Coherence, Similarity, and Concept Generalisation

Roberto Confalonieri¹, Oliver Kutz¹, Nicolas Troquard¹, Pietro Galliani¹, Daniele Porello¹, Rafael Peñaloza¹, Marco Schorlemmer²

 $^{1}\,$ Free University of Bozen-Bolzano, Italy $^{2}\,$ Artificial Intelligence Research Institute, IIIA-CSIC, Spain

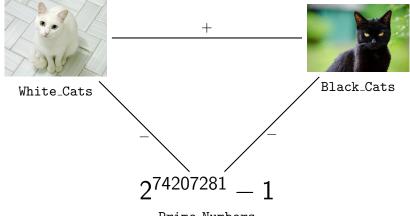
- Joint coherence of concepts (wrt background ontology)
- Thagard-style coherence maximising partition(s)
- Common Generalisation of maximising partition(s)

White_Cats

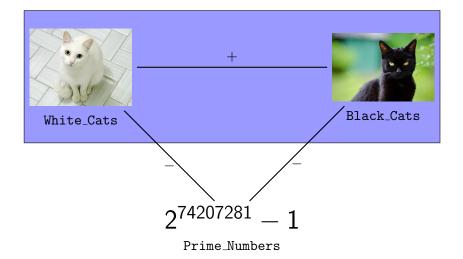
Black_Cats

 $2^{74207281} - 1$

Prime_Numbers



Prime_Numbers



$$2^{74207281} - 1$$

Prime_Numbers

Main Procedure

Input:

- ALC TBox (background ontology) T
- Concepts $C_1 \ldots C_n$

Output:

- Coherence Maximising Partitions $A \subseteq \{C_1 \dots C_n\}$
- Common Generalisations (as justifications)

Main Procedure

Input:

- \mathcal{ALC} TBox (background ontology) \mathcal{T}
- Concepts $C_1 \ldots C_n$

Output:

- Coherence Maximising Partitions $A \subseteq \{C_1 \dots C_n\}$
- Common Generalisations (as justifications)
- 1. Define generalisation refinement operator from \mathcal{T} ;
- 2. Compute **similarity** between pairs (C_i, C_j) ;
- 3. Evaluate coherence or incoherence between pairs;
- 4. Find coherence maximising partitions;
- 5. Compute respective generalisations.

Generalisation Refinement Operator

Given a TBox \mathcal{T} , and a concept C, the generalisation operator $\gamma(C)$ is defined along the lines of (Confalonieri et al, 2016).

Main Idea: we generalise a concept *C* either by finding a concept $D \in sub(\mathcal{T})$ which is immediately more general than *C* or by generalising one of the subformulas inside *C*. $\gamma(C)$ is the (finite) set of all such generalisations.

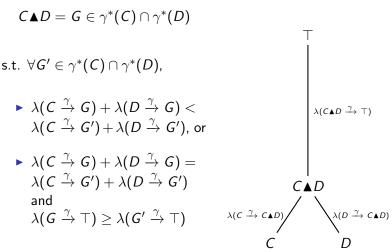
Generalisation Refinement Operator

Given a TBox \mathcal{T} , and a concept C, the generalisation operator $\gamma(C)$ is defined along the lines of (Confalonieri et al, 2016).

Main Idea: we generalise a concept *C* either by finding a concept $D \in sub(\mathcal{T})$ which is immediately more general than *C* or by generalising one of the subformulas inside *C*. $\gamma(C)$ is the (finite) set of all such generalisations.

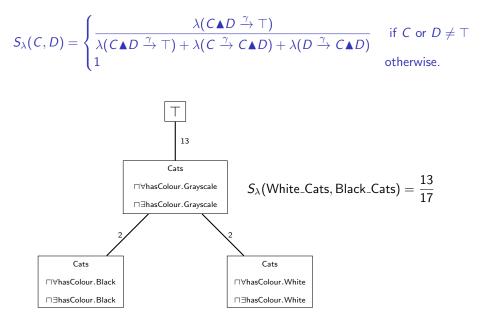
 γ^{*}(C) is the set of all concepts which can be obtained from C
 through repeated generalisations;

 For D ∈ γ*(C), λ(C → D) = smallest number of steps from C to D. Common Generalisation(s)



Not Unique!

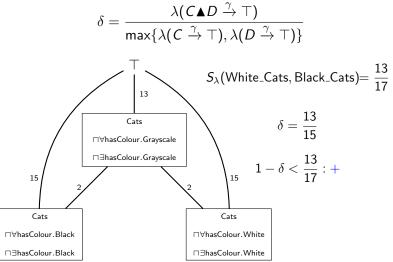
Concept Similarity



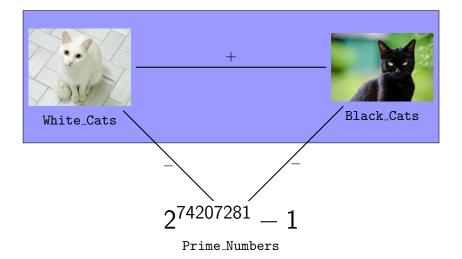
Coherence and Incoherence

- C coheres with D (+) if $S_{\lambda}(C,D) > 1 \delta$
- C incoheres with D (-) if $S_{\lambda}(C,D) \leq 1-\delta$

where



Coherence Maximising Partitions



Conclusions

What we have:

- Theoretical framework for joint coherence of concepts
- Common generalisation as justification

What we need:

- Implementation
- Real-world (not toy) tests
- Graded coherence/incoherence
- Exploration of different similarity measures (e.g. Resnik 1995)

References

- Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R., Plaza, E.: Upward Refinement Operators for Conceptual Blending in *EL*⁺⁺. Annals of Mathematics and Artificial Intelligence (2016)
- Thagard, P.: Coherent and creative conceptual combinations. In: Creative thought: An investigation of conceptual structures and processes, pp. 129–141. American Psychological Association (1997)
- Resnik, Philip. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. (1995)
- Schorlemmer, M., Confalonieri, R., Plaza, E.: Coherent concept invention. In: Proceedings of the Workshop on Computational Creativity, Concept Invention, and General Intelligence (C3GI 2016) (2016)