4. Basics of Description Logics

Exercise 4.1 Translate the following DL expressions and axioms into first-order logic:

- 1. Father $\sqcap \forall \mathsf{child}_{\bullet}(\mathsf{Doctor} \sqcup \exists \mathsf{managedBy}^{-}_{\bullet}(\mathsf{Company} \sqcap (\leq 3 \, \mathsf{employs}_{\bullet} \, \mathsf{Doctor})))$
- 2. Person □ ∀child.HappyPerson □ ∃child.∀child.HappyPerson
- 3. Person □ ∃child. HappyPerson □ Happy □ (Father □ Mother)

Exercise 4.2 Translate the following sentences and first-order logic formulas into DL syntax, if possible:

- 1. Only humans have children that are humans.
- 2. A node cannot have two distinct P-successors, such that one is a B and the second one is not a B.

3.
$$\forall x_1, x_2, y_1, y_2$$
. $P(x_1, y_1) \land P(x_1, y_2) \land P(x_2, y_2) \rightarrow x_1 = x_2 \lor y_1 = y_2$

4.
$$\forall x, y, z. P(x, y) \land P(y, z) \land P(z, x) \rightarrow A(x)$$

5.
$$\forall x, y, z : P(x, y) \land Q(y, z) \rightarrow R(x, z)$$

6.
$$\forall x, y, z : P(x, y) \land Q(y, z) \rightarrow \exists w : R(x, w) \land S(w, z)$$

7.
$$\neg(\forall x. A(x) \rightarrow B(x)) \lor (\forall x. A(x) \rightarrow C(x))$$

8.
$$\exists x. \forall y. \ R(x,y) \lor S(x,y)$$

Exercise 4.3 Compute the certain answers to the query q over the KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$.

1.
$$q(x) = B(x)$$
, $\mathcal{A} = \{A(a), B(b), C(c)\}$, $\mathcal{T} = \{A \subseteq B, C \subseteq \exists R, \exists R^- \subseteq B\}$.

2.
$$q() = \exists x. B(x), \quad A = \{A(a)\},\$$

(a)
$$\mathcal{T} = \{ A \sqsubseteq \exists R, \exists R^- \sqsubseteq B \}.$$

(b)
$$\mathcal{T} = \{ A \sqsubseteq \exists R \sqcup \exists S, \exists R^- \sqsubseteq B \}.$$

(c)
$$\mathcal{T} = \{ A \sqsubseteq \exists R \sqcap (\exists S \sqcup \exists Q), \exists R^- \sqsubseteq B, \exists Q^- \sqsubseteq B \}.$$

(d)
$$\mathcal{T} = \{ A \subseteq \exists R \sqcup \exists S, \exists R^- \subseteq B, \exists S^- \subseteq \exists R \sqcup \exists Q, \exists Q^- \subseteq \exists R \}.$$

3.
$$q(x) = \exists y.R(x,y)$$
, $\mathcal{A} = \{A(a), R(b,c)\}$, \mathcal{T} as in Item 2.

4.
$$q(x) = \exists y. R(x, y)$$
, $\mathcal{A} = \{A(a), R(a, c)\}$, \mathcal{T} as in Item 2.