
Ontology and Database Systems:
Knowledge Representation and Ontologies

Part 3: Query Answering in Databases and Ontologies

Diego Calvanese

Faculty of Computer Science
European Master in Computational Logic

A.Y. 2015/2016

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Part 3

Query answering in databases and ontologies

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (1/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

3 Query answering in Description Logics
Queries over Description Logics ontologies
Certain answers
Complexity of query answering

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (2/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (3/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (4/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Queries

A query is a mechanism to extract new information from given information
stored in some form. The extracted information is called the answer to the
query.

In the most general sense, a query is an arbitrary (computable) function,
from some input to some output.

Typically, one is interested in queries expressed in some (restricted) query
language that provides guarantees on the computational properties of
computing answers to queries.

Here we consider queries that:

are expressed over a relational alphabet, and
return as result a relation, i.e., a set of tuples of objects satisfying a certain
condition.

A very prominent query language of this form is first-order logic.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (5/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

First-order logic

We consider now first-order logic with equality (FOL) as a mechanism to
express queries.

FOL is the logic to speak about objects, which constitute the domain of
discourse (or universe).

FOL is concerned about properties of these objects and relations over
objects (corresponding to unary and n-ary predicates, respectively).

FOL also has functions, including constants, that denote objects.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (6/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL syntax – Terms

We first introduce:

A set Vars = {x1, . . . , xn} of individual variables (i.e., variables that
denote single objects).

A set of functions symbols, each of given arity ≥ 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

Each variable is a term, i.e., Vars ⊆ Terms;

If t1, . . . , tk ∈ Terms and fk is a k-ary function symbol, then
fk(t1, . . . , tk) ∈ Terms;

Nothing else is in Terms.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (7/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL syntax – Formulas

Def.: The set of Formulas is defined inductively as follows:

If t1, . . . , tk ∈ Terms and P k is a k-ary predicate, then
P k(t1, . . . , tk) ∈ Formulas (atomic formulas).

If t1, t2 ∈ Terms, then t1 = t2 ∈ Formulas.

If ϕ ∈ Formulas and ψ ∈ Formulas then

¬ϕ ∈ Formulas
ϕ ∧ ψ ∈ Formulas
ϕ ∨ ψ ∈ Formulas
ϕ→ ψ ∈ Formulas

If ϕ ∈ Formulas and x ∈ Vars then

∃x.ϕ ∈ Formulas
∀x.ϕ ∈ Formulas

Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition (as in propositional logic).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (8/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Interpretations

Given an alphabet of predicates P1, P2, . . . and function symbols f1, f2, . . .,
each with an associated arity, a FOL interpretation is:

I = (∆I , ·I)

where:

∆I is the interpretation domain (a set of objects);

·I is the interpretation function that interprets predicates and function
symbols as follows:

if Pi is a k-ary predicate, then P I
i ⊆ ∆I × · · · ×∆I (k times)

if fi is a k-ary function, k ≥ 1, then fI
i : ∆I × · · · ×∆I −→ ∆I

if fi is a constant (i.e., a 0-ary function), then fI
i : () −→ ∆I

(i.e., fi denotes exactly one object of the domain)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (9/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation I, an assignment is a function

α : Vars −→ ∆I

that assigns to each variable x ∈ Vars an object α(x) ∈ ∆I .

It is convenient to extend the notion of assignment to terms. We can do so by
defining a function α̂ : Terms −→ ∆I inductively as follows:

α̂(x) = α(x), if x ∈ Vars

α̂(f(t1, . . . , tk)) = fI(α̂(t1), . . . , α̂(tk))

Note: for constants α̂(c) = cI .

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (10/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Truth in an interpretation wrt an assignment

We define when a FOL formula ϕ is true in an interpretation I wrt an
assignment α, written I, α |= ϕ:

I, α |= P (t1, . . . , tk), if (α̂(t1), . . . , α̂(tk)) ∈ P I

I, α |= t1 = t2, if α̂(t1) = α̂(t2)

I, α |= ¬ϕ, if I, α 6|= ϕ

I, α |= ϕ ∧ ψ, if I, α |= ϕ and I, α |= ψ

I, α |= ϕ ∨ ψ, if I, α |= ϕ or I, α |= ψ

I, α |= ϕ→ ψ, if I, α |= ϕ implies I, α |= ψ

I, α |= ∃x.ϕ, if for some a ∈ ∆I we have I, α[x 7→ a] |= ϕ

I, α |= ∀x.ϕ, if for every a ∈ ∆I we have I, α[x 7→ a] |= ϕ

Here, α[x 7→ a] stands for the new assignment obtained from α as follows:

α[x 7→ a](x) = a
α[x 7→ a](y) = α(y), for y 6= x

Note: we have assumed that variables are standardized apart.
D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (11/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

Open vs. closed formulas

Definitions

A variable x in a formula ϕ is free if x does not occur in the scope of any
quantifier, otherwise it is bound.

An open formula is a formula that has some free variable.

A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it means
to be true in an interpretation, written I |= ϕ, without mentioning the
assignment, since the assignment α does not play any role in verifying I, α |= ϕ.

Instead, open formulas are strongly related to queries — cf. relational
databases.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (12/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ϕ is a FOL query with free variables (x1, . . . , xk), then we sometimes
write it as ϕ(x1, . . . , xk), and say that ϕ has arity k.

Given an interpretation I, we are interested in those assignments that map the
variables x1, . . . , xk (and only those).
We write an assignment α s.t. α(xi) = ai, for i = 1, . . . , k, as 〈a1, . . . , ak〉.

Def.: Given an interpretation I, the answer to a query ϕ(x1, . . . , xk) is

ϕ(x1, . . . , xk)I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Note: We will also use the notation ϕI , which keeps the free variables implicit,
and ϕ(I) making apparent that ϕ becomes a functions from interpretations to
set of tuples.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (13/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, 〈〉 |= ϕ()}

Such an answer is

the empty tuple (), if I |= ϕ

the empty set ∅, if I 6|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (14/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL formulas: logical tasks

Definitions

Validity: ϕ is valid iff for all I and α we have that I, α |= ϕ.

Satisfiability: ϕ is satisfiable iff there exists an I and α such that
I, α |= ϕ, and unsatisfiable otherwise.

Logical implication: ϕ logically implies ψ, written ϕ |= ψ iff for all I and
α, if I, α |= ϕ then I, α |= ψ.

Logical equivalence: ϕ is logically equivalent to ψ, iff for all I and α, we
have that I, α |= ϕ iff I, α |= ψ (i.e., ϕ |= ψ and ψ |= ϕ).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (15/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

First-order logic queries Part 3: Query answering in databases and ontologies

FOL queries – Logical tasks

Validity: if ϕ is valid, then ϕI = ∆I × · · · ×∆I for all I, i.e., the query
always returns all the tuples of I.

Satisfiability: if ϕ is satisfiable, then ϕI 6= ∅ for some I, i.e., the query
returns at least one tuple.

Logical implication: if ϕ logically implies ψ, then ϕI ⊆ ψI for all I,
written ϕ ⊆ ψ, i.e., the answer to ϕ is contained in that of ψ in every
interpretation. This is called query containment.

Logical equivalence: if ϕ is logically equivalent to ψ, then ϕI = ψI for all
I, written ϕ ≡ ψ, i.e., the answer to the two queries is the same in every
interpretation. This is called query equivalence and corresponds to query
containment in both directions.

Note: These definitions can be extended to the case where we have axioms,
i.e., constraints on the admissible interpretations.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (16/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (17/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation

Let us consider a finite interpretation I, i.e., an interpretation (over the finite
alphabet) for which ∆I is finite.

Note: whenever we have to evaluate a query, we are only interested in the
interpretation of the relation and function symbols that appear in the query,
which are finitely many.

Then we can consider query evaluation as an algorithmic problem, and study its
computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (18/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation problem

Definitions

Query answering problem: given a finite interpretation I and a FOL
query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)}

Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple (a1, . . . , ak),
with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e., whether

I, 〈a1, . . . , ak〉 |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision problem
corresponding to the query answering problem.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (19/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation algorithm

We define now an algorithm that computes the function Truth(I, α, ϕ) in such
a way that Truth(I, α, ϕ) = true iff I, α |= ϕ.

We make use of an auxiliary function TermEval(I, α, t) that, given an
interpretation I and an assignment α, evaluates a term t returning an object
o ∈ ∆I :

∆I TermEval(I,α,t) {

if (t is x ∈ Vars)
return α(x);

if (t is f(t 1, . . . , t k))
return fI(TermEval(I,α,t 1),...,TermEval(I,α,t k));

}

Note: constants are considered as function symbols of arity 0

Then, Truth(I, α, ϕ) can be defined by structural recursion on ϕ.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (20/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation algorithm (cont’d)

boolean Truth(I,α,ϕ) {
if (ϕ is t 1 = t 2)

return TermEval(I,α,t 1) = TermEval(I,α,t 2);
if (ϕ is P (t 1, . . . , t k))

return PI(TermEval(I,α,t 1),...,TermEval(I,α,t k));
if (ϕ is ¬ψ)

return ¬Truth(I,α,ψ);
if (ϕ is ψ ◦ ψ′)

return Truth(I,α,ψ) ◦ Truth(I,α,ψ′);
if (ϕ is ∃x.ψ) {

boolean b = false;
for all (a ∈ ∆I)

b = b ∨ Truth(I,α[x 7→ a],ψ);
return b;

}
if (ϕ is ∀x.ψ) {

boolean b = true;
for all (a ∈ ∆I)

b = b ∧ Truth(I,α[x 7→ a],ψ);
return b;

}
}

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (21/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Results

Theorem (Termination of Truth(I, α, ϕ))

The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., I, α |= ϕ if and only if
Truth(I, α, ϕ) = true.

Proof. Easy, since the structure of the algorithm directly reflects the inductive
definition of I, α |= ϕ.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (22/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Time complexity I

Theorem (Time complexity of Truth(I, α, ϕ))

The time complexity of Truth(I, α, ϕ) is (|I|+ |α|+ |ϕ|)|ϕ|, i.e., polynomial in
the size of I and exponential in the size of ϕ.

Proof.

Each fI (of arity k) can be represented as a k-dimensional array, hence
accessing the required element can be done in time linear in |I|.

TermEval(. . .) visits the term, so it generates a polynomial number of
recursive calls, hence runs in time polynomial in (|I|+ |α|+ |ϕ|).

Each P I (of arity k) can be represented as a k-dimensional boolean array,
hence accessing the required element can be done in time linear in |I|.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (23/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Time complexity II

Truth(. . .) for the boolean cases simply visits the formula, so generates
either one or two recursive calls.

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping for all
elements in ∆I and testing the resulting assignments.

The total number of such tests is O(|I|]Vars).

Hence the claim holds.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (24/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Space complexity I

Theorem (Space complexity of Truth(I, α, ϕ))

The space complexity of Truth(I, α, ϕ) is |ϕ| · (|ϕ| · log(|I|+ |α|+ |ϕ|)), i.e.,
logarithmic in the size of I and polynomial in the size of ϕ.

Proof.

Each fI(. . .) can be represented as a k-dimensional array, hence accessing
the required element requires O(log |I|) space.

TermEval(. . .) simply visits the term, so it generates a polynomial number
of recursive calls. Each activation record has O(log(|I|+ |α|+ |ϕ|)) size,
and we need O(|ϕ|) activation records.

Each P I(. . .) can be represented as a k-dimensional boolean array, hence
accessing the required element requires O(log |I|) space.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (25/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Space complexity II

Truth(. . .) for the boolean cases simply visits the formula, so generates
either one or two recursive calls, each requiring constant space.

Truth(. . .) for the quantified cases ∃x.ϕ and ∀x.ψ involves looping for all
elements in ∆I and testing the resulting assignments.

The total number of activation records that need to be at the same time
on the stack is O(]Vars) ≤ O(|ϕ|).

Hence the claim holds.

Note: the worst case form for the formula is

Q1x1.Q2x2. · · ·Qnxn.P (x1, x2, . . . , xn−1, xn).

where each Qi is one of ∀ or ∃.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (26/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Complexity measures [Vardi, 1982]

Definition (Combined complexity)

The combined complexity is the complexity of {〈I, α, ϕ〉 | I, α |= ϕ}, i.e.,
interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of {〈I, α〉 | I, α |= ϕ}, i.e., the query ϕ
is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of {〈α,ϕ〉 | I, α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (27/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query evaluation problem Part 3: Query answering in databases and ontologies

Query evaluation – Combined, data, query complexity

Theorem (Combined complexity of query evaluation)

The complexity of {〈I, α, ϕ〉 | I, α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Vardi, 1982] for hardness

Theorem (Data complexity of query evaluation)

The complexity of {〈I, α〉 | I, α |= ϕ} is:

time: polynomial
space: in LogSpace

Theorem (Query complexity of query evaluation)

The complexity of {〈α,ϕ〉 | I, α |= ϕ} is:

time: exponential
space: PSpace-complete — see [Vardi, 1982] for hardness

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (28/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (29/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

(Union of) Conjunctive queries – (U)CQs

(Unions of) conjunctive queries are an important class of queries:

A (U)CQ is a FOL query using only conjunction, existential quantification
(and disjunction).

Hence, UCQs contain no negation, no universal quantification, and no
function symbols besides constants.

Correspond to SQL/relational algebra (union) select-project-join (SPJ)
queries – the most frequently asked queries.

(U)CQs exhibit nice computational and semantic properties, and have been
studied extensively in database theory.

They are important in practice, since relational database engines are
specifically optimized for CQs.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (30/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Definition of conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

∃~y.conj (~x, ~y)

where conj (~x, ~y) is a conjunction of atoms and equalities, over the free
variables ~x, the existentially quantified variables ~y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal quantification, and
no function symbols besides constants.

Hence, they correspond to relational algebra select-project-join (SPJ)
queries.

CQs are the most frequently asked queries.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (31/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as their
boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ: (the distinguished variables are the blue ones)

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (32/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Datalog notation for CQs

A CQ q = ∃~y.conj (~x, ~y) can also be written using datalog notation as

q(~x1)← conj ′(~x1, ~y1)

where conj′(~x1, ~y1) is the list of atoms in conj (~x, ~y) obtained by equating the
variables ~x, ~y according to the equalities in conj (~x, ~y).

As a result of such an equality elimination, we have that ~x1 and ~y1 can contain
constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

q(~x1) the head;

conj ′(~x1, ~y1) the body;

the variables in ~x1 the distinguished variables;

the variables in ~y1 the non-distinguished variables.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (33/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Conjunctive queries – Example

Consider the alphabet Σ = {E/2} and an interpretation I = (∆I , ·I).
Note that EI is a binary relation, i.e., I is a directed graph.

The following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

The query q in datalog notation becomes:

q(x)← E(x, y), E(y, z), E(z, x)

The query q in SQL is (we use Edge(f,s) for E(x, y):

SELECT E1.f

FROM Edge E1, Edge E2, Edge E3

WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (34/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

1 guessing a variable assignment for the non-distinguished variables;

2 evaluating the resulting formula (that has no quantifications).

We define a boolean function for CQ evaluation:

boolean ConjTruth(I,α,∃~y.conj(~x, ~y)) {

GUESS assignment α[~y 7→ ~a] {

return Truth(I,α[~y 7→ ~a],conj (~x, ~y));
}

where Truth(I, α, ϕ) is defined as for FOL queries, considering only the
required cases.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (35/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Nondeterministic CQ evaluation algorithm

Specifically, for CQs, Truth(I, α, ϕ) is defined as follows:

boolean Truth(I,α,ϕ) {

if (ϕ is t 1 = t 2)
return TermEval(I,α,t 1) = TermEval(I,α,t 2);

if (ϕ is P (t 1, . . . , t k))
return P I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ψ ∧ ψ′)
return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

∆I TermEval(I,α,t) {

if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (36/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

Theorem (Data complexity of CQ evaluation)

{〈I, α〉 | I, α |= q} is in LogSpace

time: polynomial
space: logarithmic

Theorem (Query complexity of CQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete — see below for hardness.

time: exponential
space: polynomial

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (37/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

3-colorability

An undirected graph is k-colorable if it is possible to assign to each node one
of k colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given an undirected graph G = (V,E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (38/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Reduction from 3-colorability to CQ evaluation

Let G = (V,E) be an undirected graph (without edges connecting a node to
itself). We consider a relational alphabet consisting of a single binary relation
Edge and define:

An Interpretation: I = (∆I , ·I) where:

∆I = {r, g, b}
EdgeI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

A conjunctive query: Let V = {v1, . . . , vn}, then consider the boolean
conjunctive query defined as:

qG = ∃x1, . . . , xn.
∧

{vi,vj}∈E

Edge(xi, xj) ∧ Edge(xj , xi)

Theorem

G is 3-colorable iff I |= qG.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (39/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the
actual graph. Hence, the reduction provides also the lower-bound for query
complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (40/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Homomorphism

Let I = (∆I , ·I) and J = (∆J , ·J) be two interpretations over the same
alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from I to J
is a mapping h : ∆I → ∆J that preserves constants and relations, i.e., such
that:

h(cI) = cJ

if (a1, . . . , ak) ∈ P I then (h(a1), . . . , h(ak)) ∈ PJ

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (41/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of
arity k. Then

I, α |= q(x1, . . . , xk) iff Iα,~c |= q(c1, . . . , ck)

where Iα,~c is identical to I but includes new constants c1, . . . , ck that are

interpreted as c
Iα,~c
i = α(xi).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (42/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Canonical interpretation of a (boolean) CQ

Let q be a boolean conjunctive query ∃x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q

is the interpretation Iq = (∆Iq , ·Iq), where

∆Iq = {x1, . . . , xn} ∪ {c | c constant occurring in q},
i.e., all the variables and constants in q;

cIq = c, for each constant c in q;

(t1, . . . , tk) ∈ P Iq iff the atom P (t1, . . . , tk) occurs in q.

Sometimes the procedure for obtaining the canonical interpretation is called
freezing of q.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (43/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c)← E(c, y), E(y, z), E(z, c)

Then, the canonical interpretation Iq is defined as

Iq = (∆Iq , ·Iq)

where

∆Iq = {y, z, c}
EIq = {(c, y), (y, z), (z, c)}
cIq = c

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (44/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Canonical interpretation and (boolean) CQ evaluation

Theorem ([Chandra and Merlin, 1977])

For boolean CQs, I |= q iff there exists a homomorphism from Iq to I.

Proof.
“⇒” Let I |= q, let α be an assignment to the existential variables that makes
q true in I, and let α̂ be its extension to constants. Then α̂ is a homomorphism
from Iq to I.

“⇐” Let h be a homomorphism from Iq to I. Then restricting h to the
variables only we obtain an assignment to the existential variables that makes q
true in I.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (45/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Canonical interpretation and CQ evaluation – Example

Consider the boolean query q()← R1(x, y), R2(y, z), R1(x, z).

The canonical interpretation of q is Iq = (∆Iq , ·Iq), where

∆Iq = {x, y, z}, R
Iq
1 = {(x, y), (x, z)} R

Iq
2 = {(y, z)}

Let I = (∆I , ·I), with

∆I = {a, b}, RI1 = {(a, b)} RI2 = {(b, b)}

Then h defined as follows is a homomorphism from Iq to I:

h(x) = a, h(y) = b, h(z) = b

This shows that I |= q.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (46/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to
finding a homomorphism.

Finding a homomorphism between two interpretations (i.e., relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [Kolaitis and Vardi, 1998].

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (47/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Query containment

Def.: Query containment

Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we have that

I, α |= ϕ implies I, α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (48/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Query containment for CQs

For CQs, query containment q1(~x) ⊆ q2(~x) can be reduced to query evaluation.

1 Freeze the free variables, i.e., consider them as constants.
This is possible, since q1(~x) ⊆ q2(~x) iff

I, α |= q1(~x) implies I, α |= q2(~x), for all I and α; or equivalently
Iα,~c |= q1(~c) implies Iα,~c |= q2(~c), for all Iα,~c, where ~c are new constants,
and Iα,~c extends I to the new constants with cIα,~c = α(x).

2 Construct the canonical interpretation Iq1(~c) of the CQ q1(~c) on the
left hand side . . .

3 . . . and evaluate on Iq1(~c) the CQ q2(~c) on the right hand side,
i.e., check whether Iq1(~c) |= q2(~c).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (49/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Reducing containment of CQs to CQ evaluation

Theorem ([Chandra and Merlin, 1977])

For CQs, q1(~x) ⊆ q2(~x) iff Iq1(~c) |= q2(~c), where ~c are new constants.

Proof.
“⇒” Assume that q1(~x) ⊆ q2(~x).

Since Iq1(~c) |= q1(~c), it follows that Iq1(~c) |= q2(~c).

“⇐” Assume that Iq1(~c) |= q2(~c).

By [Chandra and Merlin, 1977] on hom., for every I such that I |= q1(~c) there
exists a homomorphism h from Iq1(~c) to I.

On the other hand, since Iq1(~c) |= q2(~c), again by [Chandra and Merlin, 1977] on
hom., there exists a homomorphism h′ from Iq2(~c) to Iq1(~c).
The mapping h ◦ h′ (obtained by composing h and h′) is a homomorphism from
Iq2(~c) to I. Hence, once again by [Chandra and Merlin, 1977] on hom.,
I |= q2(~c).

So we can conclude that q1(~c) ⊆ q2(~c), and hence q1(~x) ⊆ q2(~x).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (50/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Query containment for CQs

For CQs, we also have that (boolean) query evaluation I |= q can be reduced to
query containment.

Let I = (∆I , ·I).
We construct the (boolean) CQ qI as follows:

qI has no existential variables (hence no variables at all);

the constants in qI are the elements of ∆I ;

for each relation P interpreted in I and for each fact (a1, . . . , ak) ∈ P I ,
qI contains one atom P (a1, . . . , ak) (note that each ai ∈ ∆I is a constant
in qI).

Theorem

For CQs, I |= q iff qI ⊆ q.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (51/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Conjunctive queries and homomorphisms Part 3: Query answering in databases and ontologies

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of CQ
evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result
can be strengthened:

Theorem

Containment q1(~x) ⊆ q2(~x) of CQs is NP-complete, even when q1 is considered
fixed.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (52/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases
First-order logic queries
Query evaluation problem
Conjunctive queries and homomorphisms
Unions of conjunctive queries

2 Querying databases and ontologies

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (53/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form∨
i=1,...,n

∃~yi.conj i(~x, ~yi)

where each ∃~yi.conj i(~x, ~yi) is a conjunctive query (note that all CQs in a UCQ
have the same set of distinguished variables).

Note: Obviously, each conjunctive query is also a union of conjunctive queries.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (54/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Datalog notation for UCQs

A union of conjunctive queries

q =
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

is written in datalog notation as

{ q(~x) ← conj ′1(~x, ~y1
′)

...
q(~x) ← conj ′n(~x, ~yn

′) }

where each element of the set is the datalog expression corresponding to the
conjunctive query qi = ∃~yi.conj i(~x, ~yi).

Note: normally, we omit the set brackets.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (55/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Evaluation of UCQs

From the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃~yi.conj i(~x, ~yi)

if and only if

I, α |= ∃~yi.conj i(~x, ~yi), for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of
q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (56/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

{〈I, α, q〉 | I, α |= q} is NP-complete.

time: exponential
space: polynomial

Theorem (Data complexity of UCQ evaluation)

{〈I, α〉 | I, α |= q} is in LogSpace (query q fixed).

time: polynomial
space: logarithmic

Theorem (Query complexity of UCQ evaluation)

{〈α, q〉 | I, α |= q} is NP-complete (interpretation I fixed).

time: exponential
space: polynomial

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (57/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Query containment for UCQs

Theorem

For UCQs, the following holds:
{q1, . . . , qk} ⊆ {q′1, . . . , q′n} iff for each qi there is a q′j such that qi ⊆ q′j .

Proof.
“⇐” Obvious.

“⇒” If the containment holds, then we have
{q1(~c), . . . , qk(~c)} ⊆ {q′1(~c), . . . , q′n(~c)}, where ~c are new constants:

Now consider Iqi(~c). We have Iqi(~c) |= qi(~c), and hence
Iqi(~c) |= {q1(~c), . . . , qk(~c)}.
By the containment, we have that Iqi(~c) |= {q′1(~c), . . . , q′n(~c)}. I.e., there
exists a q′j(~c) such that Iqi(~c) |= q′j(~c).

Hence, by [Chandra and Merlin, 1977] on containment of CQs, we have that
qi ⊆ q′j .

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (58/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Unions of conjunctive queries Part 3: Query answering in databases and ontologies

Query containment for UCQs – Complexity

From the previous result, we have that we can check
{q1, . . . , qk} ⊆ {q′1, . . . , q′n} by at most k · n CQ containment checks.

We immediately get:

Theorem

Containment of UCQs is NP-complete.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (59/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (60/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Query answering

In ontology-based data access we are interested in a reasoning service that is
not typical in ontologies (or in a FOL theory, or in UML class diagrams, or in a
knowledge base) but it is very common in databases: query answering.

Def.: Query

Is an expression at the intensional level denoting a set of tuples of individuals
satisfying a given condition.

Def.: Query Answering

Is the reasoning service that actually computes the answer to a query.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (61/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Example of query over an ontology

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

1..?

boss
H

1..1

1..?

worksFor
H

3..?

1..1

manages
N

1..1
{disjoint, complete}

q(ce, cm, sa) ← ∃e, p,m.
worksFor(e, p) ∧manages(m, p) ∧ boss(e,m) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, sa) ∧ salary(m, sa)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (62/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Query answering under different assumptions

There are two fundamentally different assumptions when addressing query
answering:

Complete information on the data, as in traditional databases.

Incomplete information on the data, as in ontologies (aka knowledge
bases), but also information integration in databases.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (63/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in traditional databases Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (64/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in traditional databases Part 3: Query answering in databases and ontologies

Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (65/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in traditional databases Part 3: Query answering in databases and ontologies

Query answering in traditional databases (cont’d)

Reasoning

Conceptual
Schema /
Ontology

Logical
Schema

Query

Data
Store

Result

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (66/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in traditional databases Part 3: Query answering in databases and ontologies

Query answering in traditional databases – Example

Employee

Manager

ProjectworksFor I

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← ∃p. Manager(x) ∧ Project(p) ∧ worksFor(x, p)

Answer: { john }

{

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (67/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (68/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

Query answering in ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (69/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

Query answering in ontologies (cont’d)

Reasoning

Reasoning

Conceptual
Schema /
Ontology

Logical
Schema

Query

Data
Store

Result

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (70/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

Query answering in ontologies – Example

Employee

Manager

ProjectworksFor I

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Manager ⊇ { john, nick }
Project ⊇ { prA, prB }
worksFor ⊇ { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)

Answer: { john, nick, mary }

{

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (71/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

Query answering in ontologies – Example 2

Person

hasFather I

1..? Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (72/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

QA in ontologies – Andrea’s Example 1

Manager is partitioned into AreaManager and TopManager.

Employee

Manager

AreaManager TopManager

supervisedBy
H

officeMate I

{disjoint, complete}

Employee ⊇ { andrea, paul, mary, john }
Manager ⊇ { andrea, paul, mary }

AreaManager ⊇ { paul }
TopManager ⊇ { mary }
supervisedBy ⊇ { (john,andrea), (john,mary) }

officeMate ⊇ { (mary,andrea), (andrea,paul) }

john

andreaManager mary TopManager

paul AreaManager

supervisedBy supervisedBy

officeMate

officeMate

1Due to Andrea Schaerf [Schaerf, 1993].
D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (73/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontologies Part 3: Query answering in databases and ontologies

QA in ontologies – Andrea’s Example (cont’d)

Employee

Manager

AreaManager TopManager

supervisedBy
H

officeMate I

{disjoint, complete}

john

andreaManager mary TopManager

paul AreaManager

supervisedBy supervisedBy

officeMate

officeMate

q(x)← ∃y, z. supervisedBy(x, y) ∧ TopManager(y) ∧
officeMate(y, z) ∧ AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (74/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontology-based data access Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies
Query answering in traditional databases
Query answering in ontologies
Query answering in ontology-based data access

3 Query answering in Description Logics

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (75/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontology-based data access Part 3: Query answering in databases and ontologies

Query answering in ontology-based data access

In OBDA, we have to face the difficulties of both settings:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (76/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontology-based data access Part 3: Query answering in databases and ontologies

Questions that need to be addressed

In the context of ontology-based data access:

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology and the
data sources?

4 How can tools for ontology-based data access take into account these
issues?

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (77/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Query answering in ontology-based data access Part 3: Query answering in databases and ontologies

Which language to use for querying ontologies?

Two borderline cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, domain independent first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good tradeoff is to use (unions of) conjunctive queries.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (78/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies

3 Query answering in Description Logics
Queries over Description Logics ontologies
Certain answers
Complexity of query answering

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (79/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Queries over Description Logics ontologies Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies

3 Query answering in Description Logics
Queries over Description Logics ontologies
Certain answers
Complexity of query answering

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (80/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Queries over Description Logics ontologies Part 3: Query answering in databases and ontologies

Queries over Description Logics ontologies

Traditionally, simple concept (or role) expressions have been considered as
queries over DL ontologies.

We have seen that we need more complex forms of queries, such as those used
in databases.

Def.: A conjunctive query q(~x) over an ontology O = 〈T ,A〉
is a conjunctive query ∃~y. conj (~x, ~y)

whose predicate symbols are atomic concept and roles of T , and

that may contain constants that are individuals of A.

Remember: a CQ corresponds to a select-project-join SQL query.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (81/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Queries over Description Logics ontologies Part 3: Query answering in databases and ontologies

Queries over Description Logics ontologies – Example

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

1..?

boss
H

1..1

1..?

worksFor
H

3..?

1..1

manages
N

1..1
{disjoint, complete}

Conjunctive query over the above ontology:

q(x, y) ← ∃p. Employee(x),Employee(y),Project(p),
boss(x, y),worksFor(x, p),worksFor(y, p)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (82/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Certain answers Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies

3 Query answering in Description Logics
Queries over Description Logics ontologies
Certain answers
Complexity of query answering

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (83/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Certain answers Part 3: Query answering in databases and ontologies

Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x) = ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

is the set of tuples ~c of constants of A such that the formula ∃~y. conj (~c, ~y)
evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O)

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I of O.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (84/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Certain answers Part 3: Query answering in databases and ontologies

Query answering in ontologies

Def.: Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: A special case of query answering is instance checking: it amounts to
answering the boolean query q()← A(c) (resp., q()← P (c1, c2)) over O (in
this case ~c is the empty tuple).

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (85/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Certain answers Part 3: Query answering in databases and ontologies

Query answering in ontologies – Example

Person

hasFather I

1..? TBox T : ∃hasFather v Person
∃hasFather− v Person

Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (86/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Certain answers Part 3: Query answering in databases and ontologies

Unions of conjunctive queries

We consider also unions of CQs over an ontology.

A union of conjunctive queries (UCQ) has the form:

∃~y1. conj (~x, ~y1) ∨ · · · ∨ ∃ ~yk. conj (~x, ~yk)

where each ∃~yi. conj (~x, ~yi) is a CQ.

The (certain) answers to a UCQ are defined analogously to those for CQs.

Example

q(x)← (Manager(x) ∧ worksFor(x, tones)) ∨
(∃y. boss(x, y) ∧ worksFor(y, tones))

In datalog notation:
q(x) ← Manager(x), worksFor(x, tones)
q(x) ← boss(x, y), worksFor(y, tones)

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (87/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Outline of Part 3

1 Query answering in databases

2 Querying databases and ontologies

3 Query answering in Description Logics
Queries over Description Logics ontologies
Certain answers
Complexity of query answering

4 References

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (88/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Complexity measures for queries over ontologies

When measuring the complexity of answering a query q(~x) over an ontology
O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different complexity
measures:

Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the
conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (89/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Data complexity of query answering

When studying the complexity of query answering, we need to consider the
associated decision problem:

Def.: Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple ~c of constants, check
whether ~c ∈ cert(q,O).

We look mainly at the data complexity of query answering, i.e., complexity of
the recognition problem computed w.r.t. the size of the ABox only.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (90/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Complexity of query answering in DLs

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in AC0 (1)

ALCI, SH, SHIQ, . . . 2ExpTime-complete (3) coNP-complete (2)

OWL 2 (and less) 3ExpTime-hard coNP-hard

(1) This is what we need to scale with the data.
(2) coNP-hard already for a TBox with a single disjunction

[Donini et al., 1994; Calvanese et al., 2006; Calvanese et al., 2013].
In coNP for very expressive DLs

[Levy and Rousset, 1998; Ortiz et al., 2006; Glimm et al., 2007; Ortiz et al., 2008].
(3) [Calvanese et al., 1998; Calvanese et al., 2008; Lutz, 2007]

Questions

Can we find interesting (description) logics for which query answering can
be done efficiently (i.e., in AC0)?

If yes, can we leverage relational database technology for query answering?

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (91/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Inference in query answering

Perfect
rewriting

(under OWA)

Query
evaluation

(under CWA)

Logical Inference

q

T

A cert(q, 〈T ,A〉)

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of q and T .

; Query answering by query rewriting.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (92/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Query answering by query rewriting

Perfect
rewriting

(under OWA)

Query
evaluation

(under CWA)

Logical Inference

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query rq,T
(called the perfect rewriting of q w.r.t. T).

2 Query evaluation: evaluate rq,T over the ABox A seen as a complete
database (and without considering the TBox T).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (93/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Q-rewritability

Let Q be a query language and L an ontology language.

Def.: Q-rewritability

For an ontology language L, query answering is Q-rewritable if for every TBox
T of L and for every query q, the perfect reformulation rq,T of q w.r.t. T can
be expressed in the query language Q.

Notice that the complexity of computing rq,T or the size of rq,T do not affect
data complexity.

Hence, Q-rewritability is tightly related to data complexity, i.e.:

complexity of computing cert(q, 〈T ,A〉) measured in the size of the ABox
A only,

which corresponds to the complexity of evaluating rq,T over A.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (94/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Complexity of query answering Part 3: Query answering in databases and ontologies

Language of the rewriting

The expressiveness of the ontology language affects the rewriting
language, i.e., the language into which we are able to rewrite UCQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in AC0).

When we can rewrite into UCQs.
; Query evaluation can be “optimized” via an RDBMS.

When we can rewrite into non-recursive Datalog.
; Query evaluation can be done via an RDBMS, but using views.

When we need an NLogSpace-hard language to express the rewriting.
; Query evaluation requires (at least) linear recursion.

When we need a PTime-hard language to express the rewriting.
; Query evaluation requires full recursion (e.g., Datalog).

When we need a coNP-hard language to express the rewriting.
; Query evaluation requires (at least) the power of Disjunctive Datalog.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (95/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

References I

[Calvanese et al., 1998] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

On the decidability of query containment under constraints.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[Calvanese et al., 2006] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati.

Data complexity of query answering in description logics.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pages 260–270, 2006.

[Calvanese et al., 2008] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

Conjunctive query containment and answering under description logics constraints.

ACM Trans. on Computational Logic, 9(3):22.1–22.31, 2008.

[Calvanese et al., 2013] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati.

Data complexity of query answering in description logics.

Artificial Intelligence, 195:335–360, 2013.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (96/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

References II

[Chandra and Merlin, 1977] Ashok K. Chandra and Philip M. Merlin.

Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pages 77–90, 1977.

[Donini et al., 1994] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf.

Deduction in concept languages: From subsumption to instance checking.

J. of Logic and Computation, 4(4):423–452, 1994.

[Glimm et al., 2007] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler.

Conjunctive query answering for the description logic SHIQ.

In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pages 399–404,
2007.

[Kolaitis and Vardi, 1998] Phokion G. Kolaitis and Moshe Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 205–213, 1998.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (97/99)

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

References III

[Levy and Rousset, 1998] Alon Y. Levy and Marie-Christine Rousset.

Combining Horn rules and description logics in CARIN.

Artificial Intelligence, 104(1–2):165–209, 1998.

[Lutz, 2007] Carsten Lutz.

Inverse roles make conjunctive queries hard.

In Proc. of the 20th Int. Workshop on Description Logic (DL 2007), volume 250 of CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/, pages 100–111, 2007.

[Ortiz et al., 2006] Maria Magdalena Ortiz, Diego Calvanese, and Thomas Eiter.

Characterizing data complexity for conjunctive query answering in expressive description
logics.

In Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), pages 275–280, 2006.

[Ortiz et al., 2008] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter.

Data complexity of query answering in expressive description logics via tableaux.

J. of Automated Reasoning, 41(1):61–98, 2008.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (98/99)

http://ceur-ws.org/

Query answering in databases Querying databases and ontologies Query answering in Description Logics References

Part 3: Query answering in databases and ontologies

References IV

[Schaerf, 1993] Andrea Schaerf.

On the complexity of the instance checking problem in concept languages with existential
quantification.

J. of Intelligent Information Systems, 2:265–278, 1993.

[Vardi, 1982] Moshe Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages
137–146, 1982.

D. Calvanese (FUB) ODBS – Knowledge Representation and Ontologies 2015/2016 (99/99)

	Part 3: Query answering in databases and ontologies
	Lecture 19-20 (05/04/2016)
	Query answering in databases
	First-order logic queries
	Query evaluation problem
	Conjunctive queries and homomorphisms
	Unions of conjunctive queries

	Lecture 21-22 (07/04/2016)
	Querying databases and ontologies
	Query answering in traditional databases
	Query answering in ontologies
	Query answering in ontology-based data access

	Query answering in Description Logics
	Queries over Description Logics ontologies
	Certain answers
	Complexity of query answering

	References

