Università di Roma "La Sapienza" Laurea in Ingegneria Informatica

Basi di Dati

Anno Accademico 2003/2004 Canale M-Z

Diego Calvanese

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" Università di Roma "La Sapienza"

http://www.dis.uniroma1.it/~calvanese/didattica/03-04-basididati/

Il modello relazionale

- Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati
- Disponibile come modello logico in DBMS reali nel 1981 (non è facile realizzare l'indipendenza con efficienza e affidabilità!)
- Si basa sul concetto matematico di relazione (con una variante)
- Le relazioni hanno una rappresentazione naturale per mezzo di tabelle
- Il modello è "basato su valori": anche i riferimenti fra dati in strutture (relazioni) diverse sono rappresentati per mezzo dei valori stessi

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 3

2. Il modello relazionale

2.1 Basi di dati relazionali

- 1. basi di dati relazionali
- 2. algebra relazionale

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 2

Relazione: tre accezioni

- relazione matematica: come nella teoria degli insiemi
- relazione (dall'inglese relationship) che rappresenta una classe di fatti — una relazione matematica fra due entità, nel modello Entity-Relationship; talvolta tradotto con associazione o correlazione
- relazione secondo il modello relazionale dei dati: tabella

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Relazione matematica

- D₁, D₂, ..., D_n (n insiemi anche non distinti)
- il prodotto cartesiano D₁×D₂×...×D_n, è l'insieme di tutte le nuple ordinate (d₁, d₂, ..., d_n) tali che d₁∈D₁, d₂∈D₂, ..., d_n∈D_n
- una relazione matematica su D₁, D₂, ..., D_n è un sottoinsieme del prodotto cartesiano D₁×D₂×...×D_n
- D₁, D₂, ..., D_n sono i domini della relazione. Una relazione su n domini ha grado (o arietà) n
- il numero di n-uple è la cardinalità della relazione

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 5

Relazione matematica, proprietà

Una relazione matematica è un insieme di $\,$ n-uple ordinate: $(d_1,\,...,\,d_n)$ tali che $d_1\!\in\! D_1,\,...,\,d_n\in D_n$

- la relazione è un insieme; quindi:
 - non c'è ordinamento fra le n-uple
 - le n-uple sono distinte
- · ciascuna n-upla è ordinata; quindi
 - l' i-esimo valore proviene dall' i-esimo dominio

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 7

Relazione matematica, esempio

- D₁ = { a, b }
- $D_2 = \{ x, y, z \}$
- prodotto cartesiano D₁ x D₂

а	Х
а	у
а	z
b	Х
b	у
b	Z

• una relazione $r \subseteq D$

$$r \subseteq D_1 \times D_2$$
 $\begin{bmatrix} a & x \\ a & z \end{bmatrix}$

a z b y b z

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 6

Relazione matematica, esempio

Partite ⊆ string × string × integer × integer

Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

- Ciascuno dei domini ha due ruoli distinti, distinguibili attraverso la posizione: il primo e il terzo dominio si riferiscono a nome e reti della squadra ospitante; il secondo e il quarto a nome e reti della squadra ospitata
- La struttura è posizionale

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Relazioni nel modello relazionale dei dati

- Ogni relazione è sostanzialmente una tabella
- A ciascun dominio associamo un nome (attributo), unico nella relazione, che "descrive" il ruolo del dominio
- Nella rappresentazione tabellare, gli attributi sono usati come intestazioni delle colonne

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

 L'ordinamento fra gli attributi è irrilevante: la struttura è non posizionale

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 9

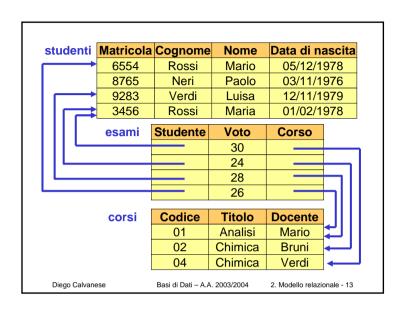
Tabelle e relazioni

- · Una tabella rappresenta una relazione se
 - i valori di ciascuna colonna sono fra loro omogenei (appartengono allo stesso dominio)
 - le righe sono diverse fra loro
 - le intestazioni delle colonne (attributi) sono diverse tra loro
- Inoltre, in una tabella che rappresenta una relazione
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante
- Il modello relazionale è basato su valori: i riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple.

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 11


Notazioni

- Se t è una ennupla su X e A∈X, allora t[A] (oppure t.A) indica il valore di t su A
- Nell'esempio, se t è la prima ennupla della tabella t[Fuori] = Lazio
- La stessa notazione è estesa anche ad insiemi di attributi, nel qual caso denota ennuple: t[Fuori,RetiFuori] è una ennupla su due attributi.
- Nell'esempio, se t è la prima ennupla della tabella t[Fuori,RetiFuori] = <Lazio, 1>

Diego Calvanese

Basi di Dati - A.A. 2003/2004

studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	3456	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	
Diego Calvan	ese	Basi di Dati – A.A	2003/2004	2. Modello relazio	nale - 12

Definizioni				
Schema di relazione di attributi A ₁ ,,	e: un nome di relazione A _n	R con un insieme		
	$R(A_1,, A_n)$			
Schema di base di diversi:	dati: insieme di schemi d	di relazione con nomi		
	$\mathbf{R} = \{R_1(X_1),, R_n(X_n)\}$)}		
(Istanza di) relazione su uno schema R(X): insieme r di ennuple su X				
(Istanza di) base di dati su uno schema $R = \{R_1(X_1),, R_n(X_n)\}:$ insieme di relazioni $\mathbf{r} = \{r_1,, r_n\}$ (con r_i relazione su R_i)				
Diego Calvanese	Basi di Dati – A.A. 2003/2004	2. Modello relazionale - 15		

Vantaggi della struttura basata su valori

- indipendenza dalle strutture fisiche, che possono cambiare anche dinamicamente
- si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione (dell'utente); i puntatori sono meno comprensibili per l'utente finale (senza, l'utente finale vede gli stessi dati dei programmatori)
- i dati sono portabili più facilmente da un sistema ad un altro
- i valori consentono bi-direzionalità, i puntatori sono direzionali

Nota: i puntatori possono essere usati a livello fisico

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 14

Esempio

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti lavoratori Matricola

Matricola 6554 3456

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida:
 - le informazioni sono rappresentate per mezzo di ennuple
 - le ennuple ammesse sono dettate dagli schemi di relazione
- I dati disponibili possono non corrispondere esattamente al formato previsto, per varie ragioni.

Esempio:

- di Firenze non conosciamo l'indirizzo della prefettura
- Tivoli non è provincia: non ha prefettura
- Prato è "nuova" provincia: ha la prefettura?

Città	Prefettura
Roma	Via IV Novembre
Firenze	
Tivoli	
Prato	

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 17

Informazione incompleta nel modello relazionale

- Si adotta una tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (e non è un valore del dominio)
- Formalmente, è sufficiente estendere il concetto di ennupla: t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo NULL
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 19

Informazione incompleta: soluzioni?

Non conviene (anche se spesso si fa) utilizzare valori ordinari del dominio (0, stringa nulla, "99", etc), per vari motivi:

- potrebbero non esistere valori "non utilizzati"
- valori "non utilizzati" potrebbero diventare significativi
- in fase di utilizzo (ad esempio, nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 18

Tipi di interpretazione del valore nullo

- · (almeno) tre casi differenti
 - valore sconosciuto: esiste un valore del dominio, ma non è noto (Firenze)
 - valore inesistente: non esiste un valore del dominio (Tivoli)
 - valore senza informazione: non è noto se esista o meno un valore del dominio (Prato)
- I DBMS non distinguono i tipi di valore nullo (e quindi implicitamente adottano l'interpretazione "senza informazione")

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Vincoli di integrità

Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse.

Student

Matricola	Cognome	Nome	Nascita
276545	Rossi	Maria	23/04/1968
276545	Neri	Anna	23/04/1972
788854	Verdi	Fabio	12/02/1972

Esami

Studente	Voto	Lode	Corso
276545	28	e lode	01
276545	32		02
788854	23		03
200768	30	e lode	03

Corsi

Codice	Titolo	Docente
01	Analisi	Giani
03	NULL	NULL
02	Chimica	Belli

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 21

Vincoli di integrità: motivazioni

- risultano utili al fine di descrivere la realtà di interesse in modo più accurato di quanto le strutture permettano;
- forniscono un contributo verso la "qualità dei dati"
- · costituiscono uno strumento di ausilio alla progettazione
- sono utilizzati dal sistema nella scelta della strategia di esecuzione delle interrogazioni

Nota:

 non tutte le proprietà di interesse sono rappresentabili per mezzo di vincoli esprimibili direttamente

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 23

Vincolo di integrità

Definizione

- proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- ogni vincolo può essere visto come una funzione booleana (o un predicato) che associa ad ogni istanza il valore vero o falso.
- Ad uno schema associamo un insieme di vincoli e consideriamo corrette (lecite, valide, ammissibili) solo le istanze che soddisfano tutti i vincoli
- · Tipi di vincoli:
 - intrarelazionali
 - interrelazionali

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 22

Vincoli intrarelazionali: vincoli di ennupla

- Esprimono condizioni sui valori di ciascuna ennupla, indipendentemente dalle altre ennuple.
- Una possibile sintassi: espressione booleana (con AND, OR e NOT) di atomi che confrontano valori di attributo o espressioni aritmetiche su di essi.
- Un vincolo di ennupla è un vincolo di dominio se coinvolge un solo attributo

Esempi:

```
(Voto \ge 18) AND (Voto \le 30)
(Voto = 30) OR NOT (Lode = "e lode")
```

Lordo = (Ritenute + Netto)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Vincoli intrarelazionali: vincoli di chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- il numero di matricola identifica gli studenti:
 - non ci sono due ennuple con lo stesso valore sull'attributo Matricola
- i dati anagrafici identificano gli studenti:
 - non ci sono due ennuple uguali su tutti e tre gli attributi Cognome, Nome e Nascita

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 25

Vincoli di chiave: esempi

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Matricola è una chiave:
 - Matricola è superchiave
 - contiene un solo attributo e quindi è minimale
- Cognome, Nome, Nascita è un'altra chiave:
 - l'insieme Cognome, Nome, Nascita è superchiave
 - nessuno dei suoi sottoinsiemi è superchiave
- Cognome, Nome, Nascita, Corso è superchiave (non chiave)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 27

Vincoli di chiave

Chiave: insieme di attributi che identificano univocamente le ennuple di una relazione

Più precisamente:

- un insieme K di attributi è superchiave per una relazione r se r non contiene due ennuple distinte t₁ e t₂ tali che t₁[K] = t₂[K]
- K è chiave per r se è una superchiave minimale (cioè non contiene un'altra superchiave) per r

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 26

Un'altra chiave?

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- non ci sono ennuple uguali su Cognome e Corso:
 Cognome e Corso formano una chiave
- ma è sempre vero?

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Vincoli, schemi e istanze

- i vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- interessano a livello di schema (con riferimento cioè a tutte le istanze): ad uno schema associamo un insieme di vincoli che vogliamo siano soddisfatti da tutte le sue istanze corrette
- consideriamo quindi corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- N.B.: un'istanza può soddisfare altri vincoli ("per caso")

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 29

Esistenza delle chiavi

- poiché le relazioni sono insiemi, una relazione non può contenere ennuple uguali fra loro:
 - ogni relazione ha come superchiave l'insieme degli attributi su cui è definita
- poiché l'insieme di tutti gli attributi è una superchiave per ogni relazione, ogni schema di relazione ha almeno una superchiave
- ne segue che ogni schema di relazione ha (almeno) una chiave

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 31

Individuazione delle chiavi

Individuiamo le chiavi

- considerando le proprietà che i dati soddisfano nell'applicazione (il "frammento di mondo reale di interesse"):
- notando quali insiemi di attributi permettono di identificare univocamente le ennuple;
- e individuando i sottoinsiemi minimali di tali insiemi che conservano la capacità di identificare le ennuple.

Esempio:

Studenti(Matricola, Cognome, Nome, Corso, Nascita) ha 2 chiavi:

Matricola Cognome, Nome, Nascita

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 30

Importanza delle chiavi

- l'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- · ogni singolo valore è univocamente accessibile tramite:
 - nome della relazione
 - valore della chiave
 - nome dell'attributo
- le chiavi sono lo strumento principale attraverso il quale vengono correlati i dati in relazioni diverse ("il modello relazionale è basato su valori")

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Chiavi e valori nulli

- In presenza di valori nulli, i valori degli attributi che formano la chiave:
 - non permettono di identificare le ennuple come desiderato
 - né permettono di realizzare facilmente i riferimenti da altre relazioni

Matricola	Cognome	Nome	Corso	Nascita
NULL	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
NULL	Neri	Mario	NULL	5/12/78

Diego Calvanese Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 33

Vincoli interrelazionali: integrità referenziale

- Informazioni in relazioni diverse sono correlate attraverso valori comuni, in particolare, attraverso valori delle chiavi (primarie, di solito).
- Un vincolo di integrità referenziale (detto anche vincolo di ("foreign key") fra un insieme di attributi X di una relazione R₁ e un'altra relazione R₂ impone ai valori su X di ciascuna ennupla dell'istanza di R₁ di comparire come valori della chiave (primaria) dell'istanza di R₂.
- Giocano un ruolo fondamentale nel concetto di "modello basato su valori".

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 35

Chiave primaria

- La presenza di valori nulli nelle chiavi deve essere limitata.
- Soluzione pratica: per ogni relazione scegliamo una chiave (la chiave primaria) su cui non ammettiamo valori nulli.
- Notazione per la chiave primaria: gli attributi che la compongono sono sottolineati

<u>Matricola</u>	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
67653	Rossi	Piero	NULL	5/12/78

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 34

Vincoli di integrità referenziale: esempio

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Vigili

<u>Matricola</u>	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Diego Calvanese Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 36

Esempio (cont.)

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 37

2. Modello relazionale - 39

Vincoli di integrità referenziale: esempio

- Nell'esempio, i vincoli di integrità referenziale sussistono fra:
 - l'attributo Vigile della relazione Infrazioni e la relazione Vigili
 - gli attributi Prov e Numero di Infrazioni e la relazione Auto

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 38

Violazione di vincolo di integrità referenziale

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	E39548
64521	5/4/96	2468	PR	839548
73321	5/2/98	9345	PR	839548

Vigili

<u>Matricola</u>	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Violazione di vincolo di integrità ref. (cont.)

Infrazioni

Codice	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	ТО	39548K
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI 39548K		Rossi	Mario
TO	TO E39548		Mario
PR	839548	Neri	Luca

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Integrità referenziale e valori nulli

In presenza di valori nulli i vincoli possono essere resi meno restrittivi.

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

Codice	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 41

2. Modello relazionale - 43

Eliminazione in cascata

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Integrità referenziale: azioni compensative

Sono possibili meccanismi per il supporto alla gestione dei vincoli di integrità ("azioni" compensative a seguito di violazioni)

Ad esempio, se viene eliminata una ennupla causando una violazione:

- comportamento "standard": rifiuto dell'operazione
- azioni compensative:
 - eliminazione in cascata
 - · introduzione di valori nulli

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 42

Introduzione di valori nulli

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	NULL
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
вон	09/2001	24	150

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Vincoli multipli su più attributi

Incidenti

<u>Codice</u>	Data	ProvA	NumeroA	ProvB	NumeroB
34321	1/2/95	TO	E39548	MI	39548K
64521	5/4/96	PR	839548	TO	E39548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 45

Linguaggi per basi di dati

· operazioni sullo schema: DDL: data definition language

· operazioni sui dati:

DML: data manipulation language

- interrogazione ("query")
- aggiornamento

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 47

2. Il modello relazionale

2.2 Algebra relazionale

- 1. basi di dati relazionali
- algebra relazionale

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 46

Linguaggi di interrogazione per basi di dati relazionali

Tipologia:

- Dichiarativi: specificano le proprietà del risultato ("che cosa")
- Procedurali: specificano le modalità di generazione del risultato ("come")

Rappresentanti più significativi:

- · Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- **SQL** (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Algebra relazionale

Costitutita da un insieme di operatori

- definiti su relazioni
- che producono relazioni
- · e possono essere composti

Operatori dell'algebra relazionale:

- unione, intersezione, differenza
- ridenominazione
- selezione
- proiezione
- join (join naturale, prodotto cartesiano, theta-join)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 49

Operatori insiemistici

- · le relazioni sono insiemi
- i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 50

Unione

Laureati

Matricola Nome Età 7274 Rossi 42 7432 Neri 54 9824 Verdi 45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ **Quadri**

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

Diego Calvanese

Basi di Dati - A.A. 2003/2004

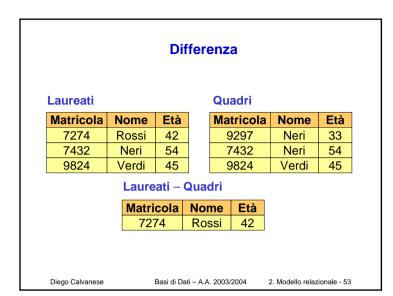
2. Modello relazionale - 51

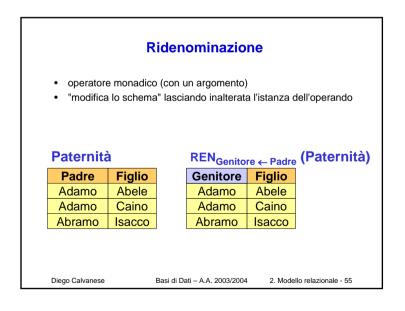
Intersezione

Laureati

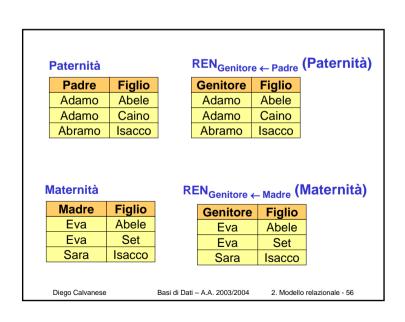
Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

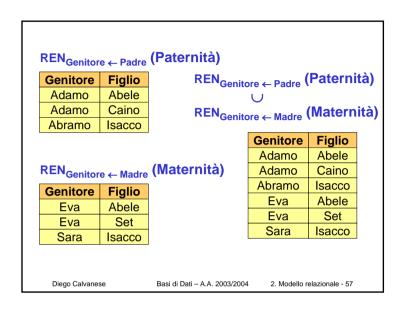
Quadri


Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45


Laureati ∩ Quadri

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45


Diego Calvanese


Basi di Dati - A.A. 2003/2004

Un'unione sensata ma impossibile **Paternità** Maternità **Padre Figlio Figlio** Madre Abele Abele Adamo Eva Caino Eva Set Adamo Sara Abramo Isacco Isacco Paternità U Maternità ?? Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 54 Diego Calvanese

	Selezione	
 contiene un 		dell'operando,
Diego Calvanese	Basi di Dati – A.A. 2003/2004	2. Modello relazionale - 59

Impiegati	Cognome	Uffici	io	Stipendio	
Implegati	Rossi	Rom	a	55	
	Neri	Milan	0	64	
	0	Estate at		0-1:-	
Operai	Cognome	Fabor	ıca	Salario	
-	Bruni	Monz	a	45	
	Verdi	Latin	a	55	
REN Sede, R	etribuzione ←	Ufficio,	Stipe	_{endio} (Impi	egati)
		()			
	etribuzione ← etribuzione ← Cognome	()	a, Sa		
	etribuzione ←	- Fabbric	a, Sa	alario (Ope	
	etribuzione ← Cognome Rossi	- Fabbrica Sede	a, Sa	_{alario} (Oper etribuzione	
	etribuzione ← Cognome Rossi Neri	Fabbrica Sede Roma	a, Sa	etribuzione 55	
	etribuzione ← Cognome Rossi Neri	Fabbrica Sede Roma Milano	a, Sa	etribuzione 55 64	

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

- · impiegati che
 - guadagnano più di 50
 - guadagnano più di 50 e lavorano a Milano
 - hanno lo stesso nome della filiale presso cui lavorano

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 60

Selezione, sintassi e semantica

Sintassi:

SEL Condizione (Operando)

Condizione: espressione booleana (come quelle dei vincoli di ennupla)

Semantica

il risultato contiene le ennuple dell'operando che soddisfano la condizione

2. Modello relazionale - 61

Diego Calvanese Basi di Dati – A.A. 2003/2004

impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

SEL_{Stipendio > 50 AND Filiale = 'Milano'} (Impiegati)

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 63

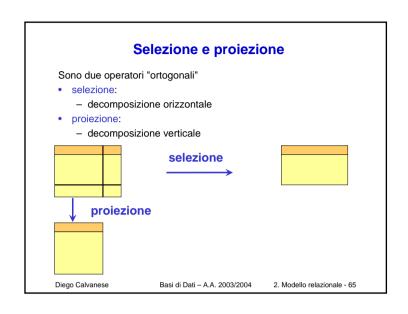
- impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

SEL_{Stipendio > 50} (Impiegati)

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 62


impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

SEL Cognome = Filiale(Impiegati)

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 64

7309	Cognome Neri		Stipendio	
	iveii	Napoli	55	
5998	Neri	Milano	64	
9553	Rossi	Roma	44	
5698	Rossi	Roma	64	
 matricola e cognome cognome e filiale 				

Proiezione

- · operatore monadico
- · produce un risultato che
 - ha parte degli attributi dell'operando
 - contiene ennuple cui contribuiscono tutte le ennuple dell'operando

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 66

Proiezione, sintassi e semantica

Sintassi

PROJ Lista Attributi (Operando)

Semantica

• il risultato contiene le ennuple ottenute da tutte le ennuple dell'operando ristrette agli attributi nella lista

Diego Calvanese

Basi di Dati - A.A. 2003/2004

- matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

PROJ Matricola, Cognome (Impiegati)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 69

Cardinalità delle proiezioni

- · una proiezione
 - contiene al più tante ennuple quante l'operando
 - può contenerne di meno
- se X è una superchiave di R, allora PROJ_X(R) contiene esattamente tante ennuple quante R

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 71

- cognome e filiale di tutti gli impiegati

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

PROJ Cognome, Filiale (Impiegati)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 70

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Join

- combinando selezione e proiezione, possiamo estrarre informazioni da una relazione
- non possiamo però correlare informazioni presenti in relazioni diverse
- il join è l'operatore più interessante dell'algebra relazionale
- permette di correlare dati in relazioni diverse

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 73

2. Modello relazionale - 75

Numero	Voto
1	25
2	13
3	27
4	28

Numero	Candidato
1	Mario Rossi
2	Nicola Russo
3	Mario Bianchi
4	Remo Neri

Numero	Candidato	Voto
1	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27
4	Remo Neri	28

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Prove scritte in un concorso pubblico

- I compiti sono anonimi e ad ognuno è associata una busta chiusa con il nome del candidato
- Ciascun compito e la relativa busta vengono contrassegnati con uno stesso numero

1	25
2	13
3	27
4	28

1	Mario Rossi
2	Nicola Russo
3	Mario Bianchi
4	Remo Neri

Mario Rossi	25
Nicola Russo	13
Mario Bianchi	27
Remo Neri	28

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 74

Join naturale

- operatore binario (generalizzabile)
- · produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Join, sintassi e semantica

- $R_1(X_1), R_2(X_2)$
- R₁ JOIN R₂ è una relazione su X₁X₂

{ t su X_1X_2 | esistono $t_1 \in R_1e \ t_2 \in R_2$ con $t[X_1] = t_1 e \ t[X_2] = t_2$ }

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 77

Un join completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

In un join completo ogni ennupla contribuisce al risultato.

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 78

Un join non completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

2. Modello relazionale - 79

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Un join vuoto

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
D	Mori
С	Bruni

Impiegato Reparto Capo

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 80

Un join completo, con n x m ennuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Bianchi	В	Bruni

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 81

Join, un'osservazione

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Mori

Alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 83

Cardinalità del join

- R₁(A,B), R₂(B,C)
- In generale, il join di R₁ e R₂ contiene un numero di ennuple compreso fra zero e il prodotto di |R₁| e |R₂|:

$$0 \le |R_1| \text{JOIN } R_2| \le |R_1| \times |R_2|$$

 se il join coinvolge una chiave di R₂ (ovvero, B è chiave in R₂), allora il numero di ennuple è compreso fra zero e |R₁|:

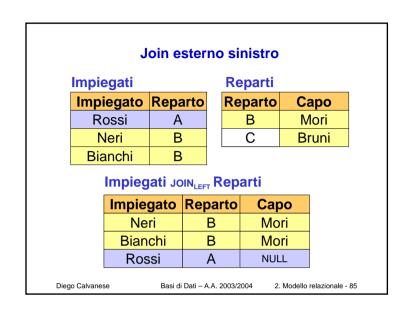
$$0 \le |R_1 \text{ JOIN } R_2| \le |R_1|$$

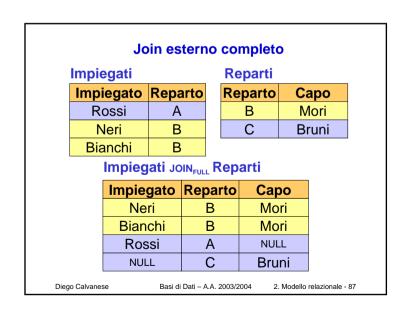
 se il join coinvolge una chiave di R₂ (ovvero, B è chiave in R₂) ed esiste un vincolo di integrità referenziale fra B (in R₁) e R₂, allora il numero di ennuple è pari a |R₁|:

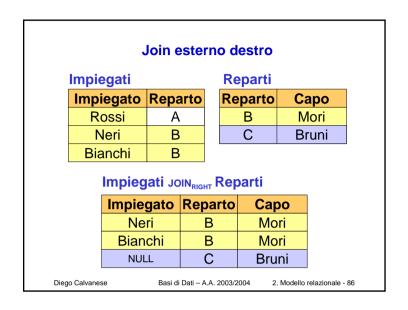
$$|R_1 \text{ JOIN } R_2| = |R_1|$$

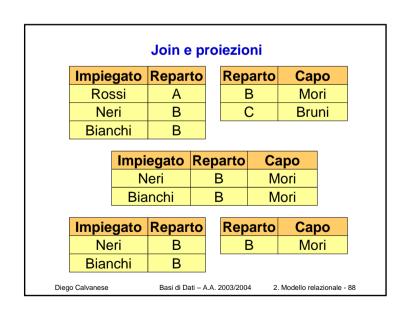
Diego Calvanese

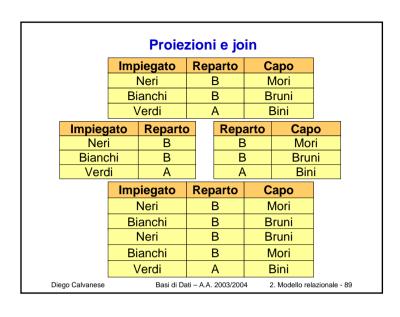
Basi di Dati - A.A. 2003/2004


2. Modello relazionale - 82


Join esterno


- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- · esiste in tre versioni:
 - sinistro: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
 - destro: ... del secondo operando ...
 - completo: ... di entrambi gli operandi ...


Diego Calvanese


Basi di Dati - A.A. 2003/2004

Prodotto cartesiano

- un join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 91

Join e proiezioni

• $R_1(X_1), R_2(X_2)$

 $PROJ_{X_4}(R_1 JOIN R_2) \subseteq R_1$

• R(X), $X = X_1 \cup X_2$

 $(PROJ_{X_1}(R)) \ JOIN \ (PROJ_{X_2}(R)) \supseteq R$

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 90

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 92

Theta-join

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

• L'operazione viene chiamata theta-join e indicata con

- La condizione di selezione è spesso una congiunzione (AND) di atomi di confronto A₁9 A₂ dove 9 è uno degli operatori di confronto (=, >, <, ...). Da questo deriva il nome "theta-join".
- Se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join.

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 93

Impiegati

Impiegato	Reparte
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
Α	Mori
В	Bruni

2. Modello relazionale - 95

Impiegati JOIN Reparti

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Impiegati

Impiegato	Reparto		
Rossi	Α		
Neri	В		
Bianchi	В		

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Diego Calvanese

Basi di Dati - A.A. 2003/2004

2. Modello relazionale - 94

Join naturale ed equi-join

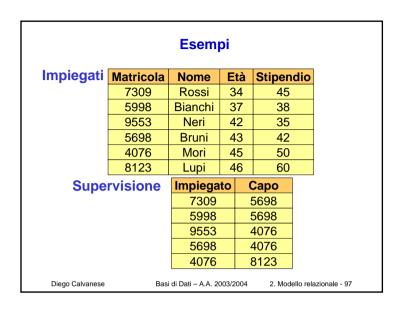
Possiamo riesprimere un join naturale usando un equi-join.

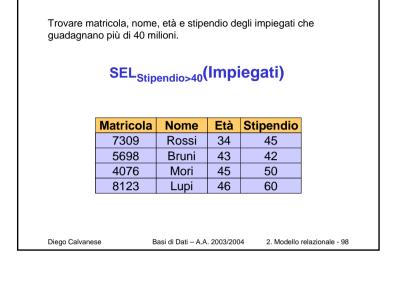
Impiegati

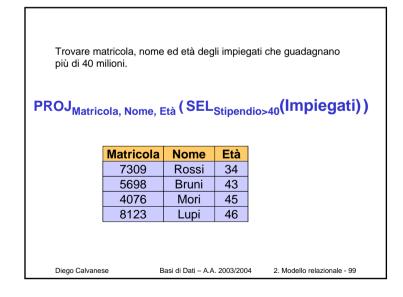
Reparti

Impiegato Reparto

Reparto Capo


Impiegati JOIN Reparti


PROJ_{Impiegato,Reparto,Capo} (SEL_{Reparto=Codice}


(Impiegati JOIN $REN_{Codice \leftarrow Reparto}$ (Reparti)))

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40 milioni.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJ_{Nome,Stipendio} (
Impiegati JOIN Matricola=Capo
PROJ_{Capo} (Supervisione

JOIN Impiegato=Matricola (SEL_{Stipendio>40} (Impiegati))))

Diego Calvanese Basi di Dati – A.A. 2003/2004 2. Modello relazionale - 101

Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 milioni.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJ_{Capo} (Supervisione) PROJ_{Capo} (Supervisione
JOIN Impiegato=Matricola
(SEL_{Stipendio} ≤ 40(Impiegati)))

Diego Calvanese Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 103

Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo.

Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJMAT,Nome,Stip,MatrC,NomeC,StipC
(SELStipendio>StipC(

RENMATC,NomeC,StipC,EtàC ← Matr,Nome,Stip,Età(Impiegati)
JOIN MatrC=Capo
(Supervisione JOIN Impiegato=Matricola Impiegati))))

Diego Calvanese Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 102

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Diego Calvanese Basi di Dati - A.A. 2003/2004

Un'equivalenza importante

• Effettuare le selezioni il prima possibile (push selections)

Esempio: se A è attributo di R₁ $SEL_{A=10}(R_1 \text{ JOIN } R_2) = R_1 \text{ JOIN } SEL_{A=10}(R_2)$

· Le selezioni tipicamente riducono in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione).

Diego Calvanese

Basi di Dati - A.A. 2003/2004 2. Modello relazionale - 105

2. Modello relazionale - 107

Un risultato non desiderabile

 $SEL_{Et\dot{a}>30}$ (Persone) \cup $SEL_{Et\dot{a}<30}$ (Persone) \neq Persone

Perché? Perché le selezioni vengono valutate separatamente!

Ma anche

SEL _{Età>30 ∨ Età<30} (Persone) ≠ Persone

Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

Diego Calvanese

Basi di Dati - A.A. 2003/2004

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

SEL Età > 40 (Impiegati)

La condizione atomica è vera solo per valori non nulli.

Diego Calvanese

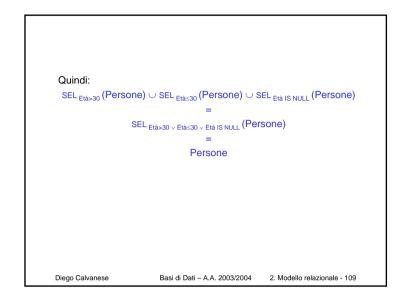
Basi di Dati - A.A. 2003/2004

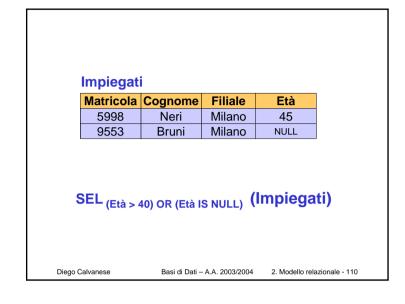
2. Modello relazionale - 106

Selezione con valori nulli: soluzione

SEL Età > 40 (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:


IS NULL IS NOT NULL


• si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso,

sconosciuto)

Diego Calvanese

Basi di Dati - A.A. 2003/2004

