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Ontologies and data

We have seen that current DL reasoning systems can deal with
relatively large ABoxes. ; 104 individuals

This is small, if compared to data found in various contexts:
biological data, scientific data, enterprise data, . . .
; 105 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?
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Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
; inference

We have to deal very large amounts of data.
; relational databases

We want flexibility in querying the data.
; expressive query language

We want to keep the data in the sources, and not move it around.
; map data sourses to the ontology (cf. Data Integration)
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Questions addressed in this part of the tutorial

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology
and the data sources?

4 How can tools for ontology-based data access and integration
fully take into account all these issues?
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Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).
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Conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query of the form

q(~x)← ∃~y.R1(~x, ~y) ∧ · · · ∧Rk(~x, ~y)

where each Ri(~x, ~y) is an atom using (some of) the free variables ~x, the
existentially quantified variables ~y, and possibly constants.

We will also use the simpler Datalog notation:

q(~x)← R1(~x, ~y), . . . , Rk(~x, ~y)

Note:

CQs contain no disjunction, no negation, no universal
quantification.

Correspond to SQL/relational algebra select-project-join (SPJ)
queries – the most frequently asked queries.

They can also be written as SPARQL queries.
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Example of conjunctive query

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v Integer

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

...

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad
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Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1 ), isHeadOf(d1 , c2 ),
name(f2 ,nf ), name(d2 ,nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad
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Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.
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Query answering under the database assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is
computationally easy.
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Query answering under the database assumption (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the database assumption – Example

  
Professor

CollegeworksFor
 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, nick }

Professor = { john, nick }
College = { collA, collB }
worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c. Professor(x),College(c),worksFor(x, c)

Answer: { john }

{
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Query answering under the KR assumption

An ontology imposes constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such
constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is
computationally more costly.

Note:

Size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.
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Query answering under the KR assumption (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the KR assumption – Example

  
Professor

CollegeworksFor
 

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, nick }

College ⊇ { collA, collB }
worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: { john, nick, mary }

{
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Query answering under the KR assumption – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA under the KR assumption – Andrea’s Example

 
Faculty

 

  
Professor

  
AssocProf

  
FullProf

isAdvisedBy 

{disjoint, complete}

officeMate FullProf ≡ AssocProf t FullProf

Faculty ⊇ { andrea, nick, mary, john }
Professor ⊇ { andrea, nick, mary }

AssocProf ⊇ { nick }
FullProf ⊇ { mary }

isAdvisedBy ⊇ { (john,andrea), (john,mary) }
officeMate ⊇ { (mary,andrea), (andrea,nick) }

john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate
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QA under the KR assumption – Andrea’s Example (cont’d)

 
Faculty

 

  
Professor

  
AssocProf

  
FullProf

isAdvisedBy 

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes!

To determine this answer, we need to resort to reasoning by cases.
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Query answering when accessing data through ontologies

We have to face the difficulties of both assumptions:

The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints
expressed in the ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

. . . is the set of tuples ~c of constants of A such that the formula
∃~y. conj (~c, ~y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted
cert(q,O)

. . . are the tuples ~c of constants of A such that ~c ∈ qI , for every
model I of O.
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Query rewriting (cont’d)

Reasoning

Rewritten 
Query

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive
Datalog.
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Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?
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The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.
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DL-LiteA ontologies

TBox assertions:

Class inclusion assertions: B v C, with:

B −→ A | ∃Q
C −→ C | ¬C

Property inclusion assertions: Q v R, with:

Q −→ P | P−
R −→ Q | ¬Q

Functionality assertions: (funct Q)
Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties
(ignored here).
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

class incl. B v C Father v ∃child BI ⊆ CI

o-prop. incl. Q v R father v anc QI ⊆ RI

v.dom. incl. E v F ρ(age) v xsd:int EI ⊆ F I

d-prop. incl. U v V offPhone v phone UI ⊆ V I

o-prop. funct. (funct Q) (funct father) ∀o, o, o′′.(o, o′) ∈ QI ∧
(o, o′′) ∈ QI → o′ = o′′

d-prop. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧
(o, v′) ∈ UI → v = v′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P ) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2
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Example

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:int

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)

(funct isHeadOf−)
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).
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Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of
the ER Model . . .

. . . except covering constraints in generalizations.

Is one of the three candidate OWL 2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.
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Query answering in DL-LiteA

Based on query reformulation: given an (U)CQ and an ontology:

1 Compute its perfect rewriting, which turns out to be a UCQ.

2 Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

expand positive inclusions & simplify redundant atoms, or

unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.
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Query answering in DL-LiteA – Example

TBox: Professor v ∃worksFor
∃worksFor− v College

Query: q(x)← worksFor(x, y),College(y)

Perfect Reformulation: q(x)← worksFor(x, y),College(y)
q(x)← worksFor(x, y),worksFor( , y)
q(x)← worksFor(x, )
q(x)← Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.
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Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

No! By adding essentially any additional constructor we lose these nice
computational properties.
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Beyond DL-LiteA: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in LogSpace
1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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Example of query

q(x, y, z)← GraduateStudent(x), University(y), Department(z),
hasUndergraduateDegreeFrom(x, y), isMemberOf(x, z),
subOrganizationOf(z, t), subOrganizationOf(t, y)

x y z

t

hasUGDegreeFrom
GraduateStudent University Department

isMemberOf

subOrganizationOf subOrganizationOf

SELECT ?X ?Y ?Z WHERE
?X rdf:type ’GraduateStudent’ . ?Y rdf:type ’University’ .
?Z rdf:type ’Department’ .
?X :hasUndergraduateDegreeFrom ?Y . ?X :isMemberOf ?Z .
?Z subOrganizationOf ?T . ?T subOrganizationOf ?Y
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Ontologies in DL-LiteA

As said, DL-LiteA can be seen as a fragment of OWL 2 specifically
designed to deal with large amounts of data:

It allows for query answering (and checking ontology satisfiability)
in LogSpace wrt the size of the data (i.e., the ABox).

Reasoning with data in DL-LiteA can be delegated to a
relational DBMS.

DL-LiteA captures all constructs in typical conceptual models, such
as UML Class Diagrams and ER.
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Ontology interoperation

Next we look at semantical interoperation between an
ontology-based system and external systems, such as traditional
information systems.

In doing this, we consider for concreteness an actual scenario,
where semantic interoperation is the core issue ...
; ... data integration ...

... and we show the notable advantages that ontologies can bring
to this scenario.
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Data integration

Data integration is the problem of providing unified and transparent
access to a set of autonomous and heterogeneous sources.

From [Bernstein & Haas, CACM Sept. 2008]:

Large enterprises spend a great deal of time and money on
information integration (e.g., 40% of information-technology shops’
budget).

Market for data integration software estimated to grow from $2.5
billion in 2007 to $3.8 billion in 2012 (+8.7% per year)
[IDC. Worldwide Data Integration and Access Software 2008-2012

Forecast. Doc No. 211636 (Apr. 2008)]

Data integration is a large and growing part of science, engineering,
and biomedical computing.
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Ontology-based data integration:
conceptual layer & data layer

Ontology-based data integration is based on the idea of decoupling
information access from data storage.

ontology-based data integration

sources

q

sources
sources

ontology

conceptual layer

data layer

Clients access only the conceptual layer ... while the data layer,
hidden to clients, manages the data.
; Technological concerns (and changes) on the managed data become
fully transparent to the clients.
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Ontology-based data integration: architecture

ontology-based data integration

sources

q

sources
sources

ontology

Based on three main components:

Ontology, used as the conceptual layer to give clients a unified
conceptual “global view” of the data.

Data sources, these are external, independent, heterogeneous,
multiple information systems.

Mappings, which semantically link data at the sources with the
ontology (key issue!)
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Ontology-based data integration: the conceptual layer

The ontology is used as the conceptual layer, to give clients a unified
conceptual global view of the data.

ontology-based data integration

sources

q

sources
sources

ontology

Note: in standard information systems, UML Class Diagram or ER is
used at design time, ...
... here we use ontologies at runtime!
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple
information systems.

ontology-based data integration

sources

q

sources
sources

ontology

By now we have industrial solutions for:

Distributed database systems

Distributed query optimization

Tools for source wrapping

Systems for database federation, e.g., IBM Information Integrator
but notice no open-source federated databases yet!
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple
information systems.

ontology-based data integration

sources

q

sources
sources

ontology

Based on these industrial solutions we can:

1 Wrap the sources and see all of them as relational databases.

2 Use federated database tools to see the multiple sources as a single
one.

; We can see the sources as a single (remote) relational database.
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources
sources

ontology

Scientific literature on data integration in databases has shown that ...

... generally we cannot simply map single relations to single elements of
the global view (the ontology) ...

... we need to rely on queries!
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources
sources

ontology

Several general forms of mappings based on queries have been considered:

GAV: map a query over the source to an element in the global view
– most used form of mappings

LAV: map a relation in the source to a query over the global view
– mathematically elegant, but practically useless (data in the sources are
not clean enough!)

GLAV: map a query over the sources to a query over the global view
– the most general form of mappings

This is a key issue (more on this later).
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Ontology-based data integration: incomplete information

It is assumed, even in standard data integration, that the information
that the global view has on the data is incomplete!

ontology-based data integration

sources

q

sources
sources

ontology

Important

Ontologies are logical theories ;

they are perfectly suited to deal with
incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

ontology

Query answering amounts to compute certain answers, given the
global view, the mapping and the data at the sources ...

... but query answering may be costly in ontologies (even without
mapping and sources).
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Ontology-based data integration: the DL-LiteA solution

ontology-based data integration

sources

q

sources
sources

ontology

We require the data sources to be wrapped and presented as
relational sources. ; “standard technology”

We make use of a data federation tool, such as IBM Information
Integrator, to present the yet to be (semantically) integrated
sources as a single relational database. ; “standard technology”

We make use of the DL-LiteA technology presented above for the
conceptual view on the data, to exploit effectiveness of query
answering. ; “new technology”
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Ontology-based data integration: the DL-LiteA solution

ontology-based data integration

sources

q

sources
sources

ontology

Are we done? Not yet!

The (federated) source database is external and independent from the
conceptual view (the ontology).

Mappings relate information in the sources to the ontology. ; sort of
virtual ABox

We use GAV (global-as-view) mappings: the result of an (arbitrary) SQL
query on the source database is considered a (partial) extension of a
concept/role.

Moreover, we exploit the distinction between objects and values in
DL-LiteA to deal with the notorious impedance mismatch problem!
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Impedance mismatch problem

The impedance mismatch problem

In relational databases, information is represented in forms of
tuples of values.

In ontologies (or more generally object-oriented systems or
conceptual models), information is represented using both objects
and values ...

... with objects playing the main role, ...

... and values a subsidiary role as fillers of object’s attributes.

; How do we reconcile these views?

Solution: We need constructors to create objects of the ontology out
of tuples of values in the database.
Note: from a formal point of view, such constructors can be simply
Skolem functions!
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Impedance mismatch: the technical solution

Let ΓV be the alphabet of constants (values) appearing in the sources.
We introduce a new alphabet Λ of function symbols, where each
function symbol has an associated arity, specifying the number of
arguments it accepts.

We inductively define the set τ(Λ,ΓV ) of all (Skolem) terms of the form
f(d1, . . . , dn) such that

f ∈ Λ,

the arity of f is n > 0, and

d1, . . . , dn ∈ ΓV .

We use τ(Λ,ΓV ) to denote the instances of concepts in the ontology.
The unique name assumption is now enforced on such a set.

; No confusion between the values stored in the database and the
terms denoting objects.
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Formalization of ontology with mappings to data sources

An ontology with mappings is characterized by a triple
Om = 〈T ,S,M〉 such that:

T is a TBox;

S is a (federated) relational database representing the sources;

M is a set of mapping assertions, each one of the form∗

Φ(~x) ; Ψ(f(~x), ~x)

where

Φ(~x) is an arbitrary SQL query over S, returning attributes ~x
Ψ(f(~x), ~x) is a conjunctive query over T without
non-distinguished variables, whose variables, possibly occurring in
terms, i.e., f(~x), are from ~x.

∗Note: this is a form of GAV mapping
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Example

Let S be the database constituted by a set of relations with the
signature:
D1[SSN,PROJ,D], D2[SSN,NAME], D3[CODE,NAME], D4[CODE,SSN]

Relation D1 stores tuples (s, p, d), where s and p are strings and d
is a date, such that s is the social security number of a temporary
employee, p is the name of the project s/he works for (different
projects have different names), and d is the ending date of the
employment.

Relation D2 stores tuples (s, n) of strings consisting of the social
security number s of an employee and her/his name n.

Relation D3 stores tuples (c, n) of strings consisting of the code c
of a manager and her/his name n.

Relation D4 relates managers’ code with their social security
number.
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Example (cont’d)

Consider the ontology with mappings Om = 〈T ,M,DB〉 such that T is

TempEmp v Employee
Manager v Employee
Employee v Person
Employee v ∃worksFor
∃worksFor− v Project
Person v ∃persName
(funct persName)

Project v ∃projName
(funct projName)
TempEmp v ∃until
∃until v ∃worksFor
(funct until)
Manager v ¬∃until

and M is defined by using Λ = {pers,proj,mgr}, all of which are
function symbols of arity 1.
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Example (cont’d)

Mapping assertions M:

Mm1 : SELECT SSN,PROJ,D ; TempEmp(pers(SSN)),
FROM D1 worksFor(pers(SSN), proj(PROJ)),

projName(proj(PROJ), PROJ),
until(pers(SSN), D)

Mm2 : SELECT SSN,NAME ; Employee(pers(SSN)),
FROM D2 persName(pers(SSN), NAME)

Mm3 : SELECT SSN, NAME ; Manager(pers(SSN)),
FROM D3, D4 persName(pers(SSN), NAME)
WHERE D3.CODE=D4.CODE

Mm4 : SELECT CODE, NAME ; Manager(mgr(CODE)),
FROM D3 persName(mgr(CODE), NAME)
WHERE CODE NOT IN

(SELECT CODE FROM D4)
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Semantics of mappings

Def.: Semantics of mappings

We say that I satisfies Φ(~x) ; Ψ(f(~x, ~x) wrt a database S, if for
every tuple of values ~v such that ~v in the answer of the SQL query
Φ(~x) over S, and for each ground atom X in Ψ[f(~v,~v], we have that:

if X has the form A(s), then sI ∈ AI ;
if X has the form P (s1, s2), then (sI1 , s

I
2 ) ∈ P I .

Def.: Semantics of ontologies with mappings

An interpretation I = (∆I , ·I) is a model of Om = 〈T ,S,M〉 if:

I is a model of T ;

I satisfies M w.r.t. S, i.e., satisfies every assertion in M w.r.t. S.

An ontology with mappings is satisfiable if it admits at least one model.
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DL-LiteA query answering for data integration

Given a (U)CQ q and O = 〈T ,S,M〉 (assumed to be satisfiable), we
compute certain answers cert(q,O) as follows:

1 Using T , reformulate CQ q as a union rq,T of CQs.

2 Using M, unfold rq,T to obtain a union unfold(rq,T ) of CQs.

3 Evaluate unfold(rq,T ) directly over S using RDBMS technology.

Correctness of this algorithm shows FOL-reducibility of query answering.
; Query answering can again be done using RDBMS technology.
; Prototype system implemented: Quonto+Integration Module
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Example

M can be encoded in the following portion of a logic program:

TempEmp(pers(s)) ← Aux11(s)
worksFor(pers(s),proj(p)) ← Aux12(s, p)
projName(proj(p), p) ← Aux13(p)
until(pers(s), d) ← Aux14(s, d)
Employee(pers(s)) ← Aux21(s)
persName(pers(s), n) ← Aux22(s, n)
Manager(pers(s)) ← Aux31(s)
persName(pers(s), n) ← Aux32(s, n)
Manager(mgr(c)) ← Aux41(c)
persName(mgr(c), n) ← Aux42(c, n)

where Auxij is a predicate denoting the result of the evaluation over S
of the query Φmij in the left-hand side of the mapping Mmij .
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Example (cont’d)

Consider q(x) ← worksFor(x, y), whose reformulation Q′ = rq,T is:

Q′(x) ← worksFor(x, y)
Q′(x) ← until(x, y)
Q′(x) ← TempEmp(x)
Q′(x) ← Employee(x)
Q′(x) ← Manager(x)

To compute the unfolding of Q′, we unify each of its atoms with the
left-hand side of the logic program rules corresponding to the mapping
assertions in M, and we obtain the following partial evaluation of Q′:

q(pers(s)) ← Aux12(s, p)
q(pers(s)) ← Aux14(s, d)
q(pers(s)) ← Aux11(s)
q(pers(s)) ← Aux21(s)
q(pers(s)) ← Aux31(s, n)
q(mgr(c)) ← Aux41(c, n)
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Example (cont’d)

From the above formulation, it is now possible to derive the
corresponding SQL query Q′′ that can be directly issued over the
database S:

SELECT concat(concat(’pers (’,SSN),’)’)
FROM D1

UNION
SELECT concat(concat(’pers (’,SSN),’)’)
FROM D2

UNION
SELECT concat(concat(’pers (’,SSN),’)’)
FROM D3, D4

WHERE D3.CODE=D4.CODE
UNION
SELECT concat(concat(’mgr (’,CODE),’)’)
FROM D3

WHERE CODE NOT IN (SELECT CODE FROM D4)
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Computational complexity of query answering

Theorem

Query answering in a DL-LiteA ontology with mappings
O = 〈T ,S,M〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 LogSpace in the size of the database S, in fact FOL-rewritable.

Can we move to LAV or GLAV mappings?
No, if we want to stay in LogSpace.
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