s_j)| = 0$

General case Exit/absorption probability computation from Markov chains

Return x_{s_0} from the minimal non-negative solution of $x_{s_i} = 1$ $x_{s_{i}} = 0$ $x_{s_k} = \sum p(\langle s_k, l, s'_k \rangle) \cdot x_{s'_k} \quad \text{for each } s_k \in S \text{ s.t. } |succ_{RG(\mathcal{N})}(s_k)| > 0$ $\langle s_k, l, s'_k \rangle \in succ_{RG(\mathcal{N})}(s_k)$ $x_{s_i} = 1$ $x_{s_{i}} = 0$ $x_{s_k} = 0$ $x_{s_h} = \sum p(\langle s_h, l, s'_h \rangle) \cdot x_{s'_h}$ for each remaining marking $s_h \in S$ $\langle s_h, l, s'_h \rangle \in succ_{RG(\mathcal{N})}(s_h)$

- OUTCOME-PROB (\mathcal{N}, F) with $RG(\mathcal{N}) = \langle S, s_0, S_f, \varrho, p \rangle$

 - for each $s_i \in F$
 - for each $s_j \in S \setminus F$ s.t. $|succ_{RG(\mathcal{N})}(s_j)| = 0$

for each deadlock marking $s_i \in F$ for each deadlock marking $s_i \in S \setminus F$ for each livelock marking $s_k \in S$

Attack strategy

0. Outcome probability Probability of completing the process in some final states

- 1. Probability of a trace
- 2. Probability of satisfying a qualitative property
- 3. Conformance to a probabilistic **Declare specification**

Reasoning on states and probabilities

Markov chains

Elegant trick to deal with silent transitions

Qualitative model checking

Reasoning on tasks and transitions

Model checking

property: good, finite traces (via an automaton)

Model checking What are the traces of the net that satisfy my property?

property: good, finite traces (via an automaton)

Automata-based product

Automata-based product

Automata-based product

Properties must "enjoy the silence"

Properties must "enjoy the silence"

Silence-preserving cross-product

Silence-preserving cross-product

How to compute the probability that the specification is satisfied by a net trace?

fin

fin

3, 2

2, 1

rej

acc

Attack strategy

0. Outcome probability Probability of completing the process in some final states

1. Probability of a trace

- 2. Probability of satisfying a qualitative property
- 3. Conformance to a probabilistic Declare specification

Reasoning on state and probabilities

Markov chains

Elegant trick to deal with silent transitions

Qualitative model checking

Reasoning on tasks and transitions

)	

1. Infuse the cross-product with net probabilities

1. Infuse the cross-product with net probabilities

2. Focus on states

2. Focus on states

3. Solve the "outcome probability problem"

3. Solve the "outcome probability problem"

Applications in stochastic process mining Probabilistic trace alignment

С	P=0.9 close, accept, pay, archive							
	close	accept	pay	archive				
	close	>>	>>	archive				
	ciose	>>	>>	archive				

Set of traces (behaviour)

Partiti

"Regular" scenarios (Partition of behaviour)

"Regular" scenarios (Partition of behaviour)

Specification distribution

bounded stochastic Petri net

Compare with distributions over traces Induced distribution via qualitative verification

Conclusions

Stochastic process mining calls for techniques to reason on stochastic process models

process models we are interested in (silent transitions)

Analytic solution to key problems related to computing probabilities of behaviour

 Combination and extension of techniques from Markov chain analysis and qualitative model checking of quantitative systems

Just the beginning: timed analysis, discovery, more integration of mining&reasoning, ...

- **Existing techniques do not readily apply** due to the features of stochastic

Thank you!

montali@inf.unibz.it

