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Computational complexity (1/2)

[J.E. Hopcroft, 2007; Papadimitriou, 1994]

Computational complexity theory aims at understanding how difficult it is to
solve specific problems.

A problem is considered as an (in general infinite) set of instances of the
problem, each encoded in some meaningful (i.e., compact) way.

Standard complexity theory deals with decision problems: i.e., problems
that admit a yes/no answer.

Algorithm that solves a decision problem:

input: an instance of the problem
output: yes or no

The difficulty (complexity) is measured in terms of the amount of
resources (time, space) that the algorithm needs to solve the problem.
; complexity of the algorithm, or upper bound

To measure the complexity of the problem, we consider the best possible
algorithm that solves it.
; lower bound
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Computational complexity (2/2)

Worst-case complexity analysis: the complexity is measured in terms of a
(complexity) function f :

argument: the size n of an instance of the problem (i.e., the length of its
encoding)
result: the amount f(n) of time/space needed in the worst-case to solve an
instance of size n

The asymptotic behaviour of the complexity function when n grows is
considered.

To abstract away from contingent issues (e.g., programming language,
processor speed, etc.), we refer to an abstract computing model: Turing
Machines (TMs).
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Complexity classes

To achieve robustness wrt encoding issues, usually one does not consider
specific complexity functions f , but rather families C of complexity functions,
giving rise to complexity classes.

Def.: A time/space complexity class C
. . . is the set of all problems P such that an instance of P of size n can be
solved in time/space at most C(n).

Note: Consider a (decision) problem P , and an encoding of the instances of P
into strings over some alphabet Σ.
Once we fix such an encoding, the problem actually corresponds to a language
LP , namely the set of strings encoding those instances of the problem for which
the answer is yes.

Hence, in the technical sense, a complexity class is actually a set of languages.
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Reductions

To establish lower bounds on the complexity of problems, we make use of the
notion of reduction:

Def.: A reduction from a problem P1 to a problem P2

. . . is a function R (the reduction) from instance of P1 to instances of P2 such
that:

1 R is efficiently computable (i.e., in logarithmic space), and

2 An instance I of P1 has answer yes iff R(I) has answer yes.

P1 reduces to P2 if there is a reduction R from P1 to P2.

Intuition: If P1 reduces to P2, then P2 is at least as difficult as P1, since we can
solve an instance I of P1 by reducing it to the instance R(I) of P2 and then
solve R(I).

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (9/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

Hardness and completeness Part 2: Description Logics

Hardness and completeness

Def.: A problem P is hard for a complexity class C
. . . if every problem in C can be reduced to P .

Def.: A problem P is complete for a complexity class C if

1 it is hard for C, and

2 it belongs to C

Intuitively, a problem that is complete for C is among the hardest problems in C.
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Tractability and intractability: PTime and NP

Def.: PTime

Set of problems solvable in polynomial time by a deterministic TM.

These problems are considered tractable, i.e., solvable for large inputs.

Is a robust class (PTime computations compose).

Def.: NP

Set of problems solvable in polynomial time by a non-deterministic TM.

These problems are believed intractable, i.e., unsolvable for large inputs.

The best known algorithms actually require exponential time.

Corresponds to a large class of practical problems, for which the following
type of algorithm can be used:

1 Non-deterministically guess a possible solution of polynomial size.
2 Check in polynomial time that the guessed solutions is good.
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Complexity classes above NP

Def.: PSpace

Set of problems solvable in polynomial space by a deterministic TM.

Polynomial space is “not really good”, since these problems may require
exponential time.

These problems are considered to be more difficult than NP problems.

Practical algorithms and heuristics work less well than for NP problems.

Def.: ExpTime

Set of problems solvable in exponential time by a deterministic TM.

This is the first provably intractable complexity class.

These problems are considered to be very difficult.

Def.: NExpTime

Set of problems solvable in exponential time by a non-deterministic TM.
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Complexity classes below PTime

Def.: LogSpace and NLogSpace

Set of problems solvable in logarithmic space by a (non-)deterministic TM.

Note: when measuring the space complexity, the size of the input does not
count, and only the working memory (TM tape) is considered.

Note 2: logarithmic space computations compose (this is not trivial).

Correspond to reachability in undirected and directed graphs, respectively.

Def.: AC0

Set of problems solvable in constant time using a polynomial number of
processors.

These problems are solvable efficiently even for very large inputs.

Corresponds to the complexity of model checking a fixed FO formula when
the input is the model only.
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Relationship between the complexity classes

The following relationships are known:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆
⊆ NP ⊆ PSpace ⊆

⊆ ExpTime ⊆ NExpTime

Moreover, we know that PTime ( ExpTime.
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What are Description Logics?

Description Logics (DLs) [Baader et al., 2003] are logics specifically designed to
represent and reason on structured knowledge.

The domain of interest is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical axioms.
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Origins of Description Logics

Description Logics stem from early days knowledge representation formalisms
(late ’70s, early ’80s):

Semantic Networks: graph-based formalism, used to represent the meaning
of sentences.

Frame Systems: frames used to represent prototypical situations,
antecedents of object-oriented formalisms.

Problems: no clear semantics, reasoning not well understood.

Description Logics (a.k.a. Concept Languages, Terminological Languages)
developed starting in the mid ’80s, with the aim of providing semantics and
inference techniques to knowledge representation systems.
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What are Description Logics about?

Abstractly, DLs allow one to predicate about labeled directed graphs:

Nodes represent real world objects.

Node labels represent types/categories of objects.

Edges represent relations between (pairs of) objects, or between objects
and values

Edge labels represent the types of relations between objects, or between
objects and values.

Every fragment of the world that can be abstractly represented in terms of a
labeled directed graph is a good candidate for being represented by DLs.
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What are Description Logics about? – Example 1

Exercise

Represent Metro lines in Milan in a labelled directed graph.
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What are Description Logics about? – Example 2

Exercise

Represent some aspects of Facebook as a labelled directed graph.
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What are Description Logics about? – Example 3

Exercise

Represent some aspects of human anatomy as a labelled directed graph.
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What are Description Logics about? – Example 4

Exercise

Represent some aspects of document classification as a labelled directed graph.
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Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }

3 A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Many description logics

OWL 2 ≈ SROIQ 2NExpTime

OWL 1 ≈ SHOIQ NExpTime

SHIQ ExpTime

ALC ExpTime

EL PTime

DL-Lite NLogSpace
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Architecture of a Description Logic system

Knowledge Base

Expressed in a Description Logic

Inference Engine

Applications

Father ≡ Human u Male u (∃child)
HappyFather v Father u

∀child.(Doctor t Lawyer)

Terminological knowledge (TBox)

HappyFather(john)
child(john, mary)

Knowledge about objects (ABox)
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Description language

A description language provides the means for defining:

concepts, corresponding to classes: interpreted as sets of objects;

roles, corresponding to relationships: interpreted as binary relations on
objects.

To define concepts and roles:

We start from a (countably infinite) alphabet of concept names and role
names, forming so called atomic concepts and roles.

Then, by applying specific constructors, we can build complex concepts
and roles, starting from the atomic ones.

A description language is characterized by the set of constructs that are
available for that.
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Formal semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

Def.: An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , called the interpretation domain (of I)

an interpretation function ·I , which maps

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

The interpretation function is extended to complex concepts and roles according
to their syntactic structure.
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Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI

conjunction C uD Hum uMale CI ∩DI

(unqual.) exist. res. ∃R ∃hasChild { o | ∃o′. (o, o′) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.
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Additional concept and role constructors

Construct AL· Syntax Semantics

disjunction U C tD CI ∪DI

top > ∆I

qual. exist. res. E ∃R.C { o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI }
(full) negation C ¬C ∆I \ CI

number N (≥ k R) { o | #{o′ | (o, o′) ∈ RI} ≥ k }
restrictions (≤ k R) { o | #{o′ | (o, o′) ∈ RI} ≤ k }
qual. number Q (≥ k R.C) { o | #{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI} ≥ k }
restrictions (≤ k R.C) { o | #{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI} ≤ k }
inverse role I R− { (o, o′) | (o′, o) ∈ RI }
role closure reg R∗ (RI)∗

Many different DL constructs and their combinations have been investigated.
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Further examples of DL constructs

Disjunction: ∀hasChild.(Doctor t Lawyer)

Qualified existential restriction: ∃hasChild.Doctor

Full negation: ¬(Doctor t Lawyer)

Number restrictions: (≥ 2 hasChild) u (≤ 1 sibling)

Qualified number restrictions: (≥ 2 hasChild. Doctor)

Inverse role: ∀hasChild−.Doctor

Reflexive-transitive role closure: ∃hasChild∗.Doctor
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Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅.

Basic reasoning tasks:

1 Concept satisfiability: does C admit a model?

2 Concept subsumption C v D: is CI ⊆ DI for every interpretation I?

Subsumption is used to
build the concept hierarchy:

Human

Human uMale

Human uMale u ∃hasChild

Happy u Human uMale u ∃hasChild

Human u Female

Exercise

Show that if a DL is propositionally closed then (1) and (2) are mutually
reducible.
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Complexity of reasoning on concept expressions

Complexity of concept satisfiability: [Donini et al., 1997]

AL, ALN PTime
ALU , ALUN NP-complete
ALE coNP-complete
ALC, ALCN , ALCI, ALCQI PSpace-complete

Observations:

Two sources of complexity:

union (U) of type NP,
existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSpace.

Number restrictions (N ) do not add to the complexity.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions, which
allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability to
assert properties of classes and relationships between them (e.g., as done in
UML class diagrams).

The assertion of properties is done in DLs by means of an ontology (or
knowledge base).
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Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Def.: Description Logics TBox

Consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P ) (domain P C)
(functional P ) (reflexive P ) (range P C) · · ·

Def.: Description Logics ABox

Consists of a set of assertions on individuals: (we use ci to denote individuals)

Membership assertions for concepts: A(c)

Membership assertions for roles: P (c1, c2)

Equality and distinctness assertions: c1 ≈ c2, c1 6≈ c2
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Description Logics ontology – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
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Semantics of a Description Logics ontology

The semantics is given by specifying when an interpretation I satisfies an
assertion α, denoted I |= α.

TBox Assertions:

I |= C1 v C2 if CI1 ⊆ CI2 .

I |= R1 v R2 if RI1 ⊆ RI2 .

I |= (prop P ) if P I is a relation that has the property prop.
(Note: domain and range assertions can be expressed by means of concept
inclusion assertions.)

ABox Assertions:
We need first to extend the interpretation function ·I , so that it maps each
individual c to an element cI of ∆I .

I |= A(c) if cI ∈ AI .

I |= P (c1, c2) if (cI1 , c
I
2 ) ∈ P I .

I |= c1 ≈ c2 if cI1 = cI2 .

I |= c1 6≈ c2 if cI1 6= cI2 .

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (39/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

Description Logics ontologies Part 2: Description Logics

Model of a Description Logics ontology

Def.: Model

An interpretation I is a model of:

an assertion α, if it satisfies α.

a TBox T , if it satisfies all assertions in T .

an ABox A, if it satisfies all assertions in A.

an ontology O = 〈T ,A〉, if it is a model of both T and A.

Note: We use I |= β to denote that interpretation I is a model of β
(where β stands for an assertion, TBox, ABox, or ontology).
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Interpretation of individuals

We may make some assumptions on how individuals are interpreted.

Unique name assumption (UNA)

When c1 and c2 are two individuals such that c1 6= c2, then cI1 6= cI2 .

Note: When the UNA holds, equality and distinctness assertions are
meaningless.

Standard name assumption (SNA)

The UNA holds, and moreover individuals are interpreted in the same way in all
interpretations.
Hence, we may assume that ∆I contains the set of individuals, and that for
each interpretation I, we have that cI = c (then, c is called a standard name).
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Logical implication

The fundamental reasoning service from which all other ones can be easily
derived is . . .

Def.: Logical implication

An ontology O logically implies an assertion α, written O |= α, if α is satisfied
by all models of O.

We can provide an analogous definition for a TBox T instead of an ontology O.
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TBox reasoning

TBox Satisfiability: T is satisfiable, if it admits at least one model.

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Functionality implication: A functionality assertion (funct R) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ RI and
(o, o2) ∈ RI implies o1 = o2, i.e., T |= (funct R).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in every model of O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is
an instance of a role R in every model of O, i.e., whether O |= R(c1, c2).

Query Answering: see later . . .
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Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

The above TBox logically implies: HappyAncestor v Father.

Membership assertions:
Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: HappyPerson(mary)
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Relationship among TBox reasoning tasks

The TBox reasoning tasks are mutually reducible to each other, provided the
description language is propositionally closed:

TBox satisfiability to concept satisfiability to concept non-subsumption

T satisfiable iff T 6|= > ≡ ⊥
(i.e., > satisfiable w.r.t. T )

iff not T |= > v ⊥

Concept subsumption to concept unsatisfiability

T |= C1 v C2 iff T |= C1 u ¬C2 ≡ ⊥
(i.e., C1 u ¬C2 unsatisfiable w.r.t. T )

Concept satisfiability to TBox satisfiability

T 6|= C ≡ ⊥ iff T ∪ { > v ∃Pnew u ∀Pnew .C } satisfiable
(where Pnew is a new atomic role)
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Relationship among reasoning tasks

TBox reasoning can be reduced to reasoning over an ontology:

Concept satisfiability to ontology satisfiability

C satisfiable wrt T iff 〈T ∪ {Anew v C}, {Anew (cnew )}〉 is satisfiable
(where Anew is a new atomic concept and cnew is a new individual)

Exercise

Show mutual reductions between the remaining (TBox and ontology) reasoning
tasks.

Internalization of the TBox:

In some (very expressive) DLs, it is possible to reduce reasoning wrt a
TBox to reasoning over concept expressions only, i.e., the whole TBox can
be internalized into a single concept.

Whether this is possible depends on the available role and concept
constructors, and the details differ for each DL.
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over
concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over DL
ontologies is already ExpTime-hard, even for very simple DLs (see, e.g.,
[Donini, 2003]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so
far), while still staying within the ExpTime upper bound.

There are DL reasoners that perform reasonably well in practice for such
DLs (e.g, Racer, Pellet, Fact++, . . . ) [Möller and Haarslev, 2003].

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (49/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

DLs vs. other formalisms Part 2: Description Logics

Outline of Part 2

1 Brief introduction to computational complexity

2 Introduction to Description Logics
Ingredients of Description Logics
Description Logics ontologies
Reasoning in Description Logics
Relationship between DLs and other representation formalisms

3 Description Logics and UML Class Diagrams

4 References

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (50/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

DLs vs. other formalisms Part 2: Description Logics

Relationship with First Order Logic

Most DLs are well-behaved fragments of First Order Logic.

To translate an ALC ontology to FOL:
1 Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P
2 Translate complex concepts as follows, using translation functions tx, one

for each variable x:

tx(A) = A(x) tx(C uD) = tx(C) ∧ tx(D)
tx(¬C) = ¬tx(C) tx(C tD) = tx(C) ∨ tx(D)

tx(∃P .C) = ∃y.P (x, y) ∧ ty(C)
tx(∀P .C) = ∀y.P (x, y)→ ty(C) (with y a new variable)

3 Translate a TBox T =
⋃

i{ Ci v Di } as the FOL theory:

ΓT =
⋃

i{ ∀x. tx(Ci)→ tx(Di) }
4 Translate an ABox A =

⋃
i{ Ai(ci) } ∪

⋃
j{ Pj(c

′
j , c
′′
j ) } as the FOL th.:

ΓA =
⋃

i{ Ai(ci) } ∪
⋃

j{ Pj(c
′
j , c
′′
j ) }
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Relationship with First Order Logic – Exercise

Translate the following ALC concepts and assertions into FOL formulas:

1 Father u ∀child.(Doctor tManager)

2 ∃manages.(Company u ∃employs.Doctor)

3 Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

4 Person u ∀child.Happy v ∃child.∀child.Happy

Solution:

1 Father(x) ∧ ∀y. (child(x, y)→ (Doctor(y) ∨Manager(y)))

2 ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃w. (employs(y, w) ∧ Doctor(w))))

3 Father(x) ∧ ∀y. (child(x, y)→ (Doctor(y) ∨
∃w. (manages(y, w)∧(Company(w)∧∃z. (employs(w, z)∧Doctor(z))))))

4 ∀x. (Person(x) ∧ ∀y. child(x, y)→ Happy(y))→
(∃y. child(x, y) ∧ ∀z. child(y, z)→ Happy(z))
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Relationship with First Order Logic – Reasoning

There is a direct correspondence between DL reasoning services and FOL
reasoning services:

C is satisfiable iff its translation tx(C) is satisfiable

C v D iff tx(C)→ tx(D) is valid

C is satisfiable w.r.t. T iff ΓT ∪ { ∃x. tx(C) } is satisfiable

T |= C v D iff ΓT |= ∀x. (tx(C)→ tx(D))
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DLs as fragments of First Order Logic

The previous translation shows us that DLs are a fragment of First Order Logic.

In particular, we can translate complex concepts using just two translation
functions tx and ty (thus reusing the same variables):

tx(A) = A(x)
tx(¬C) = ¬C(x)

tx(C uD) = tx(C) ∧ tx(D)
tx(C tD) = tx(C) ∨ tx(D)
tx(∃P .C) = ∃y.P (x, y) ∧ ty(C)
tx(∀P .C) = ∀y.P (x, y)→ ty(C)

ty(A) = A(y)
ty(¬C) = ¬C(y)

ty(C uD) = ty(C) ∧ ty(D)
ty(C tD) = ty(C) ∨ ty(D)
ty(∃P .C) = ∃x.P (y, x) ∧ tx(C)
ty(∀P .C) = ∀x.P (y, x)→ tx(C)

; ALC is a fragment of L2, i.e., FOL with 2 variables, known to be decidable
(NExpTime-complete).

Note: FOL with 2 variables is more expressive than ALC (tradeoff expressive
power vs. complexity of reasoning).
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DLs as fragments of First Order Logic – Exercise

Translate the following ALC concepts and assertions into L2 formulas (i.e., into
FOL formulas that use only variables x and y):

1 Father u ∀child.(Doctor tManager)

2 ∃manages.(Company u ∃employs.Doctor)

3 Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

4 Person u ∀child.Happy v ∃child.∀child.Happy

Solution:

1 Father(x) ∧ ∀y. (child(x, y)→ (Doctor(y) ∨Manager(y)))

2 ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃x. (employs(y, x) ∧ Doctor(x))))

3 Father(x) ∧ ∀y. (child(x, y)→ (Doctor(y) ∨
∃x. (manages(y, x)∧ (Company(x)∧ ∃y. (employs(x, y)∧Doctor(y))))))

4 ∀x. (Person(x) ∧ ∀y. child(x, y)→ Happy(y))→
(∃y. child(x, y) ∧ ∀x. child(y, x)→ Happy(x))
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DLs as fragments of First Order Logic (Cont’d)

The previous translations can be extended to other constructs:

For inverse roles, swap the variables in the role predicate, i.e.,

tx(∃P−.C) = ∃y.P (y, x) ∧ ty(C) with y a new variable
tx(∀P−.C) = ∀y.P (y, x)→ ty(C) with y a new variable

; ALCI is still a fragment of L2

For number restrictions, two variables do not suffice;
but, ALCQI is a fragment of C2 (i.e, L2+counting quantifiers)
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Relationship with Modal Logics

ALC is a syntactic variant of Km (i.e., multi-modal K):

C uD ⇔ C ∧D ∃P .C ⇔ 3P C
C tD ⇔ C ∨D ∀P .C ⇔ 2P C
¬C ⇔ ¬C

no correspondence for inverse roles

no correspondence for number restrictions

; Concept consistency, subsumption in ALC ⇔ Satisfiability, validity in
Km

To encode inclusion assertions, axioms are used
; Logical implication in DLs corresponds to “global logical implication” in
Modal Logics
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Relationship between DLs and ontology formalisms

DLs are nowadays advocated to provide the foundations for ontology
languages.

Different versions of the W3C standard Web Ontology Language
(OWL) have been defined as syntactic variants of certain DLs.

DLs are also ideally suited to capture the fundamental features of
conceptual modeling formalism used in information systems design:

Entity-Relationship diagrams, used in database conceptual modeling
UML Class Diagrams, used in the design phase of software applications

We briefly overview the correspondence with OWL, highlighting essential
DL constructs.

We will come back a bit later to the correspondence between UML Class
Diagrams and DLs.
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DLs vs. OWL

The Web Ontology Language (OWL) comes in different variants:

OWL1 Lite is a variant of the DL SHIF(D), where:

S stands for ALC extended with transitive roles,
H stands for role hierarchies (i.e., role inclusion assertions),
I stands for inverse roles,
F stands for functionality of roles,
(D) stand for data types, which are necessary in any practical knowledge
representation language.

OWL1 DL is a variant of SHOIN (D), where:

O stands for nominals, which means the possibility of using individuals in
the TBox (i.e., the intensional part of the ontology),
N stands for (unqualified) number restrictions.
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DLs vs. OWL2

The latest version standardized by the W3C is OWL2:
W3C Recommendation of 11/12/2012
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

OWL2 DL is a variant of SROIQ(D), which adds to OWL1 DL several
constructs, while still preserving decidability of reasoning.

Q stands for qualified number restrictions.
R stands for regular role hierarchies, where role chaining might be used in
the left-hand side of role inclusion assertions, with suitable acyclicity
conditions.

OWL2 defines also three profiles: OWL2 QL, OWL2 EL, OWL2 RL.

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL2 DL that is targeted towards a specific use.
The restrictions in each profile guarantee better computational properties
than those of OWL2 DL.
The OWL2 QL profile is derived from the DLs of the DL-Lite family (see
later).
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DL constructs vs. OWL constructs

OWL constructor DL constructor Example

ObjectIntersectionOf C1 u · · · u Cn Human uMale

ObjectUnionOf C1 t · · · t Cn Doctor t Lawyer

ObjectComplementOf ¬C ¬Male

ObjectOneOf {a1} t · · · t {an} {john} t {mary}
ObjectAllValuesFrom ∀P .C ∀hasChild.Doctor

ObjectSomeValuesFrom ∃P .C ∃hasChild.Lawyer

ObjectMaxCardinality (≤ nP ) (≤ 1 hasChild)

ObjectMinCardinality (≥ nP ) (≥ 2 hasChild)

· · ·

Note: all constructs come also in the Data... instead of Object... variant.
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DL axioms vs. OWL axioms

OWL axiom DL syntax Example

SubClassOf C1 v C2 Human v Animal u Biped

EquivalentClasses C1 ≡ C2 Man ≡ Human uMale

DisjointClasseses C1 v ¬C2 Man v ¬Female

SameIndividual {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}
DifferentIndividuals {a1} v ¬{a2} {john} v ¬{peter}
SubObjectPropertyOf P1 v P2 hasDaughter v hasChild

EquivalentObjectProperties P1 ≡ P2 hasCost ≡ hasPrice

InverseObjectProperties P1 ≡ P−2 hasChild ≡ hasParent−

TransitiveObjectProperty P+ v P ancestor+ v ancestor

FunctionalObjectProperty > v (≤ 1P ) > v (≤ 1 hasFather)

· · ·
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Reasoning on UML Class Diagrams

We have seen that UML class diagrams are in tight correspondence with
ontology languages (in fact, they can be viewed as an ontology language).
Let’s consider again the two questions we asked before:

1. Can we develop sound, complete, and terminating procedures for reasoning
on UML Class Diagrams?

We can exploit the formalization of UML Class Diagrams in Description
Logics.

We will see that reasoning on UML Class Diagrams can be done in
ExpTime in general (and actually, it can be carried out by current
DLs-based systems such as FACT++, PELLET, or RACER-PRO).

2. How hard is it to reason on UML Class Diagrams in general?

We will see that it is ExpTime-hard in general.

However, we can single out interesting fragments on which to reason
efficiently.
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class
Diagrams [Berardi et al., 2005; Artale et al., 2007].

We can devise two transformations:

one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a
correspondence between instantiations of the Class Diagram and models of
the associated TBox.

The transformations are satisfiability-preserving, i.e., a class C is
consistent in D iff the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL
TBox TD are quite natural:

Each class and each datatype is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept
connected to its components by roles.

Each part of the diagram is encoded by suitable assertions.
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Encoding of classes and attributes

A UML class C is represented by an atomic concept C.

A UML datatype T is represented by an atomic concept T .

Each attribute a of type T for C is represented by an atomic role a
C

.
To encode the typing of a:

∃aC v C ∃a−
C
v T

To encode the multiplicity [m..n] of a:

C v (≥ maC ) u (≤ naC )

When m is 0, we omit the first conjunct.
When n is ∗, we omit the second conjunct.
When the multiplicity is [0..∗] we omit the whole assertion.
When the multiplicity is missing (i.e., [1..1]), the assertion becomes:

C v ∃aC u (≤ 1 aC )

Note: We include the name C of the class in the name a
C

of the role
corresponding to attribute a to take into account that different classes may
share attributes.

The encoding can be extended also to operations of classes.
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Encoding of classes and attributes – Example

Phone
number[1..∗]: String
brand: String

lastDialed(): String
callLength(String): Integer

class name

attributes
operations

To encode the class Phone, we introduce a concept Phone.

Encoding of the attributes number and brand:

∃numberPhone v Phone
∃brandPhone v Phone

∃number−Phone v String
∃brand−Phone v String

Encoding of the multiplicities of the attributes number and brand:

Phone v ∃numberPhone

Phone v ∃brandPhone u (≤ 1 brandPhone)

We do not consider the encoding of the operations: lastDialed() and
callLength(String).
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Encoding of associations

The encoding of associations depends on:

the presence/absence of an association class;

the arity of the association.

Without With
Arity association class association class

Binary via a DL role via reification
Non-binary via reification via reification

Note: an aggregation is just a particular kind of binary association without
association class and is encoded via a DL role.
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Encoding of binary associations without association class

C1 C2A I

min1 .. max1min2 .. max2

An association A between C1 and C2 is represented by a DL role A, with:

∃A v C1 ∃A− v C2

To encode the multiplicities of A:
each instance of class C1 is connected through association A to at least
min1 and at most max1 instances of C2:

C1 v (≥ min1 A) u (≤ max1 A)

each instance of class C2 is connected through association A− to at least
min2 and at most max2 instances of C1:

C2 v (≥ min2 A−) u (≤ max2 A−)
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Binary associations without association class – Example

PhoneBill PhoneCall

1..?
reference I

1..1

∃reference v PhoneBill
∃reference− v PhoneCall

PhoneBill v (≥ 1 reference)
PhoneCall v (≥ 1 reference−) u (≤ 1 reference−)

Note: an aggregation is just a particular kind of binary association without
association class.

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (73/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

Reducing reasoning in UML to reasoning in DLs Part 2: Description Logics

Encoding of associations via reification

C1

C2

· · ·

Cn

A

A1
A2 An

a
A

o1
C1

o2
C2

on
Cn

. . .

A1 A2 An

An association A is represented by a concept A.

Each instance a of A represents an instance (o1, . . . , on) of the association.

n (binary) roles A1, . . . , An are used to connect an object a representing a
tuple to objects o1, . . . , on representing the components of the tuple.

To ensure that the instances of A correctly represent tuples:

∃Ai v A, for i ∈ {1, . . . , n}
∃A−i v Ci, for i ∈ {1, . . . , n}
A v ∃A1 u · · · u ∃An u (≤ 1A1) u · · · u (≤ 1An)

Note: when the roles of A are explicitly named in the class diagram, we can use
such role names instead of A1, . . . , An.
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Encoding of associations via reification

We have not ruled out the existence of two instances a1, a2 of concept A
representing the same instance (o1, . . . , on) of association A:

a
A

a
A

o1C1 o2C2 onCn
. . .

A1 A2 An

A1 A2 An

To rule out such a situation we could add
an identification assertion (see later):

(id A A1, . . . , An)

Note: in a tree-model the above situation cannot occur.

; By the tree-model property of DLs, when reasoning on a KB, we can restrict
the attention to tree-models.
Hence we can ignore the identification assertions.
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Multiplicities of binary associations with association class

C1 C2

A

min2 .. max2

A1 A2

min1 .. max1

We can encode the multiplicities of association A by means of number
restrictions on the inverses of roles A1 and A2:

each instance of class C1 is connected through association A to at least
min1 and at most max1 instances of C2:

C1 v (≥ min1 A
−
1 ) u (≤ max1 A

−
1 )

each instance of class C2 is connected through association A− to at least
min2 and at most max2 instances of C1:

C2 v (≥ min2 A
−
2 ) u (≤ max2 A

−
2 )
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Associations with association class – Exercise

PhoneCall Phone

Origin
place: String

0..?

call from

1..1

Provide the encoding in DL of the above UML class diagram:

∃placeOrigin v Origin ∃place−Origin v String
Origin v ∃placeOrigin u (≤ 1 placeOrigin)
∃call v Origin ∃call− v PhoneCall
∃from v Origin ∃from− v Phone
Origin v ∃call u (≤ 1 call) u

∃from u (≤ 1 from)
PhoneCall v (≥ 1 call−) u (≤ 1 call−)

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (77/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

Reducing reasoning in UML to reasoning in DLs Part 2: Description Logics

Encoding of ISA and generalization

C1

C

C1 v C
C1 C2 Ck

C

. . .

C1 v C
...

Ck v C

When the generalization is disjoint:

Ci v ¬Cj for 1 ≤ i < j ≤ k

When the generalization is complete:

C v C1 t · · · t Ck

D. Calvanese (FUB) ODBS: Ontology-based Systems 2013/2014 (78/95)



Computational complexity Introduction to DLs DLs and UML Class Diagrams References

Reducing reasoning in UML to reasoning in DLs Part 2: Description Logics

Encoding of ISA between associations

Without reification:

C1 C2

C ′1 C ′2

A

A′

Role inclusion assertion: A′ v A

With reification:

C1 C2

A

C ′1 C ′2

A′

A1 A2

A′1 A′2

Concept inclusion assert.: A′ v A

Role inclusion assertions: A′1 v A1

A′2 v A2
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ISA and generalization – Example

UMTSphoneGSMphoneETACSphone

CellPhone

{disjoint, complete}

ETACSphone v CellPhone ETACSphone v ¬GSMPhone

GSMSphone v CellPhone ETACSphone v ¬UMTSPhone

UMTSSphone v CellPhone GSMphone v ¬UMTSPhone

CellPhone v ETACSphone t GSMphone t UMTSPhone
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Encoding UML Class Diagrams in DLs – Example

PhoneBill PhoneCall Phone

Origin

MobileCall CellPhone FixedPhone

MobileOrigin

callO

0..? 1..1

fromO

callMO

0..? 0..?
fromMO

1..?1..1

reference

{disjoint, complete}

∃reference v PhoneBill
∃reference− v PhoneCall

PhoneBill v (≥ 1 reference)
PhoneCall v (≥ 1 reference−) u

(≤ 1 reference−)

∃place v Origin
∃place− v String

Origin v ∃place u (≤ 1 place)

∃callO v Origin
∃callO− v PhoneCall
∃fromO v Origin
∃fromO− v Phone

Origin v ∃callO u (≤ 1 callO) u
∃fromO u (≤ 1 fromO)

PhoneCall v (≥ 1 callO−) u (≤ 1 callO−)

∃callMO v MobileOrigin
∃callMO− v MobileCall
∃fromMO v MobileOrigin
∃fromMO− v CellPhone

MobileOrigin v ∃callMO u (≤ 1 callMO) u
∃fromMO u (≤ 1 fromMO)

MobileOrigin v Origin
callMO v callO

fromMO v fromO

MobileCall v PhoneCall

CellPhone v Phone
FixedPhone v Phone u ¬CellPhone

Phone v CellPhone t FixedPhone
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Encoding UML Class Diagrams in DLs – Exercise

Employee
empCode: Integer
salary: Integer

Manager

AreaManager TopManager

Project
projectName: String

1..?

boss
H

1..1

1..?

worksFor
H

3..?

1..1

manages
N

1..1
{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager
Manager v AreaManager t

TopManager

∃salary−Emp v Integer
∃salaryEmp v Employee
Employee v ∃salaryEmp u (≤ 1 salaryEmp)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

manages v worksFor
· · ·
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Reducing reasoning in ALC to reasoning in UML

We show how to reduce reasoning over ALC TBoxes to reasoning on UML
Class Diagrams:

We restrict the attention to so-called primitive ALC− TBoxes, where the
concept inclusion assertions have a simplified form:

there is a single atomic concept on the left-hand side;
there is a single concept constructor on the right-hand side.

Given a primitive ALC− TBox T , we construct a UML Class Diagram DT
such that:

an atomic concept A in T is satisfiable
iff

the corresponding class A in DT is satisfiable.

Note: We preserve satisfiability, but do not have a direct correspondence
between models of T and instantiations of DT .
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Encoding DL TBoxes in UML Class Diagrams

Given a primitive ALC− TBox T , we construct DT as follows:

For each atomic concept A in T , we introduce in DT a class A.

We introduce in DT an additional class O that generalizes all the classes
corresponding to atomic concepts.

For each atomic role P , we introduce in DT :

a class CP (that reifies P );
two functional associations P1, P2, representing the two components of P .

For each inclusion assertion in T , we introduce suitable parts of DT , as
shown in the following.
We need to encode the following kinds of inclusion assertions:

A v B
A v ¬B
A v B1 tB2

A v ∃P .B
A v ∀P .B
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Encoding of inclusion and of disjointness

For each assertion A v B of T , add the following to DT :

A B

For each assertion A v ¬B of T , add the following to DT :

A B

O

{disjoint}
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Encoding of union

For each assertion A v B1 tB2 of T , introduce an auxiliary class B
B1tB2

, and
add the following to DT :

B1 B2

A B
B1tB2

{complete}
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Encoding of existential quantification

For each assertion A v ∃P .B of T , introduce

the auxiliary class CPAB
, and

the associations PAB1 and PAB2,

and add the following to DT :

A B

O

CPAB

CP

1..1

PAB1

1..?

1..1

PAB2

1..1

P1

1..1

P2
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Encoding of universal quantification

For each assertion A v ∀P .B of T , introduce (if not already present)

the auxiliary classes Ā, CPAB
, and CPAB

, and
the associations PAB1, PĀB1, and PAB2,

and add the following to DT :

A A

O

B CPAB CPAB

CP

{disjoint}

1..1

PAB1

1..1

PAB1

{complete}

1..1

PAB2

1..1

P2

1..1

P1
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Complexity of reasoning on UML Class Diagrams

Lemma

An atomic concept A in a primitive ALC− TBox T is satisfiable if and only if
the class A is satisfiable in the UML Class Diagram DT .

Reasoning over primitive ALC− TBoxes is ExpTime-hard.
From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is ExpTime-hard.
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Reasoning on UML Class Diagrams using DLs

The two encodings show that DL TBoxes and UML Class Diagrams
essentially have the same computational properties.

Hence, reasoning over UML Class Diagrams has the same complexity as
reasoning over ontologies in expressive DLs, i.e., ExpTime-complete.

This is somewhat surprising, since UML Class Diagrams are so widely used
and yet reasoning on them (and hence fully understanding the implication
they may give rise to), in general is a computationally very hard task.

The high complexity is caused by:
1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints

(maximum 1 cardinality – see encoding of universal and existential
quantification)

Note: Without (1) and restricting (2), reasoning becomes simpler [Artale et al., 2007]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity (see later)
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Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in the
context of ontology-based data access.

Questions

Which is the right combination of constructs to allow in UML Class
Diagrams to be used for OBDA?

Are there techniques for query answering in this case that can be derived
from Description Logics?

Can query answering be done efficiently in the size of the data?

If yes, can we leverage relational database technology for query answering?
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