6. Reasoning in Description Logics

Exercise 6.1 Let \mathcal{T} be a TBox consisting of concept inclusions of the form $A_1 \sqsubseteq A_2$ and concept disjointness assertion of the form $A_1 \sqsubseteq \neg A_2$, for atomic concepts A_1 and A_2 .

Describe an algorithm for checking concept satisfiability with respect to \mathcal{T} , i.e., whether for some concept A it holds that A is satisfiable with respect to \mathcal{T} .

What is the complexity of the algorithm?

Exercise 6.2 Consider TBoxes \mathcal{T} consisting of axioms of the forms

$$B_1 \sqsubseteq B_2, \qquad \text{where} \qquad B_1, B_2 \ ::= A \mid \exists P \mid \exists P^-, \\ R_1 \sqsubseteq R_2, \qquad \text{where} \qquad R_1, R_2 \ ::= P \mid P^-,$$

where A denotes an atomic concept, and P an atomic role.

- Describe an algorithm for checking concept subsumption with respect to a given \mathcal{T} , i.e., whether for two concepts B_1 and B_2 it holds that $\mathcal{T} \models B_1 \sqsubseteq B_2$.
- Let $A_0 = \{A_0(a)\}$, for some atomic concept A_0 and individual a, and let \mathcal{T} be a(n arbitrary) TBox of the above form. Can we determine whether $\langle \mathcal{T}, A_0 \rangle$ is satisfiable?

Exercise 6.3 Show that concept satisfiability in ALC is NP-hard.

Hint: show the claim by reduction from SAT.

Exercise 6.4 Let q_n , for $n \ge 1$, be a Boolean conjunctive query with n+1 existential variables of the form $\exists x_0, \ldots, x_n. \ P(x_0, x_1) \land P(x_1, x_2) \land \cdots \land P(x_{n-1}, x_n)$. Given $n \ge 1$:

- 1. construct an \mathcal{ALC} KB \mathcal{K}_n such that $\mathcal{K}_n \models q_n$.
- 2. construct an \mathcal{ALC} KB \mathcal{K}'_{2^n} of size polynomial in n such that $\mathcal{K}'_{2^n} \models q_{2^n}$ and $\mathcal{K}'_{2^n} \not\models q_{2^{n+1}}$. Hint: \mathcal{K}'_{2^n} "implements" a binary counter by means of n atomic concepts representing the bits of the counter, and such that the models of \mathcal{K}'_{2^n} contain a P-chain of objects of length 2^n .