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Different meanings of “Semantics”

1 Part of linguistics that studies the meaning of words and phrases.

2 Meaning of a set of symbols in some representation scheme.
Provides a means to specify and communicate the intended meaning of a
set of “syntactic” objects.

3 Formal semantics of a language (e.g., an artificial language).
(Meta-mathematical) mechanism to associate to each sentence in a
language an element of a symbolic domain that is “outside the language”.

In information systems, meanings 2 and 3 are the relevant ones:

In order to talk about semantics we need a representation scheme, i.e., an
ontology.

. . . but 2 makes no sense without 3.
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Ontologies

Def.: Ontology

is a representation scheme that describes a formal conceptualization of a
domain of interest.

The specification of an ontology comprises several levels:

Meta-level: specifies a set of modeling categories.

Intensional level: specifies a set of conceptual elements (instances of
categories) and of rules to describe the conceptual structures of the
domain.

Extensional level: specifies a set of instances of the conceptual elements
described at the intensional level.
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The three levels of an ontology
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Ontologies at the core of information systems

C1

C2

C3
Ontology

Resource
1

Resource
2

Resource
3

Mapping

Resources

The usage of all system resources (data and services) is done through the
domain conceptualization.
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Ontology mediated access to data

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

We will see that this setting is similar to the one of Data Integration. The
difference is that here the ontology provides a rich conceptual description as the
information managed by the system.
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Ontologies at the core of cooperation
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The cooperation between systems is done at the level of the conceptualization.
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Three novel challenges

1 Languages

2 Methodologies

3 Tools

. . . for specifying, building, and managing ontologies to be used in information
systems.
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Challenge 1: Ontology languages

Several proposals for ontology languages have been made.

Tradeoff between expressive power of the language and computational
complexity of dealing with (i.e., performing inference over) ontologies
specified in that language.

Usability needs to be addressed.

In this course:

We discuss variants of ontology languages suited for managing ontologies
in information systems.

We study the above mentioned tradeoff . . .

. . . paying particular attention to the aspects related to data management.
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Challenge 2: Methodologies

Developing and dealing with ontologies is a complex and challenging task.

Developing good ontologies is even more challenging.

It requires to master the technologies based on semantics, which in turn
requires good knowledge about the languages, their semantics, and the
implications it has w.r.t. reasoning over the ontology.

In this course:

We study in depth the semantics of ontologies, with an emphasis on
their relationship to data in information sources.

We thus lay the foundations for the development of methodologies,
though we do not discuss specific ontology-development methodologies
here.

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (13/220)

unibz.itunibz.it

Introduction to ontologies Ontology languages

Challenges related to ontologies Chap. 1: Introduction to ontology-based access to information

Challenge 3: Tools

According to the principle that “there is no meaning without a language
with a formal semantics”, the formal semantics becomes the solid basis for
dealing with ontologies.

Hence every kind of access to an ontology (to extract information, to
modify it, etc.), requires to fully take into account its semantics.

We need to resort to tools that provide capabilities to perform automated
reasoning over the ontology, and the kind of reasoning should be sound
and complete w.r.t. the formal semantics.

In this course:

We discuss the requirements for such ontology management tools.

We will work with a tool that has been specifically designed for optimized
access to information sources through ontologies.
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A challenge across the three challenges: Scalability

When we want to use ontologies to access information sources, we have to
address the three challenges of languages, methodologies, and tools by taking
into account scalability w.r.t.:

the size of (the intensional level of) the ontology

the number of ontologies

the size of the information sources that are accessed through the
ontology/ontologies.

In this course we pay particular attention to the third aspect, since we work
under the realistic assumption that the extensional level (i.e., the data) largely
dominates in size the intensional level of an ontology.

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (15/220)



unibz.itunibz.it

Introduction to ontologies Ontology languages

Chap. 1: Introduction to ontology-based access to information

Outline

1 Introduction to ontologies

2 Ontology languages
Elements of an ontology language
Intensional level of an ontology language
Extensional level of an ontology language
Ontologies and other formalisms
Queries

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (16/220)

unibz.itunibz.it

Introduction to ontologies Ontology languages
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Elements of an ontology language

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning

Pragmatics

Intended meaning
Usage
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Static vs. dynamic aspects

The aspects of the domain of interest that can be modeled by an ontology
language can be classified into:

Static aspects

Are related to the structuring of the domain of interest.
Supported by virtually all languages.

Dynamic aspects

Are related to how the elements of the domain of interest evolve over time.
Supported only by some languages, and only partially (cf. services).

Before delving into the dynamic aspects, we need a good understanding of the
static ones.

In this course we concentrate essentially on the static aspects.
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Intensional level of an ontology language

An ontology language for expressing the intensional level usually includes:

Concepts

Properties of concepts

Relationships between concepts, and their properties

Axioms

Queries

Ontologies are typically rendered as diagrams (e.g., Semantic Networks,
Entity-Relationship schemas, UML Class Diagrams).
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Example: ontology rendered as UML Class Diagram

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}
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Concepts

Def.: Concept

Is an element of an ontology that denotes a collection of instances (e.g., the set
of “employees”).

We distinguish between:

Intensional definition:
specification of name, properties, relations, . . .

Extensional definition:
specification of the instances

Concepts are also called classes, entity types, frames.
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Properties

Def.: Property

Is an element of an ontology that qualifies another element (e.g., a concept or a
relationship).

Property definition (intensional and extensional):

Name

Type: may be either

atomic (integer, real, string, enumerated, . . . ), or
e.g., eye-color → { blu, brown, green, grey }
structured (date, set, list, . . . )
e.g., date → day/month/year

The definition may also specify a default value.

Properties are also called attributes, features, slots.

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (22/220)

unibz.itunibz.it

Introduction to ontologies Ontology languages

Intensional level of an ontology language Chap. 1: Introduction to ontology-based access to information

Relationships

Def.: Relationship

Is an element of an ontology that expresses an association among concepts.

We distinguish between:

Intensional definition:
specification of involved concepts
e.g., worksFor is defined on Employee and Project

Extensional definition:
specification of the instances of the relationship, called facts
e.g., worksFor(domenico, tones)

Relationships are also called associations, relationship types, roles.
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Axioms

Def.: Axiom

Is a logical formula that expresses at the intensional level a condition that must
be satisified by the elements at the extensional level.

Different kinds of axioms/conditions:

subclass relationships, e.g., Manager v Employee

equivalences, e.g., Manager ≡ AreaManager t TopManager

disjointness, e.g., AreaManager u TopManager ≡ ⊥
(cardinality) restrictions,
e.g., each Employee worksFor at least 3 Project

. . .

Axioms are also called assertions.
A special kind of axioms are definitions.
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Extensional level of an ontology language

At the extensional level we have individuals and facts:

An instance represents an individual (or object) in the extension of a
concept.
e.g., domenico is an instance of Employee

A fact represents a relationship holding between instances.
e.g., worksFor(domenico, tones)
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The three levels of an ontology
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Comparison with other formalisms

Ontology languages vs. knowledge representation languages:

Ontologies are knowledge representation schemas.

Ontology vs. logic:

Logic is the tool for assigning semantics to ontology languages.

Ontology languages vs. conceptual data models:

Conceptual schemas are special ontologies, suited for conceptualizing a
single logical model (database).

Ontology languages vs. programming languages:

Class definitions are special ontologies, suited for conceptualizing a single
structure for computation.
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Classification of ontology languages

Graph-based

Semantic networks
Conceptual graphs
UML class diagrams, Entity-Relationship schemas

Frame based

Frame Systems
OKBC, XOL

Logic based

Description Logics (e.g., SHOIQ, DLR, DL-Lite, OWL, . . . )
Rules (e.g., RuleML, LP/Prolog, F-Logic)
First Order Logic (e.g., KIF)
Non-classical logics (e.g., non-monotonic, probabilistic)
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Queries

Queries may be posed over an ontology.

Def.: Query

Is an expression at the intensional level denoting a (possibly structured)
collection of individuals satisfying a given condition.

Def.: Meta-Query

Is an expression at the meta level denoting a collection of ontology elements
satisfying a given condition.

Note: One may also conceive queries that span across levels (object-meta
queries), cf. [RDF], [CK06]
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Ontology languages vs. query languages

Ontology languages:

Tailored for capturing intensional relationships.

Are quite poor as query languages:

Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

Instead, when querying a data source (either directly, or via the ontology), to
retrieve the data of interest, general forms of joins are required.

It follows that the constructs for queries may be quite different from the
constructs used in the ontology to form concepts and relationships.
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Example of query

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

q(ce, cm, se, sm) ← ∃e, p,m.
worksFor(e, p) ∧manages(m, p) ∧ boss(m, e) ∧ empCode(e, ce) ∧
empCode(m, cm) ∧ salary(e, se) ∧ salary(m, sm) ∧ se ≥ sm
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Query answering under different assumptions

Depending on the setting, query answering may have different meanings:

Traditional databases ; complete information

Ontologies (or knowledge bases) ; incomplete information
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Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.
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Query answering in traditional databases (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (34/220)

unibz.itunibz.it

Introduction to ontologies Ontology languages

Queries Chap. 1: Introduction to ontology-based access to information

Query answering in traditional databases – Example

  
Manager

ProjectworksFor
 

Employee

For each concept/relationship we have a (complete) table in the DB.
DB: Employee = { john, mary, nick }

Manager = { john, nick }
Project = { prA, prB }
worksFor = { (john,prA), (mary,prB) }

Query: q(x) ← ∃p. Manager(x),Project(p),worksFor(x, p)

Answer: { john }

{
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Query answering over ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.
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Query answering over ontologies (cont’d)
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Query answering over ontologies – Example

  
Manager

ProjectworksFor
 

Employee

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Manager ⊇ { john, nick }
Project ⊇ { prA, prB }
worksFor ⊇ { (john,prA), (mary,prB) }

Query: q(x) ← Employee(x)

Answer: { john, nick, mary }

{

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (38/220)

unibz.itunibz.it

Introduction to ontologies Ontology languages

Queries Chap. 1: Introduction to ontology-based access to information

Query answering over ontologies – Example 2

 
Person

 

hasFather
1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA over ontologies – Andrea’s Example(∗)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate

(∗) Due to Andrea Schaerf

[Sch93].

Manager is partitioned into AreaManager and
TopManager.

Employee ⊇ { andrea, nick, mary, john }
Manager ⊇ { andrea, nick, mary }

AreaManager ⊇ { nick }
TopManager ⊇ { mary }
supervisedBy ⊇ { (john,andrea), (john,mary) }

officeMate ⊇ { (mary,andrea), (andrea,nick) }

john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate
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QA over ontologies – Andrea’s Example (cont’d)

 
Employee

 

  
Manager

  
AreaManager

  
TopManager

supervisedBy 

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x) ← ∃y, z. supervisedBy(x, y), TopManager(y),
officeMate(y, z), AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases.
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Query answering in Ontology-Based Data Access

In OBDA, we have to face the difficulties of both assumptions:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.

Researchers are starting only now to tackle this difficult and challenging
problem. In this course we will study state-of-the-art technology in this area.
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Chap. 2: Description Logics and the DL-Lite family

Chapter II

Description Logics and the DL-Lite family
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5 Queries in Description Logics

6 The DL-Lite family of tractable Description Logics
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Ingredients of Description Logics Chap. 2: Description Logics and the DL-Lite family

What are Description Logics?

Description Logics (DLs) [BCM+03] are logics specifically designed to represent
and reason on structured knowledge.

The domain of interest is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical axioms.

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (46/220)

unibz.itunibz.it

A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Ingredients of Description Logics Chap. 2: Description Logics and the DL-Lite family

Origins of Description Logics

DLs stem from early days Knowledge Representation formalisms (late ’70s, early
’80s):

Semantic Networks: graph-based formalism, used to represent the meaning
of sentences

Frame Systems: frames used to represent prototypical situations,
antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological Languages)
developed starting in the mid ’80s, with the aim of providing semantics and
inference techniques to knowledge representation systems.
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Current applications of Description Logics

DLs have evolved from being used “just” in KR.

Novel applications of DLs:

Databases:

schema design, schema evolution
query optimization
integration of heterogeneous data sources, data warehousing

Conceptual modeling

Foundation for the Semantic Web (variants of OWL correspond to specific
DLs)

· · ·
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Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }

3 A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Architecture of a Description Logic system
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Description language

A description language provides the means for defining:

concepts, corresponding to classes: interpreted as sets of objects;

roles, corresponding to relationships: interpreted as binary relations on
objects.

To define concepts and roles:

We start from a (finite) alphabet of atomic concepts and atomic roles,
i.e., simply names for concept and roles.

Then, by applying specific constructors, we can build complex concepts
and roles, starting from the atomic ones.

A description language is characterized by the set of constructs that are
available for that.
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Semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

Def.: An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , the domain of I
an interpretation function ·I , which maps

each individual a to an element aI of ∆I

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

Note: A DL interpretation is analogous to a FOL interpretation, except that, by
tradition, it is specified in terms of a function ·I rather than a set of (unary and
binary) relations.

The interpretation function is extended to complex concepts and roles according
to their syntactic structure.
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Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI
conjunction C uD Hum uMale CI ∩DI
(unqual.) exist. res. ∃R ∃hasChild { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {a | ∀b. (a, b) ∈ RI → b ∈ CI}
bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.
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Additional concept and role constructors

Construct AL· Syntax Semantics

disjunction U C tD CI ∪DI
top > ∆I

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }
(full) negation C ¬C ∆I \ CI
number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }
restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }
qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }
restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }
inverse role I R− { (a, b) | (b, a) ∈ RI }
role closure reg R∗ (RI)∗

Many different DL constructs and their combinations have been investigated.
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Further examples of DL constructs

Disjunction: ∀hasChild.(Doctor t Lawyer)

Qualified existential restriction: ∃hasChild.Doctor

Full negation: ¬(Doctor t Lawyer)

Number restrictions: (≥ 2 hasChild) u (≤ 1 sibling)

Qualified number restrictions: (≥ 2 hasChild. Doctor)

Inverse role: ∀hasChild−.Doctor

Reflexive-transitive role closure: ∃hasChild∗.Doctor
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Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅.

Basic reasoning tasks:

1 Concept satisfiability: does C admit a model?

2 Concept subsumption C v D: does CI ⊆ DI hold for all interpretations
I?

Subsumption is used to build the concept hierarchy:

Human

Man Woman

Father

HappyFather

Note: (1) and (2) are mutually reducible if DL is propositionally closed.
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Complexity of reasoning on concept expressions

Complexity of concept satisfiability: [DLNN97]

AL, ALN PTIME
ALU , ALUN NP-complete
ALE coNP-complete
ALC, ALCN , ALCI, ALCQI PSPACE-complete

Observations:

Two sources of complexity:

union (U) of type NP,
existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSPACE.

Number restrictions (N ) do not add to the complexity.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions, which
allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability to
assert properties of classes and relationships between them (e.g., as done in
UML class diagrams).

The assertion of properties is done in DLs by means of an ontology (or
knowledge base).
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Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Def.: Description Logics TBox

Consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P ) (domain P C)
(functional P ) (reflexive P ) (range P C) · · ·

Def.: Description Logics ABox

Consists of a set of membership assertions on individuals:

for concepts: A(c)
for roles: P (c1, c2) (we use ci to denote individuals)
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Description Logics knowledge base – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
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Semantics of a Description Logics knowledge base

The semantics is given by specifying when an interpretation I satisfies an
assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P ) is satisfied by I if P I is a relation that has
the property prop.
(Note: domain and range assertions can be expressed by means of concept
inclusion assertions.)

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , c
I
2 ) ∈ P I .

We adopt the unique name assumption, i.e., cI1 6= cI2 , for c1 6= c2.
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Models of a Description Logics ontology

Def.: Model of a DL knowledge base

An interpretation I is a model of O = 〈T ,A〉 if it satisfies all assertions in T
and all assertions in A.

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be easily
derived is . . .

Def.: Logical implication

O logically implies an assertion α, written O |= α, if α is satisfied by all
models of O.
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TBox reasoning

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Functionality implication: A functionality assertion (funct R) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ RI and
(o, o2) ∈ RI implies o1 = o2, i.e., T |= (funct R).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of individuals is
an instance of a role R in O, i.e., whether O |= R(c1, c2).

Query Answering: see later . . .
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Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t HappyPerson)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant), (functional hasFather)

The above TBox logically implies: HappyAncestor v Father.

Membership assertions:
Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: HappyPerson(mary)
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning over
concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over DL
ontologies is already ExpTime-hard, even for very simple DLs (see, e.g.,
[Don03]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs seen so
far), while still staying within the ExpTime upper bound.

There are DL reasoners that perform reasonably well in practice for such
DLs (e.g, Racer, Pellet, Fact++, . . . ) [MH03].

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (66/220)

unibz.itunibz.it

A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

Chap. 2: Description Logics and the DL-Lite family

Outline

3 A gentle introduction to Description Logics

4 DLs as a formal language to specify ontologies
DLs to specify ontologies
DLs vs. OWL
DLs vs. UML Class Diagrams

5 Queries in Description Logics

6 The DL-Lite family of tractable Description Logics

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (67/220)



unibz.itunibz.it

A gentle introduction to DLs DLs to specify ontologies Queries in DLs The DL-Lite family

DLs to specify ontologies Chap. 2: Description Logics and the DL-Lite family

Relationship between DLs and ontology formalisms

DLs are nowadays advocated to provide the foundations for ontology
languages.

Different versions of the W3C standard Web Ontology Language
(OWL) have been defined as syntactic variants of certain DLs.

DLs are also ideally suited to capture the fundamental features of
conceptual modeling formalims used in information systems design:

Entity-Relationship diagrams, used in database conceptual modeling
UML Class Diagrams, used in the design phase of software applications

We briefly overview these correspondences, highlighting essential DL constructs,
also in light of the tradeoff between expressive power and computational
complexity of reasoning.
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DLs vs. OWL

The Web Ontology Language (OWL) comes in different variants:

OWL1 Lite is a variant of the DL SHIF(D), where:

S stands for ALC extended with transitive roles,
H stands for role hierarchies (i.e., role inclusion assertions),
I stands for inverse roles,
F stands for functionality of roles,
(D) stand for data types, which are necessary in any practical knowledge
representation language.

OWL1 DL is a variant of SHOIN (D), where:

O stands for nominals, which means the possibility of using individuals in
the TBox (i.e., the intensional part of the ontology),
N stands for (unqualified) number restrictions,
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DLs vs. OWL2

A new version of OWL, OWL2, is currently being standardized:

OWL2 DL is a variant of SROIQ(D), which adds to OWL1 DL several
constructs, while still preserving satisfiability of reasoning.

Q stands for qualified number restrictions.
R stands for regular role hierarchies, where role chaining might be used in
the left-hand side of role inclusion assertions, with suitable acyclicity
conditions.

OWL2 defines also three profiles: OWL2 QL, OWL2 EL, OWL2 EL.

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL2 DL that is targeted towards a specific use.
The restrictions in each profile guarantee better computational properties
than those of OWL2 DL.
The OWL2 QL profile is derived from the DLs of the DL-Lite family (see
later).
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DL constructs vs. OWL constructs

OWL contructor DL constructor Example

ObjectIntersectionOf C1 u · · · u Cn Human uMale

ObjectUnionOf C1 t · · · t Cn Doctor t Lawyer

ObjectComplementOf ¬C ¬Male

ObjectOneOf {a1} t · · · t {an} {john} t {mary}
ObjectAllValuesFrom ∀P .C ∀hasChild.Doctor

ObjectSomeValuesFrom ∃P .C ∃hasChild.Lawyer

ObjectMaxCardinality (≤ nP ) (≤ 1 hasChild)
ObjectMinCardinality (≥ nP ) (≥ 2 hasChild)
· · ·
Note: all constructs come also in the Data... instead of Object... variant.
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DL axioms vs. OWL axioms

OWL axiom DL syntax Example

SubClassOf C1 v C2 Human v Animal u Biped
EquivalentClasses C1 ≡ C2 Man ≡ Human uMale
DisjointClasseses C1 v ¬C2 Man v ¬Female
SameIndividual {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}
DifferentIndividuals {a1} v ¬{a2} {john} v ¬{peter}
SubObjectPropertyOf P1 v P2 hasDaughter v hasChild
EquivalentObjectProperties P1 ≡ P2 hasCost ≡ hasPrice

InverseObjectProperties P1 ≡ P−2 hasChild ≡ hasParent−

TransitiveObjectProperty P+ v P ancestor+ v ancestor
FunctionalObjectProperty > v (≤ 1P ) > v (≤ 1 hasFather)
· · ·
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DLs vs. UML Class Diagrams

There is a tight correspondence between variants of DLs and UML Class
Diagrams [BCDG05].

We can devise two transformations:

one that associates to each UML Class Diagram D a DL TBox TD.
one that associates to each DL TBox T a UML Class Diagram DT .

The transformations are not model-preserving, but are based on a
correspondence between instantiations of the Class Diagram and models of
the associated ontology.

The transformations are satisfiability-preserving, i.e., a class C is
consistent in D iff the corresponding concept is satisfiable in T .
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Encoding UML Class Diagrams in DLs

The ideas behind the encoding of a UML Class Diagram D in terms of a DL
TBox TD are quite natural:

Each class is represented by an atomic concept.

Each attribute is represented by a role.

Each binary association is represented by a role.

Each non-binary association is reified, i.e., represented as a concept
connected to its components by roles.

Each part of the diagram is encoded by suitable assertions.

We illustrate the encoding by means of an example.
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Encoding UML Class Diagrams in DLs – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations are
expressed by means of concept inclusions.
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Encoding DL TBoxes in UML Class Diagrams

The encoding of an ALC TBox T in terms of a UML Class Diagram TD is
based on the following observations:

We can restrict the attention to ALC TBoxes, that are constituted by
concept inclusion assertions of a simplified form (single atomic concept on
the left, and a single concept constructor on the right).

For each such inclusion assertion, the encoding introduces a portion of
UML Class Diagram, that may refer to some common classes.

Reasoning in the encoded ALC-fragment is already ExpTime-hard.
From this, we obtain:

Theorem

Reasoning over UML Class Diagrams is ExpTime-hard.
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Reasoning on UML Class Diagrams using DLs

The two encodings show that DL TBoxes and UML Class Diagrams
essentially have the same expressive power.

Hence, reasoning over UML Class Diagrams has the same complexity as
reasoning over ontologies in expressive DLs, i.e., ExpTime-complete.

The high complexity is caused by:
1 the possibility to use disjunction (covering constraints)
2 the interaction between role inclusions and functionality constraints

(maximum 1 cardinality)

Without (1) and restricting (2), reasoning becomes simpler [ACK+07]:

NLogSpace-complete in combined complexity

in LogSpace in data complexity (see later)
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Efficient reasoning on UML Class Diagrams

We are interested in using UML Class Diagrams to specify ontologies in the
context of Ontology-Based Data Access.

Questions

Which is the right combination of constructs to allow in UML Class
Diagrams to be used for OBDA?

Are there techniques for query answering in this case that can be derived
from Description Logics?

Can query answering be done efficiently in the size of the data?

If yes, can we leverage relational database technology for query answering?
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Queries over Description Logics ontologies

Traditionally, simple concept (or role) expressions have been considered as
queries over DL ontologies.

We need more complex forms of queries, as those used in databases.

Def.: A conjunctive query q(~x) over an ontology O = 〈T ,A〉
is a conjunctive query q(~x)← ~y. conj (~x, ~y) where each atom in the body
conj (~x, ~y):

has as predicate symbol an atomic concept or role of T ,

may use variables in ~x and ~y,

may use constants that are individuals of A.

Note: a CQ corresponds to a select-project-join SQL query.
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Queries over Description Logics ontologies Chap. 2: Description Logics and the DL-Lite family

Queries over Description Logics ontologies – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Conjunctive query over the above ontology:

q(x, y) ← ∃p. Employee(x),Employee(y),Project(p),
boss(x, y),worksFor(x, p),worksFor(y, p)
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Certain answers Chap. 2: Description Logics and the DL-Lite family

Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

is the set of tuples ~c of constants of A such that the formula ∃~y. conj (~c, ~y)
evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O)

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I of O.
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Certain answers Chap. 2: Description Logics and the DL-Lite family

Query answering over ontologies

Def.: Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: A special case of query answering is instance checking: it amounts to
answering the boolean query q()← A(c) (resp., q()← P (c1, c2)) over O (in
this case ~c is the empty tuple).
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Certain answers Chap. 2: Description Logics and the DL-Lite family

Query answering over ontologies – Example

 
Person

 

hasFather
1..* TBox T : ∃hasFather v Person

∃hasFather− v Person
Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{
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Certain answers Chap. 2: Description Logics and the DL-Lite family

Unions of conjunctive queries

We consider also unions of CQs over an ontology.

A union of conjunctive queries (UCQ) has the form:

q(~x) = ∃~y1. conj (~x, ~y1) ∨ · · · ∨ ∃ ~yk. conj (~x, ~yk)

where each ∃~yi. conj (~x, ~yi) is the body of a CQ.

The (certain) answers to a UCQ are defined analogously to those for CQs.

Example

q(x)← (Manager(x) ∧ worksFor(x, tones)) ∨
(∃y. boss(x, y) ∧ worksFor(y, tones))

We typically use the Datalog notation:
q(x) ← Manager(x),worksFor(x, tones)
q(x) ← ∃y. boss(x, y) ∧ worksFor(y, tones)
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Data and combined complexity

When measuring the complexity of answering a query q(~x) over an ontology
O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different complexity
measures:

Data complexity: TBox and query are considered fixed, and only the size
of the ABox (i.e., the data) matters.

Query complexity: TBox and ABox are considered fixed, and only the
size of the query matters.

Schema complexity: ABox and query are considered fixed, and only the
size of the TBox (i.e., the schema) matters.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the
conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering Chap. 2: Description Logics and the DL-Lite family

Complexity of query answering in DLs

Answering (U)CQs over DL ontologies has been studied extensively:

Combined complexity:

NP-complete for plain databases (i.e., with an empty TBox)
ExpTime-complete for ALC [CDGL98, Lut07]
2ExpTime-complete for very expressive DLs (with inverse roles)
[CDGL98, Lut07]

Data complexity:

in LogSpace for plain databases
coNP-hard with disjunction in the TBox [DLNS94, CDGL+06b]
coNP-complete for very expressive DLs [LR98, OCE06, GHLS07]

Questions

Can we find interesting families of DLs for which the query answering
problem can be solved efficiently?

If yes, can we leverage relational database technology for query answering?
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The DL-Lite family Chap. 2: Description Logics and the DL-Lite family

The DL-Lite family

Is a family of DLs optimized according to the tradeoff between expressive
power and data complexity of query answering.

We present first two incomparable languages of this family, DL-LiteF ,
DL-LiteR (we use DL-Lite to refer to both).

We will see that DL-Lite has nice computational properties:

PTime in the size of the TBox (schema complexity)
LogSpace in the size of the ABox (data complexity)
enjoys FOL-rewritability

We will see that DL-LiteF and DL-LiteR are in some sense the maximal
DLs with these nice computational properties, which are lost if the two
logics are combined, and with minimal additions of constructs.

We will see, however, that a restricted combination of DL-LiteF and
DL-LiteR is possible, without losing the computational properties.

Hence, DL-Lite provides a positive answer to our basic questions, and sets the
foundations for Ontology-Based Data Access.
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DL-LiteF ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q
Q −→ P | P−

Functionality assertions: (funct Q)
ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Observations:

Captures all the basic constructs of UML Class Diagrams and ER

Notable exception: covering constraints in generalizations.
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DL-LiteR ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q

Role inclusion assertions: Q v R, with:

Q −→ P | P−
R −→ Q | ¬Q

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Observations:

Drops functional restrictions in favor of ISA between roles.

Extends (the DL fragment of) the ontology language RDFS.
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Semantics of DL-Lite

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI
conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

conc. incl. Cl v Cr Father v ∃child ClI ⊆ CrI

role incl. Q v R hasFather v child− QI ⊆ RI
funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI

→ e = e′

mem. asser. A(c) Father(bob) cI ∈ AI
mem. asser. P (c1, c2) child(bob, ann) (cI1 , c

I
2 ) ∈ P I
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Semantics of DL-Lite Chap. 2: Description Logics and the DL-Lite family

Capturing basic ontology constructs in DL-Lite

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of relations ∃P v A1 ∃P− v A2

Mandatory participation A1 v ∃P A2 v ∃P−

Functionality of relations (in DL-LiteF ) (funct P ) (funct P−)

ISA between relations (in DL-LiteR) Q1 v Q2

Disjointness between relations (in DL-LiteR) Q1 v ¬Q2
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Semantics of DL-Lite Chap. 2: Description Logics and the DL-Lite family

DL-Lite – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 
 
TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

...

Additionally, in DL-LiteF : (funct manages), (funct manages−), . . .
in DL-LiteR : manages v worksFor

Note: in DL-Lite we cannot capture: – completeness of the hierarchy,
– number restrictions
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Properties of DL-Lite

The TBox may contain cyclic dependencies (which typically increase the
computational complexity of reasoning).

Example: A v ∃P , ∃P− v A

We have not included in the syntax u on the right hand-side of inclusion
assertions, but it can trivially be added, since

Cl v Cr1 u Cr2 is equivalent to
Cl v Cr1

Cl v Cr2

A domain assertion on role P has the form: ∃P v A1

A range assertion on role P has the form: ∃P− v A2
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Properties of DL-LiteF

DL-LiteF does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat u ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning w.r.t. finite
models only.
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Properties of DL-LiteR

The TBox may contain cyclic dependencies.

DL-LiteR does enjoy the finite model property. Hence, reasoning w.r.t.
finite models is the same as reasoning w.r.t. arbitrary models.

With role inclusion assertions, we can simulate qualified existential
quantification in the rhs of an inclusion assertion A1 v ∃Q.A2.

To do so, we introduce a new role QA2 and:

the role inclusion assertion QA2 v Q
the concept inclusion assertions: A1 v ∃QA2

∃Q−A2
v A2

In this way, we can consider ∃Q.A in the right-hand side of an inclusion
assertion as an abbreviation.
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What is missing in DL-Lite wrt popular data models?

Let us consider UML class diagrams that have the following features:

functionality of associations (i.e., roles)

inclusion (i.e., ISA) between associations

attributes of concepts and associations, possibly functional

covering constraints in hierarchies

What can we capture of these while maintaining FOL-rewritability?

1 We can forget about covering constraints, since they make query
answering coNP-hard in data complexity (see Part 3).

2 Attributes of concepts are “syntactic sugar” (they could be modeled by
means of roles), but their functionality is an issue.

3 We could also add attributes of roles (we won’t discuss this here).

4 Functionality and role inclusions are present separately (in DL-LiteF and
DL-LiteR), but were not allowed to be used together.
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DL-LiteA: a DL combining DL-LiteF and DL-LiteR

DL-LiteA is a Description Logic designed to capture as much features as
possible of conceptual data models, while preserving nice computational
properties for query answering.

Allows for both functionality assertions and role inclusion assertions,
but restricts in a suitable way their interaction.

Takes into account the distinction between objects and values:

Objects are elements of an abstract interpretation domain.
Values are elements of concrete data types, such as integers, strings, ecc.

Values are connected to objects through attributes, rather than roles (we
consider here only concept attributes and not role attributes [CDGL+06a]).

Enjoys FOL-rewritability, and hence is LogSpace in data complexity.
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Syntax of the DL-LiteA description language

Concept expressions:

B −→ A | ∃Q | δ(U)
C −→ >C | B | ¬B | ∃Q.C

Role expressions:
Q −→ P | P−
R −→ Q | ¬Q

Value-domain expressions: (each Ti is one of the RDF datatypes)

E −→ ρ(U)
F −→ >D | T1 | · · · | Tn

Attribute expressions:
V −→ U | ¬U
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Semantics of DL-LiteA – Objects vs. values

We make use of an alphabet Γ of constants, partitioned into:

an alphabet ΓO of object constants.

an alphabet ΓV of value constants, in turn partitioned into alphabets ΓVi ,
one for each RDF datatype Ti.

The interpretation domain ∆I is partitioned into:

a domain of objects ∆ I
O

a domain of values ∆ I
V

The semantics of DL-LiteA descriptions is determined as usual, considering the
following:

The interpretation CI of a concept C is a subset of ∆ I
O .

The interpretation RI of a role R is a subset of ∆ I
O ×∆ I

O .

The interpretation val(v) of each value constant v in ΓV and RDF
datatype Ti is given a priori (e.g., all strings for xsd:string).

The interpretation V I of an attribute V is a subset of ∆ I
O ×∆ I

V .
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Semantics of the DL-LiteA constructs

Construct Syntax Example Semantics

top concept >C >IC = ∆ I
O

atomic concept A Doctor AI ⊆ ∆ I
O

existential restriction ∃Q ∃child− {o | ∃o′. (o, o′) ∈ QI}
qualified exist. restriction ∃Q.C ∃child.Male {o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI}
concept negation ¬B ¬∃child ∆I \BI
attribute domain δ(U) δ(salary) {o | ∃v. (o, v) ∈ UI}
atomic role P child P I ⊆ ∆ I

O ×∆ I
O

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

top domain >D >ID = ∆ I
V

datatype Ti xsd:int val(Ti) ⊆ ∆ I
V

attribute range ρ(U) ρ(salary) {v | ∃o. (o, v) ∈ UI}
atomic attribute U salary UI ⊆ ∆ I

O ×∆ I
V

attribute negation ¬U ¬salary (∆ I
O ×∆ I

V ) \ UI
object constant c john cI ∈ ∆ I

O

value constant v ’john’ val(v) ∈ ∆ I
V
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DL-LiteA assertions

TBox assertions can have the following forms:

B v C concept inclusion assertion

Q v R role inclusion assertion

E v F value-domain inclusion assertion

U v V attribute inclusion assertion

(funct Q) role functionality assertion

(funct U) attribute functionality assertion

ABox assertions: A(c), P (c, c′), U(c, d),
where c, c′ are object constants

d is a value constant
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R father v anc QI ⊆ RI

v.dom. incl. E v F ρ(age) v xsd:int EI ⊆ F I

attr. incl. U v V offPhone v phone UI ⊆ V I

role funct. (funct Q) (funct father) ∀o, o, o′′.(o, o′) ∈ QI ∧ (o, o′′) ∈ QI

→ o′ = o′′

att. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧ (o, v′) ∈ UI

→ v = v′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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Restriction on TBox assertions in DL-LiteA ontologies

We will see that, to ensure FOL-rewritability, we have to impose a restriction
on the use of functionality and role/attribute inclusions.

Restriction on DL-LiteA TBoxes

No functional role or attribute can be specialized by using it in the
right-hand side of a role or attribute inclusion assertion.

Formally:

If ∃P .C or ∃P−.C appears in T ,
then (funct P ) and (funct P−) are not in T .

If Q v P or Q v P− is in T ,
then (funct P ) and (funct P−) are not in T .

If U1 v U2 is in T ,
then (funct U2) is not in T .
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DL-LiteA – Example

empCode: Integer
salary: Integer

Employee

 

 
 
Manager

 
 
AreaManager

 

TopManager

1..*

1..1

boss

 
projectName: String

Project
1..*

1..1

1..1

worksFor

manages

1..*

{disjoint}

Manager v Employee
AreaManager v Manager
TopManager v Manager

AreaManager v ¬TopManager

Employee v δ(salary)
δ(salary) v Employee
ρ(salary) v xsd:int

(funct salary)

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v ∃worksFor−

(funct manages)
(funct manages−)

manages v worksFor
...

Note: in DL-LiteA we still cannot capture:
– completeness of the hierarchy
– number restrictions
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Complexity results for DL-Lite

1 We have seen that DL-LiteA can capture the essential features of
prominent conceptual modeling formalisms.

2 In the following, we will analyze reasoning in DL-Lite, and establish the
following characterization of its computational properties:

Ontology satisfiability is polynomial in the size of TBox and ABox.
Query answering is:

PTime in the size of the TBox.
LogSpace in the size of the ABox, and FOL-rewritable, which means that
we can leverage for it relational database technology.

3 We will also see that DL-Lite is essentially the maximal DL enjoying these
nice computational properties.

From (1), (2), and (3) we get the following claim:

DL-Lite is the representation formalism that is best suited to underly
Ontology-Based Data Management systems.
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Linking ontologies to data
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Managing ABoxes

In the traditional DL setting, it is assumed that the data is maintained in the
ABox of the ontology:

The ABox is perfectly compatible with the TBox:

the vocabulary of concepts, roles, and attributes is the one used in the
TBox.
The ABox “stores” abstract objects, and these objects and their properties
are those returned by queries over the ontology.

There may be different ways to manage the ABox from a physical point of
view:

Description Logics reasoners maintain the ABox is main-memory data
structures.
When an ABox becomes large, managing it in secondary storage may be
required, but this is again handled directly by the reasoner.
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Data in external sources

There are several situations where the assumptions of having the data in an
ABox managed directly by the ontology system (e.g., a Description Logics
reasoner) is not feasible or realistic:

When the ABox is very large, so that it requires relational database
technology.

When we have no direct control over the data since it belongs to some
external organization, which controls the access to it.

When multiple data sources need to be accessed, such as in Information
Integration.

We would like to deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by leveraging the
capabilities of the relational engine.
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The impedance mismatch problem

We have to deal with the impedance mismatch problem:

Sources store data, which is constituted by values taken from concrete
domains, such as strings, integers, codes, . . .

Instead, instances of concepts and relations in an ontology are (abstract)
objects.

Solution:

We need to specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the ontology.

This specification is embedded in the mappings between the data sources
and the ontology.

Note: the ABox is only virtual, and the objects are not materialized.
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Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to
transform data into abstract objects:

Each mapping assertion maps:

a query that retrieves values from a data source to . . .
a set of atoms specified over the ontology.

Basic idea: use Skolem functions in the atoms over the ontology to
“generate” the objects from the data values.

Semantics of mappings:

Objects are denoted by terms (of exactly one level of nesting).
Different terms denote different objects (i.e., we make the unique name
assumption on terms).
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Impedance mismatch – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Actual data is stored in a DB:
– An Employee is identified by her SSN.
– A Project is identified by its name.

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its Name: proj(PrName)
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Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an associated
arity.

To denote values, we use value constants from an alphabet ΓV .

To denote objects, we use object terms instead of object constants.
An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di a value
constant in ΓV .

Example

If a person is identified by its SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by its name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.
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Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the
ontology.

We make use of variable terms, which are like object terms, but with variables
instead of values as arguments of the functions.

Def.: Mapping assertion between a database and a TBox

A mapping assertion between a database D and a TBox T has the form

Φ ; Ψ

where

Φ is an arbitrary SQL query of arity n > 0 over D.

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables, possibly involving variable terms.
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Mapping assertions – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

m1: SELECT SSN, PrName
FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary
FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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Ontology-Based Data Access System

The mapping assertions are a crucial part of an Ontology-Based Data Access
System.

Def.: Ontology-Based Data Access System

is a triple O = 〈T ,M,D〉, where

T is a TBox.

D is a relational database.

M is a set of mapping assertions between T and D.

We need to specify the syntax and semantics of mapping assertions.
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Mapping assertions

A mapping assertion in M has the form

Φ(~x) ; Ψ(~t, ~y)

where

Φ is an arbitrary SQL query of arity n > 0 over D;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables;

~x, ~y are variables, with ~y ⊆ ~x;

~t are variable terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x.

Note: we could consider also mapping assertions between the datatypes of the
database and those of the ontology.
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Semantics of mappings

To define the semantics of an OBDA system O = 〈T ,M,D〉, we first need to
define the semantics of mappings.

Def.: Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion Φ(~x) ; Ψ(~t, ~y) in M with
respect to a database D, if for each tuple of values ~v ∈ Eval(Φ,D), and for
each ground atom in Ψ[~x/~v], we have that:

if the ground atom is A(s), then sI ∈ AI .

if the ground atom is P (s1, s2), then (sI1 , s
I
2 ) ∈ P I .

Intuitively, I satisfies Φ ; Ψ w.r.t. D if all facts obtained by evaluating Φ
over D and then propagating the answers to Ψ, hold in I.

Note: Eval(Φ,D) denotes the result of evaluating Φ over the database D.
Ψ[~x/~v] denotes Ψ where each xi has been substituted with vi.
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Semantics of an OBDA system

Def.: Model of an OBDA system

An interpretation I is a model of O = 〈T ,M,D〉 if:

I is a model of T ;

I satisfies M w.r.t. D, i.e., I satisfies every assertion in M w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model.
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Answering queries over an OBDA system

In an OBDA system O = 〈T ,M,D〉
Queries are posed over the TBox T .

The data needed to answer queries is stored in the database D.

The mapping M is used to bridge the gap between T and D.

Two approaches to exploit the mapping:

bottom-up approach: simpler, but less efficient

top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the mapping
assertions into their constituent atoms.

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (125/220)

unibz.itunibz.it

The impedance mismatch problem Ontology-Based Data Access Systems Query answering in OBDA Systems

Chap. 3: Linking ontologies to relational data

Splitting of mappings

A mapping assertion Φ ; Ψ, where the TBox query Ψ is constituted by the
atoms X1,. . . ,Xk, can be split into several mapping assertions:

Φ ; X1 · · · Φ ; Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

is split into
m1

1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN))
m2

1: SELECT SSN, PrName FROM D1 ; Project(proj(PrName))
m3

1: SELECT SSN, PrName FROM D1 ; projectName(proj(PrName), PrName)
m4

1: SELECT SSN, PrName FROM D1 ; worksFor(pers(SSN), proj(PrName))
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Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

1 Propagate the data from D through M, materializing an ABox AM,D (the
constants in such an ABox are values and object terms).

2 Apply to AM,D and to the TBox T , the satisfiability and query answering
algorithms developed for DL-LiteA.

This approach has several drawbacks (hence is only theoretical):

The technique is no more LogSpace in the data, since the ABox AM,D
to materialize is in general polynomial in the size of the data.

AM,D may be very large, and thus it may be infeasible to actually
materialize it.

Freshness of AM,D with respect to the underlying data source(s) may be
an issue, and one would need to propagate source updates (cf. Data
Warehousing).
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Top-down approach to query answering

Consists of three steps:

1 Reformulation: Compute the perfect reformulation
qpr = PerfectRef(q, TP ) of the original query q, using the inclusion
assertions of the TBox T (see later).

2 Unfolding: Compute from qpr a new query qunf by unfolding qpr using
(the split version of) the mappings M.

Essentially, each atom in qpr that unifies with an atom in Ψ is substituted
with the corresponding query Φ over the database.
The unfolded query is such that Eval(qunf ,D) = Eval(qpr ,AM,D).

3 Evaluation: Delegate the evaluation of qunf to the relational DBMS
managing D.
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Unfolding

To unfold a query qpr with respect to a set of mapping assertions:

1 For each non-split mapping assertion Φi(~x) ; Ψi(~t, ~y):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi(~x)← Φi(~x).

2 For each split version Φi(~x) ; Xj(~t, ~y) of a mapping assertion, introduce
a clause Xj(~t, ~y)← Auxi(~x).

3 Obtain from qpr in all possible ways queries qaux defined over the view
symbols Auxi as follows:

1 Find a most general unifier ϑ that unifies each atom X(~z) in the body of
qpr with the head of a clause X(~t, ~y)← Auxi(~x).

2 Substitute each atom X(~z) with ϑ(Auxi(~x)), i.e., with the body the unified
clause to which the unifier ϑ is applied.

4 The unfolded query qunf is the union of all queries qaux , together with the
view definitions for the predicates Auxi appearing in qaux .
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Unfolding – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Employee(pers(SSN)) ← Aux1(SSN,PrName)
projectName(proj(PrName),PrName) ← Aux1(SSN,PrName)

Project(proj(PrName)) ← Aux1(SSN,PrName)
worksFor(pers(SSN), proj(PrName)) ← Aux1(SSN,PrName)

Employee(pers(SSN)) ← Aux2(SSN, Salary)
salary(pers(SSN),Salary) ← Aux2(SSN, Salary)
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Unfolding – Example (cont’d)

Query over ontology: employees who work for tones and their salary:
q(e, s)← Employee(e), salary(e, s),worksFor(e, p), projectName(p, tones)

A unifier between the atoms in q and the clause heads is:
ϑ(e) = pers(SSN) ϑ(s) = Salary
ϑ(PrName) = tones ϑ(p) = proj(tones)

After applying ϑ to q, we obtain:
q(pers(SSN),Salary)← Employee(pers(SSN)), salary(pers(SSN),Salary),

worksFor(pers(SSN),proj(tones)),
projectName(proj(tones), tones)

Substituting the atoms with the bodies of the unified clauses, we obtain:
q(pers(SSN),Salary)← Aux1(SSN, tones), Aux2(SSN,Salary),

Aux1(SSN, tones), Aux1(SSN, tones)
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Exponential blowup in the unfolding

When there are multiple mapping assertions for each atom, the unfolded query
may be exponential in the original one.

Consider a query: q(y)← A1(y), A2(y), . . . , An(y)

and the mappings: m1
i : Φ1

i (x) ; Ai(f(x))
m2
i : Φ2

i (x) ; Ai(f(x))
(for i ∈ {1, . . . , n})

We add the view definitions: Auxji (x)← Φji (x)
and introduce the clauses: Ai(f(x))← Auxji (x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = f(x), but each atom Ai(y) in the query
unifies with the head of two clauses.

Hence, we obtain one unfolded query

q(f(x))← Auxj11 (x),Auxj22 (x), . . . ,Auxjnn (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.
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Computational complexity of query answering

From the top-down approach to query answering, and the complexity results for
DL-Lite, we obtain the following result.

Theorem

Query answering in a DL-Lite OBDM system O = 〈T ,M,D〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 LogSpace in the size of the database D.

Note: The LogSpace result is a consequence of the fact that query answering
in such a setting can be reduced to evaluating an SQL query over the relational
database.
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Implementation of top-down approach to query answering

To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the

corresponding SQL query over the source:

+ joins are performed on the DB attributes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes
the union of all SQL queries corresponding to the view predicates, and
constructs also the Skolem terms:

+ avoids exponential blow-up of the resulting query, since the union (of the
queries coming from multiple mappings) is done before the joins;

– joins are performed on Skolem terms;
– generates doubly nested queries.

Which method is better, depends on various parameters.
Experiments have shown that (1) behaves better in most cases.
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Reasoning in the DL-Lite family
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Remark on used notation

In the following,

We use “TBox” to denote either a DL-LiteR or a DL-LiteF TBox.

Q, possibly with subscript, denotes a basic role, i.e.,

Q −→ P | P−

C, possibly with subscript, denotes a general concept, i.e.,

C −→ A | ¬A | ∃Q | ¬∃Q

where A is an atomic concept and P is an atomic role.

R, possibly with subscript, denotes a general role, i.e.,

R −→ Q | ¬Q
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TBox Reasoning services

Concept Satisfiability: C is satisfiable wrt T , if there is a model I of T
such that CI is not empty, i.e., T 6|= C ≡ ⊥

Subsumption: C1 is subsumed by C2 wrt T , if for every model I of T we
have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I of T
we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of T we
have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥

Functionality implication: A functionality assertion (funct Q) is logically
implied by T if for every model I of T , we have that (o, o1) ∈ QI and
(o, o2) ∈ QI implies o1 = o2, i.e., T |= (funct Q).

Analogous definitions hold for role satisfiability, subsumption, equivalence, and
disjointness.
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From TBox reasoning to ontology (un)satisfiability

Basic reasoning service:

Ontology satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

In the following, we show how to reduce TBox reasoning to ontology
unsatisfiability:

1 We show how to reduce TBox reasoning services to concept/role
subsumption.

2 We provide reductions from concept/role subsumption to ontology
unsatisfiability.
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Concept/role satisfiability, equivalence, and disjointness

Theorem

1 C is unsatisfiable wrt T iff T |= C v ¬C.

2 T |= C1 ≡ C2 iff T |= C1 v C2 and T |= C2 v C1.

3 C1 and C2 are disjoint iff T |= C1 v ¬C2.

Proof (sketch).

1 “⇐” if T |= C v ¬C, then CI ⊆ ∆I \ CI , for every model I = 〈∆I , ·I〉
of T ; but this holds iff CI = ∅.
“⇒” if C is unsatisfiable, then CI = ∅, for every model I of T . Therefore
CI ⊆ (¬C)I .

2 Trivial.

3 Trivial.

Analogous reductions for role satisfiability, equivalence and disjointness.
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From implication of functionalities to subsumption

Theorem

T |= (funct Q) iff either (funct Q) ∈ T (only for DL-LiteF ontologies), or
T |= Q v ¬Q.

Proof (sketch).

“⇐” The case in which (funct Q) ∈ T is trivial.
Instead, if T |= Q v ¬Q, then QI = ∅ and hence I |= (funct Q), for every
model I of T .

“⇒” When neither (funct Q) ∈ T nor T |= Q v ¬Q, we can construct a
model of T that is not a model of (funct Q).
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From concept subsumption to ontology unsatisfiability

Theorem

T |= C1 v C2 iff the ontology OC1vC2 = 〈T ∪ {Â v C1, Â v ¬C2}, {Â(c)}〉
is unsatisfiable, where Â is an atomic concept not in T , and c is a constant.

Intuitively, C1 is subsumed by C2 iff the smallest ontology containing T and
implying both C1(c) and ¬C2(c) is unsatisfiable.

Proof (sketch).

“⇐” Let OC1vC2 be unsatisfiable, and suppose that T 6|= C1 v C2. Then there
exists a model I of T such that CI1 6⊆ CI2 . Hence CI1 \ CI2 6= ∅. We can
extend I to a model of OC1vC2 by taking cI = o, for some o ∈ CI1 \ CI2 , and

ÂI = {cI}. This contradicts OC1vC2 being unsatisfiable.

“⇒” Let T |= C1 v C2, and suppose that OC1vC2 is satisfiable. Then there
exists a model I be of OC1vC2 . Then I |= T , and I |= C1(c) and I |= ¬C2(c),
i.e., I 6|= C1 v C2. This contradicts T |= C1 v C2.
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From role subsumption to ont. unsatisfiability for DL-LiteR

Theorem

Let T be a DL-LiteR TBox and R1, R2 two general roles.
Then T |= R1 v R2 iff the ontology
OR1vR2 = 〈T ∪ {P̂ v R1, P̂ v ¬R2}, {P̂ (c1, c2)}〉 is unsatisfiable,

where P̂ is an atomic role not in T , and c1, c2 are two constants.

Intuitively, R1 is subsumed by R2 iff the smallest ontology containing T and
implying both R1(c1, c2) and ¬R2(c1, c2) is unsatisfiable.

Proof (sketch).

Analogous to the one for concept subsumption.

Notice that OR1vR2 is inherently a DL-LiteR ontology.
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From role subsumption to ont. unsatisfiability for DL-LiteF

Theorem

Let T be a DL-LiteF TBox, and Q1, Q2 two basic roles such that Q1 6= Q2.
Then,

1 T |= Q1 v Q2 iff Q1 is unsatisfiable iff
either ∃Q1 or ∃Q−1 is unsatisfiable wrt T ,
which can again be reduced to ontology unsatisfiability.

2 T |= ¬Q1 v Q2 iff T is unsatisfiable.

3 T |= Q1 v ¬Q2 iff
either ∃Q1 and ∃Q2 are disjoint, or ∃Q−1 and ∃Q−2 are disjoint, iff
either T |= ∃Q1 v ¬∃Q2, or T |= ∃Q−1 v ¬∃Q−2 ,
which can again be reduced to ontology unsatisfiability.

Notice that an inclusion of the form ¬Q1 v ¬Q2 is equivalent to Q2 v Q1, and
therefore is considered in the first item.
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Summary

The results above tell us that we can support TBox reasoning services by
relying on the ontology (un)satisfiability service.

Ontology satisfiability is a form of reasoning over both the TBox and the
ABox of the ontology.

In the following, we first consider other TBox & ABox reasoning services, in
particular query answering, and then turn back to ontology satisfiability.
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TBox and ABox reasoning services

Ontology Satisfiability: Verify wether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Concept Instance Checking: Verify wether an individual c is an instance
of a concept C in an ontology O, i.e., whether O |= C(c).

Role Instance Checking: Verify wether a pair (c1, c2) of individuals is an
instance of a role Q in an ontology O, i.e., whether O |= Q(c1, c2).

Query Answering Given a query q over an ontology O, find all tuples ~c of
constants such that O |= q(~c).
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Query answering and instance checking

For atomic concepts and roles, instance checking is a special case of query
answering, in which the query is boolean and constituted by a single atom in
the body.

O |= A(c) iff q()← A(c) evaluated over O is true.

O |= P (c1, c2) iff q()← P (c1, c2) evaluated over O is true.
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From instance checking to ontology unsatisfiability

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology, C a DL-Lite concept, and P an
atomic role. Then:

O |= C(c) iff OC(c) = 〈T ∪ {Â v ¬C}, A ∪ {Â(c)}〉 is unsatisfiable,

where Â is an atomic concept not in O.

O |= ¬P (c1, c2) iff O¬P (c1,c2) = 〈T , A ∪ {P (c1, c2)}〉 is unsatisfiable.

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology and P an atomic role.
Then O |= P (c1, c2) iff O is unsatisfiable or P (c1, c2) ∈ A.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR ontology and P an atomic role.
Then O |= P (c1, c2) iff OP (c1,c2) = 〈T ∪ {P̂ v ¬P}, A ∪ {P̂ (c1, c2)}〉 is

unsatisfiable, where P̂ is an atomic role not in O.
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Certain answers

We recall that

Query answering over an ontology O = 〈T ,A〉 is a form of logical implication:

find all tuples ~c of constants of A s.t. O |= q(~c)

A.k.a. certain answers in databases, i.e., the tuples that are answers to q in all
models of O = 〈T ,A〉:

cert(q,O) = { ~c | ~c ∈ qI , for every model I of O }

Note: We have assumed that the answer qI to a query q over an interpretation
I is constituted by a set of tuples of constants of A, rather than objects in ∆I .
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Data complexity of query answering

When studying the complexity of query answering, we need to consider the
associated decision problem:

Def.: Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple ~c of constants, check
whether ~c ∈ cert(q,O).

We consider a setting where the size of the data largely dominates the size of
the conceptual layer, hence, we concentrate on efficiency in the size of the data.

We look at data complexity of query answering, i.e., complexity of the
recognition problem computed w.r.t. the size of the ABox only.
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Basic questions associated to query answering

1 For which ontology languages can we answer queries over an ontology
efficiently?

2 How complex becomes query answering over an ontology when we consider
more expressive ontology languages?
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rq,TPerfect

(under OWA)
Query

(under CWA)

evaluation

reformulation
q

T

A cert(q, 〈T ,A〉)

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query rq,T
(called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a complete
database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Q-rewritability (cont’d)

Let Q be a query language and L be an ontology language.

Def.: Q-rewritability

For an ontology language L, query answering is Q-rewritable if for every TBox
T of L and for every query q, the perfect reformulation rq,T of q w.r.t. T can
be expressed in the query language Q.

Notice that the complexity of computing rq,T or the size of rq,T do not affect
data complexity.

Hence, Q-rewritability is tightly related to data complexity, i.e.:

complexity of computing cert(q, 〈T ,A〉) measured in the size of the ABox
A only,

which corresponds to the complexity of evaluating rq,T over A.
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Q-rewritability: interesting cases

Consider an ontology language L that enjoys Q-rewritability, for a query
language Q:

When Q is FOL (i.e., the language enjoys FOL-rewritability)
; query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When Q is an NLogSpace-hard language
; query evaluation requires (at least) linear recursion.

When Q is a PTime-hard language
; query evaluation requires (at least) recursion (e.g., Datalog).

When Q is a coNP-hard language
; query evaluation requires (at least) power of Disjunctive Datalog.
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Q-rewritability for DL-Lite

We now study Q-rewritability of query answering over DL-Lite ontologies.

In particular we will show that both DL-LiteR and DL-LiteF enjoy
FOL-rewritability of conjunctive query answering.
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Query answering over unsatisfiable ontologies

In the case in which an ontology is unsatisfiable, according to the “ex falso
quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in the
answer to every query.

We are not interested in encoding meaningless query answering into the
perfect reformulation of the input query. Therefore, before query
answering, we will always check ontology satisfiability to single out
meaningful cases.

Thus, in the following, we focus on query answering over satisfiable
ontologies.

We first consider satisfiable DL-LiteR ontologies.
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Remark

We call positive inclusions (PIs) assertions of the form

Cl v A | ∃Q
Q1 v Q2

We call negative inclusions (NIs) assertions of the form

Cl v ¬A | ¬∃Q
Q1 v ¬Q2

D. Calvanese Part 2: Ontology-Based Access to Inform. KBDB – 2008/2009 (160/220)

unibz.itunibz.it

TBox reasoning TBox & ABox reasoning Complexity of reasoning in DLs Reasoning in DL-LiteA References

Query answering in DL-LiteR Chap. 4: Reasoning in the DL-Lite family

Query answering in DL-LiteR

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute cert(q,O) as
follows:

1 Using T , reformulate q as a union rq,T of CQs.

2 Evaluate rq,T directly over A managed in secondary storage via a
RDBMS.

Correctness of this procedure shows FOL-rewritability of query answering in
DL-LiteR.

; Query answering over DL-LiteR ontologies can be done using RDMBS
technology.
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Query reformulation

Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect reformulation, we add to
the input query above, the query

q(x) ← AssistantProf(x)
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Query reformulation (cont’d)

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect reformulation
the query

q(x) ← teaches(x, y), teaches(z1, y)

Consider now the query q(x) ← teaches(x, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI applies to the atom teaches(x, y), and we add to the perfect
reformulation the query

q(x) ← Professor(x)
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Query reformulation – Constants

Conversely, for the query q(x) ← teaches(x, kbdb)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

teaches(x, kbdb) does not unify with teaches(z, f(z)), since the skolem term
f(z) in the head of the rule does not unify with the constant kbdb.

In this case, the PI does not apply to the atom teaches(x, kbdb).

The same holds for the following query, where y is distinguished, since unifying
f(z) with y would correspond to returning a skolem term as answer to the
query:

q(x, y) ← teaches(x, y)
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Query reformulation – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI above does not apply to the atom teaches(x, y).
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Query reformulation – Reduce step

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

This PI does not apply to teaches(x, y) or teaches(z, y), since y is in join, and
we would introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y)

Now, we can apply the PI above, and add to the reformulation the query

q(x) ← Professor(x)
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Query reformulation – Summary

Reformulate the CQ q into a set of queries: apply to q and the computed
queries in all possible ways the PIs in the TBox T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .
A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

( denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory participation to
obtain new queries that could contribute to the answer.

Unifying atoms can make rules applicable that were not so before.

The UCQ resulting from this process is the perfect reformulation rq,T .
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Query reformulation algorithm

Algorithm PerfectRef(q, TP )
Input: conjunctive query q, set of DL-LiteR PIs TP

Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each PI I in TP do

if I is applicable to g
then PR := PR ∪ { q[g/(g, I)] }

for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Notice that NIs do not play any role in the reformulation of the query.
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ABox storage

ABox A stored as a relational database in a standard RDBMS as follows:

For each atomic concept A used in the ABox:

define a unary relational table tabA

populate tabA with each 〈c〉 such that A(c) ∈ A

For each atomic role P used in the ABox,

define a binary relational table tabP

populate tabP with each 〈c1, c2〉 such that P (c1, c2) ∈ A

We denote with DB(A) the database obtained as above.
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Query evaluation

Let rq,T be the UCQ returned by the algorithm PerfectRef(q, T ).

We denote by SQL(rq,T ) the encoding of rq,T into an SQL query over
DB(A).

We indicate with Eval(SQL(rq,T ),DB(A)) the evaluation of SQL(rq,T )
over DB(A).
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Query answering in DL-LiteR

Theorem

Let T be a DL-LiteR TBox, TP the set of PIs in T , q a CQ over T , and let
rq,T = PerfectRef(q, TP ). Then, for each ABox A such that 〈T ,A〉 is
satisfiable, we have that cert(q, 〈T ,A〉) = Eval(SQL(rq,T ),DB(A)).

In other words, query answering over a satisfiable DL-LiteR ontology is
FOL-rewritable.

Notice that we did not mention NIs of T in the theorem above. Indeed, when
the ontology is satisfiable, we can ignore NIs and answer queries as if
NIs were not specified in T .
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Query answering in DL-LiteR – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Reformulation: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches( , y)
q(x)← teaches(x, )
q(x)← Professor(x)

ABox: teaches(john, kbdb)
Professor(mary)

It is easy to see that Eval(SQL(rq,T ),DB(A)) in this case produces as answer
{john, mary}.
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Query answering in DL-LiteR – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v ∃hasFather to the atom hasFather(y2, )

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x, )
� Apply Person v ∃hasFather to the atom hasFather(x, )

q(x)← Person(x)
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Query answering in DL-LiteF

If we limit our attention to PIs, we can say that DL-LiteF ontologies are
DL-LiteR ontologies of a special kind (i.e., with no PIs between roles).

As for NIs and functionality assertions, it is possible to prove that they can be
disregarded in query answering over satisfiable DL-LiteF ontologies.

From this the following result follows immediately.

Theorem

Let T be a DL-LiteF TBox, TP the set of PIs in T , q a CQ over T , and let
rq,T = PerfectRef(q, TP ). Then, for each ABox A such that 〈T ,A〉 is
satisfiable, we have that cert(q, 〈T ,A〉) = Eval(SQL(rq,T ),DB(A)).

In other words, query answering over a satisfiable DL-LiteF ontology is
FOL-rewritable.
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Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is
satisfiable.

Remember that solving this problem allow us to solve TBox reasoning and
identify cases in which query answering is meaningless.

A first notable result tells us that PIs alone cannot cause an ontology to
become unsatisfiable.

Theorem

Let O = 〈T ,A〉 be either a DL-LiteR or a DL-LiteF ontology, where T
contains only PIs. Then, O is satisfiable.
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DL-LiteR ontologies

NIs, however, can make a DL-LiteR ontology unsatisfiable.

Example

TBox T : Professor v ¬Student
∃teaches v Professor

ABox A: teaches(john, kbdb)
Student(john)

In what follows we provide a mechanism to establish, in an efficient way,
whether a DL-LiteR ontology is satisfiable.
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Checking satisfiability of DL-LiteR ontologies

Satisfiability of a DL-LiteR ontology O = 〈T ,A〉 is reduced to evaluating a
FOL-query (in fact a UCQ) over DB(A).

We proceed as follows: Let TP the set of PIs in T .

1 For each NI N between concepts (resp. roles) in T , we ask 〈TP ,A〉
whether there exists some individual (resp. pair of individuals) that
contradicts N , i.e., we construct over 〈TP ,A〉 a boolean CQ qN () such
that

〈TP ,A〉 |= qN () iff 〈TP ∪ {N},A〉 is unsatisfiable

2 We exploit PerfectRef to verify whether 〈TP ,A〉 |= qN (), i.e., we compute
PerfectRef(qN , TP ), and evaluate it (in fact, its SQL encoding) over
DB(A).
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Satisfiability of DL-LiteR ontologies – Example

PIs TP : ∃teaches v Professor

NI N : Professor v ¬Student

Query qN : qN ()← Student(x),Professor(x)

Perfect Reformulation: qN ()← Student(x),Professor(x)
qN ()← Student(x), teaches(x, )

ABox A: teaches(john, kbdb)
Student(john)

It is easy to see that 〈TP ,A〉 |= qN (), and that the ontology
〈TP ∪ {Professor v ¬Student}, A〉 is unsatisfiable.
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Queries for NIs

For each NI N in T we compute a boolean CQ qN () according to the following
rules:

A1 v ¬A2 ; qN ()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; qN ()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; qN ()← P (y, x), A(x)
∃P1 v ¬∃P2 ; qN ()← P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; qN ()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, y)
P1 v ¬P2 or P−1 v ¬P−2 ; qN ()← P1(x, y), P2(x, y)
P−1 v ¬P2 or P1 v ¬P−2 ; qN ()← P1(x, y), P2(y, x)
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DL-LiteR: From satisfiability to query answering

Lemma (Separation for DL-LiteR)

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T . Then, O
is unsatisfiable iff there exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

The lemma relies on the following properties:

NIs do not interact with each other.

Interaction between NIs and PIs can be managed through PerfectRef .

Notably, each NI can be processed individually.
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DL-LiteR: FOL-rewritability of satisfiability

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteR ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteR ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff there exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

In other words, satisfiability of a DL-LiteR ontology can be reduced to
FOL-query evaluation.
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DL-LiteF ontologies

Unsatisfiability in DL-LiteF ontologies can be caused by NIs or by
functionality assertions.

Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: Student(john)
teaches(john, kbdb)
teaches(michael, kbdb)

In what follows we extend to DL-LiteF ontologies the technique for DL-LiteR
ontology satisfiability given before.
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Checking satisfiability of DL-LiteF ontologies

Satisfiability of a DL-LiteF ontology O = 〈T ,A〉 is reduced to evaluating a
FOL-query over DB(A).

We deal with NIs exactly as done in DL-LiteR ontologies (indeed, limited
to NIs, DL-LiteF ontologies are DL-LiteR ontologies of a special kind).

To deal with functionality assertions, we proceed as follows:

1 For each functionality assertion F ∈ T , we ask if there exist two pairs of
individuals in A that contradict F , i.e., we pose over A a boolean FOL
query qF () such that

A |= qF () iff 〈{F},A〉 is unsatisfiable.

2 To verify if A |= qF (), we evaluate SQL(qF ) over DB(A).
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Queries for functionality assertions

For each functionality assertion F in T we compute a boolean FOL query
qF () according to the following rules:

(funct P ) ; qF ()← P (x, y), P (x, z), y 6= z
(funct P−) ; qF ()← P (x, y), P (z, y), x 6= z

Example

Functionality F : (funct teaches−)

Query qF : qF ()← teaches(x, y), teaches(z, y), x 6= z

ABox A: teaches(john, kbdb)
teaches(michael, kbdb)

It is easy to see that A |= qF (), and that 〈{(funct teaches−)},A〉, is
unsatisfiable.
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DL-LiteF : From satisfiability to query answering

Lemma (Separation for DL-LiteF )

Let O = 〈T ,A〉 be a DL-LiteF ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

(b) There exists a functionality assertion F ∈ T such that A |= qF ().

(a) relies on the properties that NIs do not interact with each other, and
interaction between NIs and PIs can be managed through PerfectRef .

(b) exploits the property that NIs and PIs do not interact with
functionalities: indeed, no functionality assertions are contradicted in a
DL-LiteF ontology O, beyond those explicitly contradicted by the ABox.

Notably, the lemma asserts that to check ontology satisfiability, each NI and
each functionality assertion can be processed individually.
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DL-LiteF : FOL-rewritability of satisfiability

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteF ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteF ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

(b) There exists a functionality assertion F ∈ T such that
Eval(SQL(qF ),DB(A)) returns true.

In other words, satisfiability of a DL-LiteF ontology can be reduced to
FOL-query evaluation.
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Complexity of query answering over satisfiable ontologies

Theorem

Query answering over both DL-LiteR and DL-LiteF ontologies is

1 NP-complete in the size of query and ontology (combined comp.).

2 PTime in the size of the ontology.

3 LogSpace in the size of the ABox (data complexity).

Proof (sketch).

1 Guess the derivation of one of the CQs of the perfect reformulation, and
an assignment to its existential variables. Checking the derivation and
evaluating the guessed CQ over the ABox is then polynomial in combined
complexity. NP-hardness follows from combined complexity of evaluating
CQs over a database.

2 The number of CQs in the perfect reformulation is polynomial in the size
of the TBox, and we can compute them in PTime.

3 Is the data complexity of evaluating FOL queries over a DB.
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Complexity of ontology satisfiability

Theorem

Checking satisfiability of both DL-LiteR and DL-LiteF ontologies is

1 PTime in the size of the ontology (combined complexity).

2 LogSpace in the size of the ABox (data complexity).

Proof (sketch).

Follows directly from the algorithm for ontology satisfiability and the complexity
of query answering over satisfiable ontologies.
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Complexity of TBox reasoning

Theorem

TBox reasoning over both DL-LiteR and DL-LiteF ontologies is PTime in
the size of the TBox (schema complexity).

Proof (sketch).

Follows from the previous theorem, and from the reduction of TBox reasoning
to ontology satisfiability. Indeed, the size of the ontology constructed in the
reduction is polynomial in the size of the input TBox.
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Beyond DL-Lite

Can we further extend these results to more expressive ontology languages?

Essentially NO!
(unless we take particular care)
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Beyond DL-Lite

We now consider DL languages that allow for constructs not present in DL-Lite
or for combinations of constructs that are not legal in DL-Lite.

We recall here syntax and semantics of constructs used in what follows.

Construct Syntax Example Semantics

conjunction C1 u C2 Doctor uMale CI1 ∩ CI2
disjunction C1 t C2 Doctor t Lawyer CI1 ∪ CI2
qual. exist. restr. ∃Q.C ∃child.Male {a | ∃b. (a, b) ∈ QI ∧ b ∈ CI }
qual. univ. restr. ∀Q.C ∀child.Male {a | ∀b. (a, b) ∈ QI → b ∈ CI }
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Summary of results on data complexity

Cl Cr F R Data complexity
of query answering

1 DL-LiteF
√ − in LogSpace

2 DL-LiteR − √
in LogSpace

3 A | ∃P .A A − − NLogSpace-hard

4 A A | ∀P .A − − NLogSpace-hard

5 A A | ∃P .A
√ − NLogSpace-hard

6 A | ∃P .A | A1 uA2 A − − PTime-hard

7 A | A1 uA2 A | ∀P .A − − PTime-hard

8 A | A1 uA2 A | ∃P .A
√ − PTime-hard

9 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard

10 A | ∃P | ∃P− A | ∃P | ∃P− √ √
PTime-hard

11 A | ∃P .A A | ∃P .A
√ − PTime-hard

12 A | ¬A A − − coNP-hard

13 A A | A1 tA2 − − coNP-hard

14 A | ∀P .A A − − coNP-hard

All NLogSpace and PTime hardness results hold already for atomic queries.
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Observations

DL-Lite-family is FOL-rewritable, hence LogSpace – holds also with n-ary
relations ; DLR-LiteF and DLR-LiteR.

RDFS is a subset of DL-LiteR ; is FOL-rewritable, hence LogSpace.

Horn-SHIQ [HMS05] is PTime-hard even for instance checking (line 11).

DLP [GHVD03] is PTime-hard (line 6)

EL [BBL05] is PTime-hard (line 6).
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Qualified existential quantification in the lhs of inclusions

Adding qualified existential on the lhs of inclusions makes instance checking
(and hence query answering) NLogSpace-hard:

Cl Cr F R Data complexity

3 A | ∃P .A A − − NLogSpace-hard

Hardness proof is by a reduction from reachability in directed graphs:

TBox T : a single inclusion assertion ∃P .A v A
ABox A: encodes graph using P and asserts A(d)

NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking (and
hence query answering) NLOGSPACE-hard:

Cl Cr F R Data complexity

5 A | ∃P .A A − − NLOGSPACE-hard

Hardness proof is by a reduction from reachability in directed graphs:

• Ontology O: a single inclusion assertion ∃P .A ⊑ A

• Database D: encodes graph using P and asserts A(d)

P

s

d

A

A

A

A

A

P

P
P

P
P

Result:
(O, D) |= A(s) iff d is reachable from s in the graph
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Result:
〈T ,A〉 |= A(s) iff d is reachable from s in the graph.
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NLogSpace-hard cases

Instance checking (and hence query answering) is NLogSpace-hard in data
complexity for:

Cl Cr F R Data complexity

3 A | ∃P .A A − − NLogSpace-hard

By reduction from reachability in directed graphs

4 A A | ∀P .A − − NLogSpace-hard

Follows from 3 by replacing ∃P .A1 v A2 with A1 v ∀P−.A2,
and by replacing each occurrence of P− with P ′, for a new role P ′.

5 A A | ∃P .A
√ − NLogSpace-hard

Proved by simulating in the reduction ∃P .A1 v A2

via A1 v ∃P−.A2 and (funct P−),
and by replacing again each occurrence of P− with P ′, for a new role P ′.
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Path System Accessibility

Instance of Path System Accessibility: PS = (N,E, S, t) with

N a set of nodes

E ⊆ N ×N ×N an accessibility relation

S ⊆ N a set of source nodes

t ∈ N a terminal node

Accessibility of nodes is defined inductively:

each n ∈ S is accessible

if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given PS , checking whether t is accessible, is PTime-complete.
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Reduction from Path System Accessibility

Given an instance PS = (N,E, S, t), we construct

TBox T consisting of the inclusion assertions

∃P1.A v B1

∃P2.A v B2

B1 uB2 v A
∃P3.A v A

ABox A encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )
e2 = (n, s1, s2)
e3 = (n, . , . )

Reduction from Path System Accessibility

Given an instance PS = (N, E, S, t), we construct

• Ontology O consisting of the inclusion assertions

∃P1.A ⊑ B1

∃P2.A ⊑ B2

B1 ⊓ B2 ⊑ A

∃P3.A ⊑ A

• Database D encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )

e2 = (n, s1, s2)

e3 = (n, . , . )

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(O, D) |= A(t) iff t is accessible in PS
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Result:
〈T ,A〉 |= A(t) iff t is accessible in PS .
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coNP-hard cases

Are obtained when we can use in the query two concepts that cover another
concept. This forces reasoning by cases on the data.

Query answering is coNP-hard in data complexity for:

Cl Cr F R Data complexity

11 A | ¬A A − − coNP-hard
12 A A | A1 tA2 − − coNP-hard
13 A | ∀P .A A − − coNP-hard

All three cases are proved by adapting the proof of coNP-hardness of instance
checking for ALE by [DLNS94].
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2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each
clause has exactly 2 positive and 2 negative literals.

Example: ϕ = c1 ∧ c2 ∧ c3, with
c1 = v1 ∨ v2 ∨ ¬v3 ∨ ¬v4
c2 = false ∨ false ∨ ¬v1 ∨ ¬v4
c3 = false ∨ v4 ∨ ¬true ∨ ¬v2

2+2-SAT is NP-complete [DLNS94].
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Reduction from 2+2-SAT

2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over variables v1, . . . , vn, true, false

Ontology is over concepts L, T , F , roles P1, P2, N1, N2 and individuals
v1, . . . , vn, true, false, c1, . . . ck
ABox Aϕ constructed from ϕ:

for each propositional variable vi: L(vi)
for each clause cj = vj1 ∨ vj2 ∨ ¬vj3 ∨ ¬vj4 :
P1(cj , vj1), P2(cj , vj2), N1(cj , vj3), N2(cj , vj4)

T (true), F (false)

TBox T = { L v T t F }
q()← P1(c, v1), P2(c, v2), N1(c, v3), N2(c, v4),

F (v1), F (v2), T (v3), T (v4)

Note: the TBox T and the query q do not depend on ϕ, hence this reduction
works for data complexity.
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Reduction from 2+2-SAT (cont’d)

Lemma

〈T , Aϕ〉 6|= q() iff ϕ is satisfiable.

Proof (sketch).

“⇒” If 〈T , Aϕ〉 6|= q(), then there is a model I of 〈T , Aϕ〉 s.t. I 6|= q(). We
define a truth assignment αI by setting αI(vi) = true iff vIi ∈ T I . Notice that,
since L v T t F , if vIi /∈ T I , then vIi ∈ F I .
It is easy to see that, since q() asks for a false clause and I 6|= q(), for each
clause cj , one of the literals in cj evaluates to true in αI .
“⇐” From a truth assignment α that satisfies ϕ, we construct an interpretation
Iα with ∆Iα = {c1, . . . , ck, v1, . . . , vn, t, f}, and:

cIαj = cj , vIαi = vi, trueIα = t, falseIα = f

T Iα = {vi | α(vi) = true} ∪ {t}, F Iα = {vi | α(vi) = false} ∪ {f}
It is easy to see that Iα is a model of 〈T , Aϕ〉 and that Iα 6|= q().
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Combining functionalities and role inclusions

We have seen till now that:

By including in DL-Lite both functionality of roles and qualified existential
quantification (i.e., ∃P .A), query answering becomes NLogSpace-hard
(and PTime-hard with also inverse roles) in data complexity (see Part 3).

Qualified existential quantification can be simulated by using role inclusion
assertions (see Part 2).

When the data complexity of query answering is NLogSpace or above,
the DL does not enjoy FOL-rewritability.

As a consequence of these results, we get:

To preserve FOL-rewritability, we need to restrict the interaction of functionality
and role inclusions.

Let us analyze on an example the effect of an unrestricted interaction.
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Combining functionalities and role inclusions – Example

TBox T : A v ∃P P v S
∃P− v A (funct S)

ABox A: A(c1), S(c1, c2), S(c2, c3), . . . , S(cn−1, cn)

A(c1), A v ∃P |= P (c1, x), for some x
P (c1, x), P v S |= S(c1, x)

S(c1, x), S(c1, c2), (funct S) |= x = c2
P (c1, c2), ∃P− v A |= A(c2)

A(c2), A v ∃P . . .
|= A(cn)

Hence, we get:

If we add B(cn) and B v ¬A, the ontology becomes inconsistent.

Similarly, the answer to the following query over 〈T ,A〉 is true:

q() ← A(z1), S(z1, z2), S(z2, z3), . . . , S(zn−1, zn), A(zn)
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Interaction between functionalities and role inclusions

Note: The number of unification steps above depends on the data. Hence
this kind of deduction cannot be mimicked by a FOL (or SQL) query, since it
requires a form of recursion. As a consequence, we get:

Combining functionality and role inclusions is problematic.

It breaks separability, i.e., functionality assertions may force existentially
quantified objects to be unified with existing objects.

Note: the problems are caused by the interaction among:

an inclusion P v S between roles,

a functionality assertion (funct S) on the super-role, and

a cycle of concept inclusion assertions A v ∃P and ∃P− v A.

Since we do not want to limit cycles of ISA, we pose suitable restrictions on the
combination of functionality and role inclusions
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Complexity of DL-Lite with funct. and role inclusions

Let DL-LiteFR be the DL that is the union of DL-LiteF and DL-LiteR, i.e.,
the DL-Lite logic that allows for using both role functionality and role inclusions
without any restrictions.

Theorem [ACKZ09]

For DL-LiteFR ontologies:

Checking satisfiability of the ontology is

ExpTime-complete in the size of the ontology (combined complexity).
PTime-complete in the size of the ABox (data complexity).

TBox reasoning is ExpTime-complete in the size of the TBox.

Query answering is

NP-complete in the size of the query and the ontology (comb. com.).
ExpTime-complete in the size of the ontology.
PTime-complete in the size of the ABox (data complexity).
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Restriction on TBox assertions in DL-LiteA ontologies

To ensure FOL-rewritability, in DL-LiteA we have imposed a restriction on the
use of functionality and role/attribute inclusions.

Restriction on DL-LiteA TBoxes

No functional role or attribute can be specialized by using it in the
right-hand side of a role or attribute inclusion assertion.

Since qualified existentials in the right-hand side of concept inclusions are
encoded using role inclusions, this restriction affects also qualified existentials.

Formally:
If ∃P .C or ∃P−.C appears in T ,
then (funct P ) and (funct P−) are not in T .

If Q v P or Q v P− is in T ,
then (funct P ) and (funct P−) are not in T .

If U1 v U2 is in T ,
then (funct U2) is not in T .
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Reasoning in DL-LiteA – Separation

It is possible to show that, by virtue of the restriction on the use of role
inclusion and functionality assertions, all nice properties of DL-LiteF and
DL-LiteR continue to hold also for DL-LiteA.

In particular, w.r.t. satisfiability of a DL-LiteA ontology O, we have:

NIs do not interact with each other.

NIs and PIs do not interact with functionality assertions.

We obtain that for DL-LiteA a separation result holds:

Each NI and each functionality can be checked independently from the
others.

A functionality assertion is contradicted in an ontology O = 〈T ,A〉 only if
it is explicitly contradicted by its ABox A.
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Ontology satisfiability in DL-LiteA

Due to the separation property, we can associate

to each NI N a boolean CQ qN (), and

to each functionality assertion F a boolean FOL query qF ()
and check satisfiability of O by suitably evaluating qN () and qF ().

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in O. Then, O
is unsatisfiable iff one of the following condition holds:

There exists a NI N ∈ T such that
Eval(SQL(PerfectRef(qN , TP )),DB(A)) returns true.

There exists a functionality assertion F ∈ T such that
Eval(SQL(qF ),DB(A)) returns true.
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Query answering in DL-LiteA

Queries over DL-LiteA ontologies are analogous to those over DL-LiteR
and DL-LiteF ontologies, except that they can also make use of attribute
and domain atoms.

Exploiting the previous result, the query answering algorithm of DL-LiteR
can be easily extended to deal with DL-LiteA ontologies:

Assertions involving attribute domain and range can be dealt with as for
role domain and range assertions.

∃Q.C in the right hand-side of concept inclusion assertions can be
eliminated by making use of role inclusion assertions.

Disjointness of roles and attributes can be checked similarly as for
disjointness of concepts, and does not interact further with the other
assertions.
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Complexity of reasoning in DL-LiteA

As for ontology satisfiability, DL-LiteA maintains the nice computational
properties of DL-LiteR and DL-LiteF also w.r.t. query answering. Hence, we
get the same characterization of computational complexity.

Theorem [PLC+08, ACKZ09]

For DL-LiteA ontologies:

Checking satisfiability of the ontology is

NLogSpace-complete in the size of the ontology (combined complexity).
LogSpace in the size of the ABox (data complexity).

TBox reasoning is NLogSpace-complete in the size of the TBox.

Query answering is

NP-complete in the size of the query and the ontology (comb. com.).
NLogSpace-complete in the size of the ontology.
LogSpace in the size of the ABox (data complexity).
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